首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 550 毫秒
1.
Remediation of contaminated soils is often studied using fine-textured soils rather than low-fertility sandy soils, and few studies focus on recontamination events. This study compared aerobic and anaerobic treatments for remediation of freshly introduced used motor oil on a sandy soil previously phytoremediated and bioacclimated (microorganisms already adapted in the soil environment) with some residual total petroleum hydrocarbon (TPH) contamination. Vegetated and unvegetated conditions to remediate anthropogenic fill containing residual TPH that was spiked with nonaqueous phase liquids (NAPLs) were evaluated in a 90-day greenhouse pot study. Vegetated treatments used switchgrass (Panicum virgatum). The concentration of aerobic bacteria were orders of magnitude higher in vegetated treatments compared to unvegetated. Nevertheless, final TPH concentrations were low in all saturated soil treatments, and high in the presence of switchgrass. Concentrations were also low in unvegetated pots with fertilizer. Acclimated indigenous microbial communities were shown to be more effective in breaking down hydrocarbons than introducing microbes from the addition of plant treatments in sandy soils. Remediation of fresh introduced NAPLs on pre-phytoremediated and bioacclimated soil was most efficient in saturated, anaerobic environments, probably due to the already pre-established microbial associations, easily bioavailable contaminants, and optimized soil conditions for microbial establishment and survival.  相似文献   

2.
A phytoremediation study targeting low-level total petroleum hydrocarbons (TPH) was conducted using cool- and warm-season grasses and willows (Salix species) grown in pots filled with contaminated sandy soil from the New Haven Rail Yard, CT. Efficiencies of the TPH degradation were assessed in a 90-day experiment using 20–8.7–16.6 N-P-K water-soluble fertilizer and fertilizer with molasses amendments to enhance phytoremediation. Plant biomass, TPH concentrations, and indigenous microbes quantified with colony-forming units (CFU), were assessed at the end of the study. Switchgrass grown with soil amendments produced the highest aboveground biomass. Bacterial CFU's were in orders of magnitude significantly higher in willows with soil amendments compared to vegetated treatments with no amendments. The greatest reduction in TPH occurred in all vegetated treatments with fertilizer (66–75%) and fertilizer/molasses (65–74%), followed sequentially by vegetated treatments without amendments, unvegetated treatments with amendments, and unvegetated treatments with no amendment. Phytoremediation of low-level TPH contamination was most efficient where fertilization was in combination with plant species. The same level of remediation was achievable through the addition of grasses and/or willow combinations without amendment, or by fertilization of sandy soil.  相似文献   

3.
Phytoremediation has been demonstrated to be a viable cleanup alternative for soils contaminated with petroleum products. This study evaluated the application of phytoremediation to soil from a manufactured gas plant (MGP) site with high concentrations of recalcitrant, polycyclic aromatic hydrocarbons (PAHs). Two greenhouse studies investigated the potential dissipation and plant translocation of PAHs by fescue (Festuca arundinacea) and switchgrass (Panicum virgatum) in the first experiment and zucchini (Curcubita pepo Raven) in the second. The MGP soil was highly hydrophobic and initially inhibited plant growth. Two unplanted controls were established with and without fertilization. In the first experiment, concentrations of PAHs decreased significantly in all treatments after 12 mo. Plant biomass and microbial numbers were statistically equivalent among plant species. PAH concentrations in plant biomass were negligible for fescue and switchgrass. In the second experiment, zucchini enhanced the dissipation of several PAHs after 90 d of treatment when compared to the unvegetated soil. Plant tissue concentrations of PAHs were not elevated in the zucchini roots and shoots, and PAHs were not detectable in the fruit.  相似文献   

4.
Relationships exist between plant root growth and the phytoremediation of oil-contaminated soils. In a previous study, we demonstrated that zinnia flowers are well suited for the remediation of oil-contaminated soil. In this study, our goal was to quantify the relationship between zinnia root growth and purification of oil-contaminated soils. Three treatments were used: (1) cultivation of zinnia in oil-contaminated soil (contaminated pots), (2) cultivation in non-contaminated soil (non-contaminated pots), and (3) contaminated soil with no cultivation and only irrigation (irrigated pots). Growth of the Zinnia plants, including their roots, was significantly reduced in the contaminated pots compared with the noncontaminated pots. The soil dehydrogenase activity increased between 45 and 90?days after planting in all parts of the contaminated pots, especially the upper parts. The soil total petroleum hydrocarbon (TPH) concentrations in the contaminated pots decreased throughout the study period. Interestingly, the soil dehydrogenase activity increased, and the soil TPH concentration decreased even in lower parts of the pots where there was very little root growth. Therefore, the cultivation of plants can have a remediative effect on oil-contaminated soil even below the depth reached by the plant roots.  相似文献   

5.
The objective of this study was to investigate the phytoremediation potential of mycorrhizal systems for the remediation of aldrin-contaminated soils. Feltleaf willow (Salix alaxensis) and balsam poplar (Populus balsamifera) were grown in soil spiked with 0.8 mg/kg aldrin- (1,2,3,4,10-14C). Daconil2787® was employed to suppress indigenous mycorrhizal infection. After 100 days of greenhouse incubation, mycorrhizal infection in the fungicide-amended willows was found to be 2.5 fold lower than in controls. Mycorrhizal infection in the poplar systems was unaffected by fungicide addition. Mycorrhizae were correlated with radiolabel uptake in the willow systems (r = 0.79), and not as strongly in the poplar systems (r = 0.58). Most of the radiolabel in the root material was bound product regardless of mycorrhizal infection, but 12 to 21% was found to be extractable dieldrin. Aldrin was not detected in any vegetative matrix. Dieldrin constituted less than 1% of the radiolabel in the willow leaf material, accumulating to approximately 5 μg/kg. Dieldrin was not detected in the poplar leaves (MDL ≈ 1 μg/kg), although the poplars took up approximately the same amount of radiolabel as the willows. Water-soluble transformation products were formed in the vegetated soils (6 to 12%) and nonvegetated controls (1 to 2%).  相似文献   

6.
Species and hybrids between species belonging to the genera Populus (poplar) and Salix (willow) have been used successfully for phytoremediation of contaminated soils. Our objectives were to: 1) evaluate the potential for establishing genotypes of poplar and willow on soils heavily contaminated with petroleum hydrocarbons and 2) identify promising genotypes for potential use in future systems. We evaluated height, diameter, and volume after first year budset by testing 20 poplar clones and two willow clones. Unrooted cuttings, 20 cm long, were planted in randomized complete blocks at 0.91- x 0.91-m spacing at Gary, IN, USA (41.5 degrees N, 87.3 degrees W). Four commercial poplar clones (NM6, DN5, DN34, and DN182) were planted as 20- and 60-cm cuttings. Sixty-cm cuttings exhibited greater height and diameter than 20-cm cuttings; however, we recommend continued use and testing of different combinations of genotype and cutting length. We identified promising genotypes for potential use in future systems and we recommend allocating the majority of resources into commercial poplar clones, given their generalist growth performance. However, further utilization and selection of experimental clones is needed. Specific clones rather than genomic groups should be selected based on the geographic location and soil conditions of the site.  相似文献   

7.
Clark  R.B.  Alberts  E.E.  Zobel  R.W.  Sinclair  T.R.  Miller  M.S.  Kemper  W.D.  Foy  C.D. 《Plant and Soil》1998,200(1):33-45
Claypans restrict rooting depth and availability of moisture and nutrients to plants during periods of drought. Eastern gamagrass (Tripsacum dactyloides var. dactyloides [L.] L.) often remains green during summer droughts, while other plants turn brown. Questions arose whether eastern gamagrass roots had or could penetrate claypans to obtain needed moisture. Pits were dug (2 m deep) under eastern gamagrass plants that had been growing 50+ and 5+ years at two sites in Missouri. Clay contents were 30 to 50% in soil layers below 30 cm, and moisture was not limiting in these deep soil layers. Soil pHCa in the lower soil layers, except at 180 cm, was below 5.0, and in some cases near 4.0. Extractable Al was especially high in the 90 and 120 cm deep soil layers where pH was low. Extractable Ca, Mg, and K increased with soil depth. The eastern gamagrass roots effectively penetrated claypan soils. Root lengths and root weights were extensive to 180 cm depth, and decreased from the surface with soil depth. Roots of eastern gamagrass were aerenchymous (having cellular compartments which allow air movement) at all depths, were mycorrhizal to at least 150 cm depth, and had relatively high tolerance to acidic Al toxic Tatum subsoil (Typic Hapludult) and toxic levels of Al in nutrient solution. The eastern gamagrass roots also provided root channels through claypans, which could enable new eastern gamagrass or other plant roots to grow into deeper soil layers.  相似文献   

8.
To assess the phytoremediation potential of an autochthonous willow (Salix × aureo-pendula CL 'J1011') for phenanthrene (PHE)-contaminated soils and PHE-cadmium (PHE-Cd) co-contaminated soils, we conducted field experiments in the lower reaches of the Yangtze River, China. Ethylenediaminetetraacetic acid (EDTA) and ethyl lactate were tested for individual and combined effects on the phytoremediation efficiency. For PHE-contaminated soils, willow plus ethyl lactate resulted in significant removal of PHE from soils after 45 days, and the PHE concentration in the shoots was significantly higher with than without ethyl lactate. For PHE-Cd co-contaminated soils, both willow plus EDTA and willow plus EDTA and ethyl lactate led to a significant decrease in the concentrations of PHE and Cd in the soils after 45 days, whereas willow alone did not. The PHE and Cd concentrations in the willow shoots were significantly enhanced in the presence of EDTA alone and with ethyl lactate, except for the PHE concentration in stems with EDTA alone. Under the same treatment, the presence of Cd had no significant influence on the PHE removal from soils. The results indicate the feasibility of using this willow together with both EDTA and ethyl lactate for the simultaneous removal of PHE and Cd from soils.  相似文献   

9.
This paper describes the fibre morphology of switchgrass (Panicum virgatum L.) and its pulping characteristics using sodium hydroxide and a combination of sodium hydroxide and sodium sulphite as the cooking agents. It was found that the fibre length of switchgrass is similar to that of poplar despite its high population of short fibre elements (< 0.2 mm). The switchgrass used in this study had a lignin content comparable to that of poplar, but a particularly high content of extractable materials. The soda pulp from switchgrass showed excellent mechanical properties and showed a great potential as a reinforcement component in newsprint making.  相似文献   

10.
Chlorpyrifos is one of the commonly used organophosphorus insecticides that are implicated in serious environmental and human health problems. To evaluate plant potential for uptake of chlorpyrifos, several plant species of poplar (Populus sp.) and willow (Salix sp.) were investigated. Chlorpyrifos was taken up from nutrient solution by all seven plant species. Significant amounts of chlorpyrifos accumulated in plant tissues, and roots accumulated higher concentrations of chlorpyrifos than did shoots. Chlorpyrifos did not persist in the plant tissues, suggesting further metabolism of chlorpyrifos in plant tissue. To our knowledge, this work represents the first report for phytoremediation of chlorpyrifos using poplar and willow plants.  相似文献   

11.
Abstract

Phyto-recurrent selection is an established method for selecting tree genotypes for phytoremediation. To identify promising Populus (poplar) and Salix (willow) genotypes for phytotechnologies, our objectives were to (1) evaluate the genotypic variability in survival, height, and diameter of poplar and willow clones established on soils heavily contaminated with nitrates; and (2) assess the genotypic stability in survival and diameter of selected poplar clones after one and eleven growing seasons. We tested 27 poplar and 10 willow clones planted as unrooted cuttings, along with 15 poplar genotypes planted as rooted cuttings. The trees were tested at an agricultural production facility in the Midwestern, United States. After 11 growing seasons, using phyto-recurrent selection, we surveyed survival and measured the diameter of 27 poplar clones (14 unrooted, 13 rooted) that were selected based on superior survival and growth throughout plantation development. Overall, willow exhibited the greatest survival, while poplar had the greatest height and diameter. At 11 years after planting, superior clones were identified that exhibited above-average diameter growth at the establishment- and rotation-age, most of which had stable genotypic performance over time. Selection of specific clones was favorable to genomic groups, based on the geographic location and soil conditions of the site.  相似文献   

12.
Eastern gamagrass (Trypsacum dactyloides) is a C4 perennial grass, native to the USA with desirable characteristics that warrants further investigation as a new lignocellulosic crop for bioethanol production. Chemical composition assays showed that eastern gamagrass had comparable cellulose, hemicellulose and lignin compositions to those of switchgrass (Panicum virgatum). With the cellulose solvent-based lignocellulose fractionation (CSLF) pretreatment and subsequent enzymatic saccharification, 80.5–99.8% of cellulosic glucose was released from the gamagrass biomass, which was 10–17% greater than the glucose release efficiency from switchgrass (73.5–87.1%). Furthermore, the hydrolysate of gamagrass supported greater ethanol fermentation yield (up to 0.496 g/g glucose) than the hydrolysates of switchgrass. As such, in the whole process of biomass-to-ethanol conversion, gamagrass could yield 13–35% more ethanol per gram of biomass than switchgrass, indicating that gamagrass has high potential as an alternative energy feedstock for lignocellulosic ethanol production.  相似文献   

13.
The aim of this study was to degrade total petroleum hydrocarbon (TPH) in a petroleum sludge contaminated site (initial TPH concentration of 65,000–75,000 mg.kg–1) with two native sedge species namely Cyperus rotundus (Linn.) and Cyperus brevifolius (Rottb.) Hassk. Fertilized and unfertilized treatments were maintained separately to record the influence of fertilizer in TPH degradation. The average biomass production (twenty plants from each treatment) of C. rotundus was 345.5 g and that of C. brevifolius was 250.6 g in fertilized soil during 360 days. Decrease in soil TPH concentration was higher in fertilized soil (75% for C. rotundus and 64% for C. brevifolius) than in unfertilized soil (36% for C. rotundus and 32% for C. brevifolius). In unvegetated treatments, decrease in soil TPH concentration in fertilized (12%) and unfertilized soil (8%) can be attributed to natural attenuation and microbial degradation. TPH accumulation in roots and shoots was significantly higher in fertilized soil in comparison to unfertilized soils (p < 0.05). Most probable number (MPN) in planted treatments was significantly higher than in unplanted treatments (p < 0.05).  相似文献   

14.
Kentucky, as with many regions around the globe, has a relatively long growing season with significant rainfall that could produce sizeable quantities of perennial herbaceous and woody biomass on land that does not compete with food crops. Additionally, there are limited options for renewable power production from low carbon sources such as solar-photovoltaic, wind and hydroelectric. Recent studies have shown that producing renewable energy from perennial cellulosic crops, as opposed to starch-based biofuel crops, will have a carbon-mitigating outcome. Currently, there is a lack of data regarding regionally suitable genotypes. Herein, we establish baseline values for multiple entry selections of three native C4 grass species, switchgrass (SW) ( Panicum virgatum L.), eastern gamagrass (EG) (Trispicum dactyloides L. ) and big bluestem (BB) (Andropogon gerardii Vitman ) . Yield potential examined over 7 years showed that environment, species and entries had a significant impact on yield, but EG had higher total yield over the duration of the study. Cellulosic biofuel potential was examined by measurement of saccharification efficiency, relative lignocellulosic energy density, cellulose content and lignin content during three growing seasons. EG had significantly higher digestibility rate than SW and BB. Underlying this was a negative correlation between lignification and saccharification efficiency. However, higher lignin content and higher cellulose content among SW entries resulted in higher energy density relative to EG and BB. These data reveal that locally bred EG varieties were most suited to cellulosic ethanol production under the growing conditions of central Kentucky, USA, compared with SW and BB and suggest the importance of regional examination.  相似文献   

15.
We investigated the importance of nutrients, soil moisture, arbuscular mycorrhizal fungi (AMF), and interspecific competition levels on the biomass allocation patterns of three wetland perennial plant species, Carex stricta Lam., Phalaris arundinacea L., and Typha latifolia L. A factorial experiment was conducted with high-low nutrient levels, high-low soil moisture levels, and with and without AMF inoculation. Under the experimental conditions, plant inoculation by AMF was too low to create a treatment and the AMF treatment was dropped from the total analysis. P. arundinacea and T. latifolia biomass were 73% and 77% higher, respectively, in the high nutrient treatment compared to the low nutrient treatment. Biomass allocation between shoots and roots remained relatively constant between environmental treatments, although shoot:root ratios of P. arundinacea declined in the low nutrient treatment. For C. stricta, the high nutrient and soil moisture treatments resulted in an increase in biomass of 50% and 15%, respectively. Shoot:root ratios were nearly constant among all environmental conditions. Biomass of T. latifolia and C. stricta was greatly decreased when grown with P. arundinacea. The rapid, initial height growth of P. arundinacea produced a spreading, horizontal canopy that overshadowed the vertical leaves of T. latifolia and C. stricta throughout the study. This pattern was repeated in both high and low nutrient and soil moisture treatments. When grown with P. arundinacea, C. stricta and T. latifolia significantly increased their mean shoot height, regardless of the nutrient or soil moisture level. The results of this experiment suggest that C. stricta and T. latifolia were light limited when growing with P. arundinacea and that canopy architecture is more important for biomass allocation than the other environmental conditions tested. The results also suggest that Phalaris arundinacea is an inherently better competitor (sensu Grime 1979) than C. stricta or T. latifolia.  相似文献   

16.
The potential for plants to minimize leachate volume and reduce cyanide and fluoride concentrations in groundwater was evaluated. High fluoride and soluble salts in the leachate induced chlorosis or necrosis in the leaf margins on green ash (Fraxinus pennsylvanica), yellow poplar (Liriodendron tulipifera), and bald cypress (Taxodium distichum). Hybrid willow (Salix Willow hybrid), sycamore (Platanus sp.), and black willow (Salix nigra) had high rates of transpiration and root growth during the study period. Cyanide in the leachate was removed by plant metabolic processes whereas fluoride accumulated in the leaves. Cyanide and fluoride in landfill leachate can be decreased through phytoremediation.  相似文献   

17.
Extensive use of the agricultural herbicide atrazine has led to contamination of numerous ground and surface water bodies. Research has shown that it can have a variety of negative impacts on numerous non-target organisms in the environment. Phytoremediation is one strategy that has been studied to remove atrazine contamination. This paper investigates the hypothesis that switchgrass (Panicum virgatum) can exude metabolites of atrazine after uptake and degradation, which has been suggested by prior research. Pots planted with switchgrass were treated with a 4 ppm solution of atrazine spiked with [14C]atrazine. After 4 days, switchgrass plants were transplanted to new pots with fresh sand. Four days later, the pots were sacrificed, and sand and plant samples were extracted. Plant and sand samples were analyzed for the presence of atrazine and its major metabolites. The percentage of radiotracer remaining as the parent atrazine was observed to decrease over the course of the study while the percentages of the metabolites were observed to increase. The presence of the metabolite cyanuric acid in a switchgrass phytoremediation system is reported for the first time.  相似文献   

18.
Laboratory and greenhouse experiments with Cyperus laxus Lam were conducted to determine the rate and extent of phytoremediation and the effect of hydrocarbons on the cytochrome P450 EROD (7-ethoxyresorufin-O-deethylase) enzymatic activity in roots. Plants were cultivated on hydrocarbon-contaminated soil (HCS) and spiked perlite. Phytoremediation was evaluated using 6.5 kg HCS (173 ± 15 mg total petroleum hydrocarbons [TPH] g?1 of dry soil) pots at different moisture contents; the average removal rate was 3.46 ± 0.25 mg TPH g?1 dry soil month?1 and 48% was removed when moisture was kept at 60%. The aromatic hydrocarbon fraction was the mostly removed, 60%; aliphatic, 51%; and polar 24% after 24-month experiments. In unplanted pots, TPH concentration did not exhibit significant differences with respect to the initial concentration. We confirmed that the presence of hydrocarbons induced ERODactivity up to 6.5-fold. Moreover, short-term experiments (up to 13 d) with spiked perlite demonstrated that two EROD activities in roots contributed to the total detected; 60% was found in the cytosolic and 40% in the microsomal fraction. To our knowledge, this is the first work that tries to build links between the hydrocarbon-inducible character of ERODactivity in roots and the phytoremediation ability of C. laxus in highly contaminated soils.  相似文献   

19.
Phytoremediation can be a cost-effective and environmentally acceptable method to clean up crude oil-contaminated soils in situ. Our research objective was to determine the effects of nitrogen (N) additions and plant growth on the number of total hydrocarbon (TH)-, alkane-, and polycyclic aromatic hydrocarbon (PAH)-degrading microorganisms in weathered crude oil-contaminated soil. A warm-season grass, sudangrass (Sorghum sudanense (Piper) Stapf), was grown for 7 wk in soil with a total petroleum hydrocarbon (TPH) level of 16.6 g TPH/kg soil. Nitrogen was added based upon TPH-C:added total N (TPH-C:TN) ratios ranging from 44:1 to 11:1. Unvegetated and unamended controls were also evaluated. The TH-, alkane-, and PAH-degrading microbial numbers per gram of dry soil were enumerated from rhizosphere and non-rhizosphere soil for vegetated pots and non-rhizosphere soil populations were enumerated from non-vegetated pots. Total petroleum-degrading microbial numbers were also calculated for each pot. The TH-, alkane-, and PAH-degrading microbial numbers per gram of dry soil in the sudangrass rhizosphere were 3.4, 2.6, and 4.8 times larger, respectively, than those in non-rhizosphere soil across all N rates. The presence of sudangrass resulted in significantly more TH-degrading microorganisms per pot when grown in soil with a TPH-C:TN ratio of 11:1 as compared to the control. Increased plant root growth in a crude oil-contaminated soil and a concomitant increase in petroleum-degrading microbial numbers in the rhizosphere have the potential to enhance phytoremediation.  相似文献   

20.
Willow species have been suggested for use in the remediation of contaminated soils due to their high biomass production, fast growth, and high accumulation of heavy metals. The tolerance and accumulation of metals may vary among willow species and varieties, and the assessment of this variability is vital for selecting willow species/varieties for phytoremediation applications. Here, we examined the variations in lead (Pb) tolerance and accumulation of three cultivated varieties of Salix integra (Weishanhu, Yizhibi and Dahongtou), a shrub willow native to northeastern China, using hydroponic culture in a greenhouse. In general, the tolerance and accumulation of Pb varied among the three willow varieties depending on the Pb concentration. All three varieties had a high tolerance index (TI) and EC50 value (the effective concentration of Pb in the nutrient solution that caused a 50% inhibition on biomass production), but a low translocation factor (TF), indicating that Pb sequestration is mainly restricted in the roots of S. integra. Among the three varieties, Dahogntou was more sensitive to the increased Pb concentration than the other two varieties, with the lowest EC50 and TI for root and above-ground tissues. In this respect, Weishanhu and Yizhibi were more suitable for phytostabilization of Pb-contaminated soils. However, our findings also indicated the importance of considering the toxicity symptoms when selecting willow varieties for the use of phytoremediation, since we also found that the three varieties revealed various toxicity symptoms of leaf wilting, chlorosis and inhibition of shoot and root growth under the higher Pb concentrations. Such symptoms could be considered as a supplementary index in screening tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号