首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diploid Saccharomyces cerevisiae cells heterozygous for the mating type locus (MATa/MAT alpha) undergo meiosis and sporulation when starved for nitrogen in the presence of a poor carbon source such as potassium acetate. Diploid yeast adenine auxotrophs sporulated well at high cell density (10(7) cells per ml) under these conditions but failed to differentiate at low cell density (10(5) cells per ml). The conditional sporulation-deficient phenotype of adenine auxotrophs could be complemented by wild-type yeast cells, by medium from cultures that sporulate at high cell density, or by exogenously added adenine (or hypoxanthine with some mutants). Adenine and hypoxanthine in addition to guanine, adenosine, and numerous nucleotides were secreted into the medium, each in its unique temporal pattern, by sporulating auxotrophic and prototrophic yeast strains. The major source of these compounds was degradation of RNA. The data indicated that differentiating yeast cells cooperate during sporulation in maintaining sufficiently high concentrations of extracellular purines which are absolutely required for sporulation of adenine auxotrophs. Yeast prototrophs, which also sporulated less efficiently at low cell density (10(3) cells per ml), reutilized secreted purines in preference to de novo-made purine nucleotides whose synthesis was in fact inhibited during sporulation at high cell density. Adenine enhanced sporulation of yeast prototrophs at low cell density. The behavior of adenine auxotrophs bearing additional mutations in purine salvage pathway genes (ade apt1, ade aah1 apt1, ade hpt1) supports a model in which secretion of degradation products, uptake, and reutilization of these products is a signal between cells synchronizing the sporulation process.  相似文献   

2.
Adenine was fed to cells of Rhodospirillum rubrum grown on glutamate. The adenine was found to be incorporated into the modifying group of the inactive form of iron protein. Adenine labelled in the 8-position ([8-3H]adenine) and the 2-position ([2-3H]adenine) was specifically incorporated into the electrophoretic 'upper-band' subunit of iron protein. Incorporation of label from the 2-position into many proteins was observed if histidine was not present in the medium. Label was removed by the activating enzyme for iron protein.  相似文献   

3.
The kinetics of thymidine uptake by Escherichia coli and Bacillus subtilis cells in the presence of adenine and guanine nucleosides was investigated. The initial concentration of thymidine in the growth medium was 0.35 microng/ml while the initial concentration of purine nucleosides ranged from 25 to 250 microng/ml. Adenine nucleosides when present at a concentration more than 50 microng/ml strongly inhibit thymidine uptake by the bacteria. The duration of the inhibition depends on the initial concentration of adenine nucleoside in the growth medium. At an initial concentration of deoxyadenosine (or adenosine) of 250 microng/ml the time of inhibition of thymidine uptake was about 60 min. During this period thymidine is almost completely preserved from the action of bacterial thymidine phosphorylase. Guanine nucleosides (guanosine or deoxyguanosine) do not markedly inhibit thymidine uptake by bacteria even at a concentration of 250 microng/ml. It is shown that they do protect thymidine from the phosphorolytic action of the thymidine phosphorylase although much less effectively than adenine nucleosides. It is suggested that some areas in the bacterial membrane where thymidine phosphorylase is located are not available to guanine nucleosides.  相似文献   

4.
NK cell proliferation is suppressed in some patients with cancer by unknown mechanisms. Because purine metabolites released into the extracellular space during cell lysis may affect cell function, we hypothesized that these metabolites could serve as feedback regulators of NK cell proliferation. Sorted NK (CD56+/CD3-) cells were incubated with IL-2 (1000 U/ml) in a 4-day thymidine uptake assay with or without 10-10,000 microM of nucleotides. Adenine nucleotides inhibited NK cell proliferation, with ATP = ADP > 5'-adenylylimidodiphosphate > AMP = adenosine; ADP-ribose and nicotinamide adenine dinucleotide, but not nicotinamide or UTP, caused a dose-dependent suppression of thymidine uptake. A total of 100 microM ATP, a concentration that induced a maximal (80%) inhibition of thymidine uptake, did not inhibit cytotoxic activity against K562 targets. Because NK cells retained the ability to lyse K562 targets 4 days after exposure to 500 microM ATP or 1000 microM adenosine, inhibition of thymidine uptake was not due to cell death. Incubation of NK cells with dibutyryl cAMP and forskolin also suppressed thymidine uptake. Cholera toxin and pertussis toxin suppressed NK cell proliferation. Pertussis toxin did not block the adenine nucleotide effects. Further, ATP, but not adenosine or other nucleotides, markedly increased intracellular cAMP in a dose-dependent manner. The ATP-induced increase in cAMP was specific to cytolytic cells, because CD19+ B cells and CD4+ T cells did not increase their intracellular cAMP. These studies demonstrate that NK proliferation is regulated through purine receptors by adenine nucleotides, which may play a role in decreased NK cell activity. The response to adenine nucleotides is lineage-specific.  相似文献   

5.
Incubation of L1210 leukemia cells with 10 μM [3H]adenine in the absence of energy substrate results in a very rapid accumulation of 3H within the cells. By 20 s intracellular adenine is near steady-state; beyond this the rate of accumulation of intracellular 3H reflects nucleotide synthesis, predominantly the rate of ATP accumulation within the cell as determined by liquid chromatography. Adenine incorporation into the nucleotides proceeds via adenine-phosphoribosyl transferase, which is rate-limiting to AMP formation and subsequently the formation of ADP and ATP. Acceleration of this pathway by the addition of glucose and phosphate decreases the intracellular adenine level far below equilibrium as metabolism is increased relative to transport. Assessment of methodology to evaluate intracellular adenine and its metabolites indicates that (i) a 4°C wash removes the major portion of intracellular adenine and (ii) at 4°C, transport of adenine remains rapid and while nucleotide synthesis is decreased, ATP still accumulates within the cell. Hence, measurement of cellular uptake of radioactive label at 4°C after cells are washed free of adenine cannot be used as a measurement of adenine surface binding since this radioactive label represents, at least in part, phosphorylated derivatives of adenine within the cell. Unlabeled adenine and structurally related compounds were found to inhibit [3H]adenine net uptake under conditions where metabolism of adenine was reduced, suggesting that base transport is mediated by a facilitated diffusion mechanism. This is consistent with other studies from this laboratory that demonstrate exchange diffusion between adenine and other bases.  相似文献   

6.
基因工程人α心钠素发酵研究   总被引:2,自引:0,他引:2  
本研究采用的基因工程菌为酵母Y33::YFD71-3,其基因型为α,his,1eu,ade,suc.摇瓶培养时心钠素的表达水平为l~2rag/L。在含有葡萄糖、YNB以及不同量腺嘌呤、组氨酸和亮氨酸的YG培养基中作摇瓶培养.当细胞的生长由腺嘌呤限制时,蛋白的分泌有明显增加·在YG培养基中加入5g/L的CAA后腺嘌呤成为限制性基质,培养基中腺嘌呤、YNB和亮氪酸用量对心钠素的表达有很大影响。在5L反应器中进行补料分批培养,流加葡萄糖、YNB、cAA、腺嘌呤、组氨酸和亮氨酸,心钠素的最高浓度达到24.8mg/L。  相似文献   

7.
8.
Summary Adenine or pABA starvation induce mitotic recombination within the ad9 and paba1 cistrons respectively. Adenine concentrations in the plating medium as low as 1×10-8 M increase recombination frequency; the concentration optimal in respect to induced recombination frequency is 5×10-7 M.Recombination within the paba1 cistron is stimulated by low pABA concentrations, or caseine hydrolysate, or methionine.Aminopterin applied for one or two hours before conidia of pABA-requiring diploid are plated on proper selective media, induces recombination within the pro1, ad9 and paba1 cistrons. Conclusion is drawn that it is adenine or thymine starvation which induce mitotic recombination.The implications of this and other similar evidence are discussed.  相似文献   

9.
Adenine uptake and hypoxanthine release by IMP-enriched human erythrocytes has been studied. The presence of IMP within the erythrocytes leads to an increase in the rate of adenine incorporation. Adenine is taken up by IMP-enriched erythrocytes as AMP, even when intracellular 5-phoshorobosyl-1-pyrophosphate concentration is undetectable and too low to allow IMP synthesis from hypoxanthine. During adenine uptake and AMP synthesis, hypoxanthine is released by the cells. The possibility that 5-phosphoribosyl-1-pyrophosphate, necessary for AMP synthesis, is formed through the hypoxanthine guanine phosphoribosyltransferese-catalyzed IMP pyrophosphorolysis is considered.  相似文献   

10.
22Na+ uptake into confluent monolayers of cultured bovine corneal endothelial cells was studied in the presence of ouabain (10(-4)M) to inhibit active sodium extrusion. In bicarbonate saline, uptake was reduced to a similar degree either by amiloride (10(-3)M) or by 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS) (10(-3)M). A further reduction was obtained with SITS-pretreated cells in the presence of amiloride. SITS-sensitive uptake was further characterized in saline containing both ouabain (10(-4)M) and amiloride (10(-3)M). It was absolutely dependent on bicarbonate, which could not be substituted by other plasma membrane permeable buffers (50 mM acetate or 25 mM glycodiazine). It was a saturable function of both bicarbonate and sodium concentration. Half-maximal fluxes occurred between 3 and 7 mM HCO3 (at 151 mM Na) and between 35 and 60 mM Na (at 28 mM HCO3). Uptake into sodium-depleted cells was reduced as opposed to sodium-rich cells, and SITS-sensitive 22Na+ efflux out of 22Na+-loaded cells into sodium-free medium was less than efflux into sodium saline, indicating trans-stimulation by sodium. The amiloride-sensitive pathway was studied in the absence of bicarbonate to inhibit uptake via the SITS-sensitive pathway. 22Na+ uptake into sodium-depleted cells increased steeply with extracellular pH in the range between pH 6 and 8 and could be largely blocked by 10(-3), but not by 10(-5) M amiloride. It is concluded that bovine corneal endothelial cells possess at least two distinct pathways for sodium uptake, amiloride sensitive 22Na+ fluxes being mediated by a Na+/H+ antiport, while the SITS-sensitive process is probably identical to a bicarbonate-sodium cotransport system postulated earlier from electrophysiological studies.  相似文献   

11.
Genetic tumour tissues of Nicotiana glauca (Grah.) × N. langsdorffii (Weinm.), which grow on auxin and cytokinin-free medium, were incubated with [14C]-/[3H]-adenine or [3H]-hypoxanthine to investigate cytokinin biosynthesis. Adenine was supplied to tissues of two different ages (2- and 3.5-week-old) for 8, 24 or 30 h. The uptake was over 91.0 % (of "supplied radioactivity") by 2-week-old tissues as compared to around 50.0 % uptake by 3.5-week-old tissues. Incorporation into cytokinins could not be detected. While unmetabolized adenine accounted for only about 24.0 and 13.4 % of "extracted radioactivity" (following 8 and 30 h incubation, respectively) in 2-week-old tissues, relatively higher levels, i.e. 36.0 and 34.5 % (following 8 and 24 h incubation, respectively) were present in 3.5-week-old tissues. The metabolites formed were adenosine and its nucleotides (4.5 - 16.5 % and 37.4 - 60.2 % of the extracted radioactivity, respectively). Hypoxanthine was supplied to 3.5-week-old tissues for 8 and 24 h. While the uptake was low (<28.0 % of supplied radioactivity), the major proportion of extracted radioactivity was due to unmetabolized hypoxanthine (79.8 % and 85.9 % after 8 and 24 h incubation periods, respectively); the minor metabolites were inosine and adenosine (both <0.5 %) and their nucleotides (< 3.5 %). Radioactivity incorporation into cytokinins from hypoxanthine was not detected. Thus in the present investigations precursor incorporation from either adenine or hypoxanthine into cytokinins could not be demonstrated. It is possible that this may be due to slow rate of cytokinin turnover in these tissues.  相似文献   

12.
Rapid kinetic techniques were employed to measure the transport of adenine in adenine phosphoribosyltransferase-deficient L929 and Chinese hamster ovary (CHO) cells in zero-trans entry and exit and equilibrium exchange procedures. The kinetic parameters of transport were computed by fitting appropriate integrated rate equations to time courses of transmembrane equilibration of radiolabeled adenine. Adenine transport conformed to the simple carrier model with directional symmetry and equal mobility of loaded and empty carrier. The Michaelis-Menten constants and maximum velocities for various strains of L929 cells fell between 2.3 and 3.5 mM and 90 and 150 pmol/microliters of cell water per s, respectively, values similar to those previously reported for CHO and Novikoff hepatoma cells. The corresponding values for hypoxanthine transport in L929 cells were 413 microM and 16 pmol/microliters of cell water per s. Adenine transport velocities were directly proportional to adenine concentrations between 0.03 and 50 microM in both CHO and Novikoff cells. The results indicate that adenine is transported in these cells by a single, low-affinity, high-capacity transporter. Adenine transport was inhibited by hypoxanthine in some cell strains, but not in others. Adenine also rapidly bound to L929 cells in a saturable manner (KD = 18 microM), presumably to the cell surface (about 3 X 10(7) sites per cell).  相似文献   

13.
1. Adenosine, a potent vasodilator, is transported very efficiently by pig aortic endothelium in monolayer culture (approx. 50pmol/min per 10(6) cells at 2 micrometer). Uptake proceeds by diffusion at high (millimolar) substrate concentrations, and by two discrete transport processes (Km approx. 3 micrometer and 250 micrometer) at lower concentrations. Over 90% of the adenosine taken up at 10 micrometer or 100 micrometer is rapidly converted into adenine nucleotides (mainly ATP). 2. The high-affinity process is selectively inhibited by dipyridamole and by nitrobenzylthioinosine. Adenine preferentially inhibits the lower-affinity process, papapaverine inhibits both transport processes, and inosine has no significant effect. 3. Pig aortic smooth-muscle cells in culture show no high-affinity transport system for adenosine; uptake is much slower at low concentrations than that by endothelium (approx. 5pmol/min per 10(6) cells at 2 micrometer). Over 80% of the incorporated adenosine at 10 micrometer or 100 micrometer is rapidly converted into adenine nucleotides. 4. The uptake of adenosine by smooth-muscle cells is powerfully inhibited by adenine, but dipyridamole is much less potent than in endothelium. 5. We conclude that endothelial cells are mainly responsible for the removal of circulating adenosine.  相似文献   

14.
Previous studies have indicated that a single enzyme, "kynureninase," catalyzes the reactions of l-kynurenine to anthranilate and l-3-hydroxykynurenine to 3-hydroxyanthranilate in Neurospora crassa and in other organisms. The present report describes separate enzymes which catalyze these reactions in N. crassa. The first, a kynureninase, preferentially catalyzes kynurenine to anthranilate and is induced over 400-fold by tryptophan or a catabolite of tryptophan. The second, a hydroxykynureninase, is constitutive or noninducible by tryptophan and preferentially catalyzes l-3-hydroxykynurenine to 3-hydroxyanthranilate. The physiological significance of these enzymes may be inferred from the facts that (i) the noninducible enzyme hydroxykynureninase appears to be the main enzyme present in uninduced cells that is capable of catalyzing l-3-hydroxykynurenine to 3-hydroxyanthranilate for the indispensible synthesis of nicotinamide adenine dinucleotide, and (ii) the inducible enzyme kynureninase is induced by tryptophan to a concentration far in excess of that needed to meet the requirements of the cells for nicotinamide adenine dinucleotide, resulting in the excretion of anthranilate into the medium.  相似文献   

15.
A pink, adenine-requiring yeast utilized adenine, hypoxanthine, or S-adenosylmethionine (SAM), in quantities up to 3 mumoles per 100 ml of medium, as equivalent sources of purine for cell growth, but not methylthioadenosine or S-adenosylhomocysteine. Utilization of SAM for growth was inhibited by the presence of l-methionine in quantities greater than 0.6 mumole per 100 ml of medium. However, 6 mumoles of l-methionine had no effect on growth when adenine or hypoxanthine was the source of purine. These sources also reversed the inhibitory effects of 6 mumoles of the amino acid on the utilization of SAM. The presence of 400 mumoles of the amino acid resulted in some inhibition of growth when the organisms were grown with adenine, hypoxanthine, or adenine plus SAM but had no effect on the total uptake of adenine-8-(14)C. Studies on the uptake of radioactivity from a mixture of SAM-adenine-8-(14)C and (3)H-labeled SAM-methyl indicated that these components were taken into the cells at different rates which were altered by the presence of l-methionine. The fixation of (35)S from (35)S-labeled adenosylmethionine into the cells was inhibited by the presence of the amino acid. The cells synthesized and accumulated SAM in the presence of 400 mumoles of l-methionine plus adenine even when exogenous SAM was supplied. Approximately 47% of radioactivity fixed from exogenous SAM-adenine-8-(14)C and 12% from (3)H-labeled SAM-methyl were found in reisolated SAM.  相似文献   

16.
Adenine (ADE) reutilisation is an important pathway of adenylate pool regeneration. Data on the rate of this process in different types of cells, its regulation and the importance of species differences is limited. In this study we evaluated adenine incorporation rate and the effect of metabolic factors on this process in human and rat endothelium and compared it to adenine phosphoribosyltransferase (APRT) activity. Microvascular endothelial cells from human (HE) and rat (RE) hearts and a transformed human microvascular endothelial cell line (HMEC-1) were investigated. The rate of adenine incorporation into the adenine nucleotide pool under control conditions was 3.1+/-0.3, 82.8+/-11.1 and 115.1+/-11.2 pmol/min per mg protein for HE, RE and HMEC-1, respectively. In the presence of 2.5 mM ribose or elevated inorganic phosphate concentration in the medium (4.8 mM), few changes were observed in all types of cells. In the presence of both ribose and high inorganic phosphate, the rate of adenine incorporation for RE and HMEC-1 was not significantly different from control, while in HE the rate of adenine incorporation into adenine nucleotides was increased by 75%. Activities of APRT in RE and HMEC-1 were 237.7+/-23.2 and 262.0+/-30.6 pmol/min per mg protein respectively while the activity in HE was markedly lower 48.7+/-3.0 pmol/min per mg protein. In conclusion, nucleotide synthesis from adenine seems to be a slow process in human cardiac microvascular endothelium but it is fast and efficient in rat heart microvascular endothelial cells. Low APRT activity in normal human endothelial cells seems to be the most likely mechanism for this. However, adenine incorporation rate and APRT activity could be greatly enhanced in human endothelium, as demonstrated in transformed cells.  相似文献   

17.
6-Methylpurine, an analog of adenine, inhibits the growth of Neurospora crassa. From kinetic studies it was found that 6-methylpurine is converted to its nucleotide form by adenine phosphoribosyltransferase (EC 2.4.2.7), and inhibits the de novo purine biosynthesis. Adenine relieves the growth inhibition caused by 6-methylpurine, whereas hypoxanthine is not very effective. Studies dealing with hypoxanthine utilization in the presence of 6-methylpurine indicated a severely reduced uptake of hypoxanthine and a general slowdown in its further metabolism. Two mutants (Mepr-3 and Mepr-10) which are resistant to 6-methylpurine were characterized. Studies of purine base uptake and the in vivo and in vitro conversion to nucleotides indicated that Mepr-10 may be an adenine phosphoribosyltransferase-defective mutant, whereas Mepr-3 may be a mutant with altered feedback response to 6-methylpurine. Both mutants showed a severely lowered hypoxanthine phosphoribosyltransferase activity, but because 6-methylpurine did not have any effect on the conversion of hypoxanthine to IMP in the wild type, it was concluded that 6-methylpurine resistance in these mutants cannot be due to lowered hypoxanthine phosphoribosyltransferase activity, but rather that the lowering of enzyme activity may be a secondary effect.  相似文献   

18.
Time courses of the uptake of radiolabeled hypoxanthine, adenine and uracil were measured by rapid kinetic techniques over substrate ranges from 0.02 to 5000 microM in suspensions of human erythrocytes at 25 or 30 degrees C. At concentrations above 25 microM, the rate of intracellular phosphoribosylation of hypoxanthine and adenine was insignificant relative to their rates of entry into the cell and time courses of transmembrane equilibration of the substrates could be measured and analyzed by integrated rate analysis. Hypoxanthine and uracil are transported by simple facilitated carriers with directional symmetry, high capacity and Michaelis-Menten constants of about 0.2 and 5 mM, respectively. Adenine is probably transported by a carrier with similar properties but no saturability was detectable up to a concentration of 5 mM. Cytosine entered the cells much more slowly than the other three nucleobases, and its entry seems not to be mediated by a carrier. The hypoxanthine transporter resembles that of one group of mammalian cell lines, which does not exhibit any overlap with the nucleoside transporter and is resistant to inhibitors of nucleoside transport. Results from studies on the effects of the nucleobases on the influx and countertransport of each other were complex and did not allow unequivocal conclusions as to the number of independent carriers involved. At concentrations below 5 microM, radiolabel from adenine and hypoxanthine accumulated intracellularly to higher than equilibrium levels. Part of this accumulation reflected metabolic trapping, especially when the medium contained 50 mM phosphate. But part was due to an apparent concentrative accumulation of free adenine and hypoxanthine up to 3-fold at medium concentrations much less than 1 microM and when cells were incubated in phosphate-free medium. This concentrative accumulation could be due to the functioning of additional high-affinity, low-capacity, active transport systems for adenine and hypoxanthine, but other factors could be responsible, such as saturable binding to intracellular components.  相似文献   

19.
A variety of compounds were assessed for their ability to induce morphological differentiation and to affect the synthesis of RNA in uncloned mouse neuroblastoma cells in culture. The stimulation of morphological differentiation in uncloned cells after exposure for 48 hours to concentrations of 3 times 10-7 to 3 times 10-4 M papavarine or 10-9 to 10-3 M dibutyryl adenosine 3':5'-monophosphate (dibutyryl-cAMP) was associated, in part, with a concentration-dependent decrease in incorporation of [5-3H]uridine into ribosomal RNA (rRNA) and heterogeneous RNA (HnRNA). The latter effect on cellular RNA produced by papavarine occurred within 1 hour after its addition to the medium and was associated with impaired uptake of radioactive precursor into uridine nucleotides and reduction in the intracellular concentration of uridine 5'-triphosphate (UTP). Dibutytyl-cAMP produced a decreased in the specific radioactivity of UTP without affecting the concentration of UTP in the tumor cells. The effects of papavarine and dibutyryl-cAMP could be distinguished further by the 50% reduction of acetylcholinesterase activity produced by papavarine, but not by dibutyryl-cAMP. Papavarine did not, however, reduce the cellular level of the soluble enzyme, adenine phosphoribosyltransferase. Sodium butyrate, while producing morphological effects similar to those of papavarine and dibutyryl-cAMP at equimolar concentrations, caused no significant changes in the incorporation of [5-3H]uridine into rRNA and HnRNA; however, acetylcholinesterase activity was stimulated 6- to 7-fold above control levels. In contrast to the other differentiating agents examined, addition of 10-9 to 3 times 10-4 M concentrations of cAMP to the tissue culture medium enhanced morphological differentiation of nueroblastoma cells, and caused a 10- to 20-fold stimulation of the incorporation of [5-3H]uridine into rRNA and HnRNA at concentrations of 10-4 M and higher. This effect observed only at high concentrations of cyclic nucleotide was accompanied by an elevation in the specific acitivty of UTP, These studies suggest that the morphological response of neuroblastoma cells is not necessarily associated with concomitant alterations in the synthesis of RNA with agents other than cAMP. Observed changes in incorporation of [5-3H]uridine into RNA appear in most instances to be due to alterations in the uptake of uridine, and in the pool size and specific radioactivity of UTP.  相似文献   

20.
1. Slices of rat cerebral cortex incubated aerobically at 37 degrees C in Krebs-Ringer-bicarbonate solution accumulated 3,4-L-dihydroxyphenylalanine (L-DOPA) against its concentration gradient. With 1 mM L-DOPA in the medium, tissue-water/medium concentration ratios of about 6 : 1 are reached, which are modified by the presence of other amino acids in the medium. 2. Kinetic analysis suggested that L-DOPA influx into brain cells occurred by at least two saturable processes, which show apparent Km values in the range of 10(-3) M and 10(-5) M, respectively. 3. Prior incubation of the slices in Na+-free (choline-containing) medium at 37 degrees C depressed their subsequent uptake of L-DOPA in normal Na+-containing medium; this inhibition did not appear when the preincubation was carried out at 0-4 degrees C. Besides this effect of preincubation, most of L-DOPA influx into brain slices was independent of the actual concentration of Na+ in the medium; the two saturable processes described in this article behaved similarly in this respect. 4. Most of L-DOPA uptake by the high-Km process is mediated by an agency that resembles the Na+-independent L system described in Ehrlich cells (Oxender, D. L. and Christensen, H. N. (1963) J. Biol. Chem. 238, 2686-2699), both in its specificity and in its participation in exchange phenomena. A lesser component of uptake by a type A mediation is also suggested as contributing to the high-Km process . 5. The kinetic and specificity properties of the low-Km process of L-DOPA uptake suggest a similarity between its mediation and that of the high-affinity systems for L-tyrosine and L-tryptophan found in brain tissue preparations (Belin, M. F. and Pujol, J. F. (1973) Experientia 29, 411-413; Bauman, A., Bourgoin, S., Benda, P., Glowinski, J. and Hamon, M. (1971 Brain Res. 66, 253-263).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号