首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The induction of autophagy caused by vinblastine (VBL) has been found to be concomitant with a stimulation of proteolysis in a mitochondrial- lysosomal (ML) fraction from the rat liver (Marzella and Glaumann, 1980, Lab. Invest., 42: 8-17. Marzella and Glaumann, 1980, Lab. Invest., 42:18-27). In this fraction the enhanced proteolysis is associated with a threefold increase in the relative fractional volume of autophagic vacuoles (AVs). In an attempt to isolate the AVs, we subfractionated the ML suspension at different intervals after the induction of autophagy by VBL by centrifugation on a discontinuous Metrizamide gradient ranging from 50% to 15%. The material banding at the 24 to 20% and the 20 to 15% interphases was collected. Morphological analysis reveals that 3 h after induction of autophagy these fractions consist predominantly (approximately 90%) of intact autophagic vacuoles. These autophagic vacuoles contain cytosol, mitochondria, portions of endoplasmic reticulum, and occasional very low density lipoprotein, particles either free or in Golgi apparatus derivatives, in particular secretory granules. The sequestered materials show ultrastructural signs of ongoing degradation. In addition to containing typical autophagic vacuoles, the isolated fractions consist of lysosomes lacking morphologically recognizable cellular components. Contamination from nonlysosomal material is only a few percent as judged from morphometric analysis. Typical lysosomal "marker" enzymes are enriched 15-fold, whereas the proteolytic activity is enriched 10- to 20-fold in the isolated AV fraction as compared to the homogenate. Initially, the yield of nonlysosomal mitochondrial and microsomal enzyme activities increases in parallel with the induction of autophagy but, later on, decreases with advanced degradation of the sequestered cell organelles. Therefore, in the case of AVs the presence of nonlysosomal marker enzymes cannot be used for calculation of fraction purity, since newly sequestered organelles are enzymatically active. Isolated autophagic vacuoles show proteolytic activity when incubated in vitro. The comparatively high phospholipid/protein ratio (0.5) of the AV fraction suggests that phospholipids are degraded more slow than proteins. Is it concluded that AVs can be isolated into a pure fraction and are the subcellular site of enhanced protein degradation in the rat liver after induction of autophagy.  相似文献   

2.
Isolated human intestinal brush border membranes were used as sources of enzyme to study their degradation by proteolytic enzymes. Human intestinal brush border hydrolases undergo degradation by two separate proteolytic systems. Sucrase and alkaline phosphatase are degraded by pancreatic proteases (e.g. chymotrypsin) at neutral pH, whereas trehalase is degraded by lysosomal extracts at acid pH. Both the membrane bound and membrane free isolated enzymes had similar sensitivity to proteolytic enzymes. Thus, initial removal from the membrane is not essential as a prerequisite to proteolysis. It is postulated that the brush border membrane of the intestine is subject to proteolysis by pancreatic enzymes from the external cell surface and by lysosomal proteases within the cell.  相似文献   

3.
Rhodopsin in bovine photoreceptor disk membranes was subjected to limited proteolysis by thermolysin, removing twelve amino acids from rhodopsin's carboxyl terminus. (1) The rate of proteolysis is significantly faster with rhodopsin following exposure to light than with unbleached rhodopsin, provided that the incubation conditions (pH, temperature) favor the formation of metarhodopsin II. (2) If the disk membranes are illuminated under conditions in which metarhodopsin I is the predominant photoproduct (pH 8.5, 0°C), no increase in the rate of proteolysis is observed compared to unilluminated membranes. (3) The light-induced increase in the rate of proteolysis is transient: it slowly decays in the dark to the original rate found for unbleached rhodopsin. The enhanced susceptibility to proteolysis appears to measure a conformational change at rhodopsin's cytoplasmic surface which is first exhibited at the metarhodopsin II stage. This and possibly other light-dependent changes may allow rhodopsin to mediate its signal as a light-receptor protein by binding to and activating certain rod cell enzymes.  相似文献   

4.
Mechanisms of autophagic proteolysis in the liver have been studied using vinblastine. Vinblastine stimulated degradation by induced autophagy in a dose-related fashion [1, 2]. Insulin partially inhibits the increased rate of degradation and the formation of autophagosomes as well as the lysosomal fragility induced by vinblastine. Insulin has little effect, however, on basal, non-induced degradation rates. Vinblastine-induced autophagy enhances the degradation of both ‘old’ and ‘newly’ synthesized proteins and is therefore in that sense a random process. The administration of high doses of colchicine also augments proteolysis. This effect is attributed to increase in autophagy. The very nascent vinblastine-induced autophagosomes appear to lack hydrolytic enzymes and acquire them only after fusion with lysosomes. The autophagolysosomal population induced by vinblastine is heterogeneous with respect to shape, size, content and density. Isolated secondary lysosomes (‘residual bodies’) lacking morphologically recognizable sequestered membranes (degradable substrate) show no release of degradation products. Autophagosomes fuse with secretory vesicles originating from the Golgi apparatus.  相似文献   

5.
Summary The origin of the membranes of autophagic vacuoles (AV) and acquisition of acid phosphatase into AV's were studied in vinblastine-induced autophagocytosis (VBL, 50 mg/kg, i.p.) in mouse hepatocytes. Using unbuffered OsO4, very intense staining was observed in the outer cisternae of the Golgi apparatus and also frequently in the cavity between the double membranes obviously destined to form AV's as well as in the cavity between the double membranes of newly formed AV's. There may occur a transformation process in the membranes limiting an AV analogous to that observed at the Golgi cisternae. The transformation of the outer AV membrane occurs independently of fusion with lysosomes. Inosine diphosphatase activity was localized within the cisternae and on the membranes of the endoplasmic reticulum and occasionally within the innermost cisterna of the Golgi apparatus. The results together with the unbuffered OsO4-staining pattern suggest that the membranes of most AV's are derived from the transformed smooth surfaced cisternae of the endoplasmic reticulum which do not have inosine diphosphatase activity. Acid phosphatase activity was localized in lysosomes, occasionally within the innermost cisternae of the Golgi apparatus, between the double membranes of a few newly formed AV's and within most older single membrane-limited AV's. VBL did not prevent the fusion of lysosomes with AV's.This research was supported by grants from the Ellen and Artturi Nyyssönen Foundation and the Heikki and Hilma Honkanen Foundation  相似文献   

6.
The origin of the membranes of autophagic vacuoles (AV) and acquisition of acid phosphatase into AV's were studied in vinblastine-induced autophagocytosis (VBL, 50 mg/kg, i.p.) in mouse hepatocytes. Using unbuffered OsO4, very intense staining was observed in the outer cisternae of the Golgi apparatus and also frequently in the cavity between the double membranes obviously destined to form AV's as well as in the cavity between the double membranes of newly formed AV's. There may occur a transformation process in the membranes limiting an AV analogous to that observed at the Golgi cisternae. The transformation of the outer AV membrane occurs independently of fusion with lysosomes. Inosine diphosphatase activity was localized within the cisternae and on the membranes of the endoplasmic recticulum and occasionally within the innermost cisterna of the Golgi apparatus. The results together with the unbuffered OsO4-staining pattern suggest that the membranes of most AV's are derived from the transformed smooth surfaced cisternae of the endoplasmic reticulum which do not have inosine diphosphatase activity. Acid phosphatase activity was localized in lysosomes, occasionally within the innermost cisternae of the Golgi apparatus, between the double membranes of a few newly formed AV's and within most older single membranes of a few newly formed AV's and within most older single membrane-limited AV's. VBL did not prevent the fusion of lysosomes with AV's.  相似文献   

7.
Inactivation of liver cytosol proteins has been measured in vitro in the presence of various membranes and disulphides. Inactivation rates correlate with the known degradation rate constants of the enzymes in the intact liver. More extensive studies were carried out with glucose-6-phosphate dehydrogenase (G6PD) and phosphoenolpyruvate carboxykinase (PEPCK) using either cytosol as a source of these enzymes or alternatively highly purified preparations of each enzyme. All membranes purified from liver had a considerable capacity to inactivate the enzymes with higher activity found in the hepatocyte plasma membrane. Various lipid preparations or plasma membranes from other tissues were virtually ineffective. Inactivation was dependent on disulphides in the membranes as shown by the inhibition of activity if membranes were pretreated with thiols. Preliminary experiments of the fate of inactivated G6PD or PEPCK show binding to membranes and subsequent proteolysis. A model is proposed for the degradation of labile enzymes.  相似文献   

8.
The intracellular basal proteolysis system, as distinct from the lysosomal system, is important in sustaining a high flux of proteins required for maintenance, growth and adaptability of cells. Its activity automatically fluctuates with changes in protein synthetic activity, but with a considerably slower response time, since the two processes are only indirectly or passively linked. Since as much as one-third of intracellular proteolysis in mammalian cells is directed as nascent proteins, the consequences are more fully discussed in relation to cell growth state. During rapid growth, cells have to accumulate more than double their original protein mass in order to achieve a 100% increase between divisions. The effects of reducing protein synthesis by inducing quiescence, serum step-down or cycloheximide treatment on intracellular proteolysis are considered, and the possibility that this leads to enhanced degradation of existing proteins has been explored. No substantial evidence was found to support this latter notion. The basal proteolysis system is seen as a constitutive, pervasive and broad-spectrumed collection of hydrolytic enzymes. It destroys proteins randomly, having no means of distinguishing young from old, aberrant from normal. The rate of demise of protein substrates depends on two factors, the ease of access of the hydrolytic enzymes to their peptide bonds, and the length of time that any species of protein remains at risk to this hydrolytic potential. While the former has long been recognized, the importance of the second factor in relation to the ability of proteins to become integrated in the living fabric of the cell is only beginning to be appreciated. The discussion also suggests elaborate regulatory mechanisms akin to those for protein synthesis would be unnecessary for protein degradation, especially if it can now be substantiated that substrate availability determines the turnover rates of proteins by a pervasive and relatively unlimited proteolytic system (Grisolía, 1964).  相似文献   

9.
Diclofop-methyl (methyl ester of 2-[4-(2′,4′-dichlorophenoxy)phenoxy]propionate; 100 micromolar) and diclofop (100 micromolar) inhibited both ATP- and PPi-dependent formation of H+ gradients by tonoplast vesicles isolated from oat (Avena sativa L., cv Dal) roots. Diclofop-methyl (1 micromolar) significantly reduced the steady-state H+ gradient generated in the presence of ATP. The ester (diclofop-methyl) was more inhibitory than the free acid (diclofop) at pH 7.4, but this relative activity was reversed at pH 5.7. Neither compound affected the rate of ATP or PPi hydrolysis by the proton-pumping enzymes. Diclofop-methyl (50, 100 micromolar), but not diclofop (100 micromolar), accelerated the decay of nonmetabolic H+ gradients established across vesicle membranes. Diclofop-methyl (100 micromolar) did not collapse K+ gradients across vesicle membranes. Both the (+)- and (−)-enantiomers of diclofop-methyl dissipated nonmetabolic H+ gradients established across vesicle membranes. Diclofop-methyl, but not diclofop (each 100 micromolar), accelerated the decay of H+ gradients imposed across liposomal membranes. These results show that diclofop-methyl causes a specific increase in the H+ permeability of tonoplast.  相似文献   

10.
Mechanisms regulating post-secretory limited proteolysis, carried out by the acid protease from Trichoderma reesei, were studied by following the release of α-galactosidase and multiple forms of cellobiohydrolase from this species. Both the rate of the proteolysis and the mode of action of the protease were affected by the pH of the culture medium, and only weakly depended on the amount of the enzyme. At pH between 2.7 and 3.5 the proteolytic reaction was limited, while at lower pH proteins were completely digested. Proteolysis depended on the degree of glycosylation of secreted enzymes. Inhibition of post-secretory deglycosylation decreased the rate of limited proteolysis in the culture medium in the course of fungal growth. Glucose and cellobiose, the main products of cellulose degradation carried out by the fungal cellulolytic complex, inhibited the proteolysis of the cellobiohydrolase in a concentration-dependent manner. A 32-kDa aspartic protease (EC 3.4.23.18) secreted by T. reesei was purified to homogeneity. The acid protease cleaved α-galactosidase and cellobiohydrolase into the same proteolytic fragments that had been isolated from the culture medium. Received: 4 December 1998 / Received revision: 22 February 1999 / Accepted: 5 March 1999  相似文献   

11.
Inactivation of peroxisomal enzymes in the yeast Hansenula polymorpha was studied following transfer of cells into cultivation media in which their activity was no longer required for growth. After transfer of methanol-grown cells into media containing glucose - a substrate that fully represses alcohol oxidase synthesis - the rapid inactivation of alcohol oxidase and catalase was paralleled by a disappearance of alcohol oxidase and catalase protein. The rate and extent of this inactivation was dependent upon conditions of cultivation of cells prior to their transfer. This carbon catabolite inactivation of alcohol oxidase was paralleled by degradation of peroxisomes which occurred by means of an autophagic process that was initiated by the formation of a number of electron-dense membranes around the organelles to be degraded. Sequestration was confined to peroxisomes; other cell-components such as ribosomes were absent in the sequestered cell compartment. Also, cytochemically, hydrolytic enzymes could not be demonstrated in these autophagosomes. The vacuole played a major role in the subsequent peroxisomal breakdown since it provided the enzymes required for proteolysis. Two basically similar mechanisms were observed with respect to the administration of vacuolar enzymes into the sequestered cell compartment. The first mechanism involved incorporation of a small vacuolar vesicle into the sequestered cell compartment. The delimiting membrane of this vacuolar vesicle subsequently disrupted, thereby exposing the contents of the sequestered cell compartment to vacuolar hydrolases which then degraded the peroxisomal proteins. The second mechanism, observed in cells which already contained one or more autophagic vacuoles, included fusion of the delimiting membranes of an autophagosome with the membrane surrounding an autophagic vacuole which led to migration of the peroxisome inside the latter organelle. Peroxisomes of methanol-grown H. polymorpha were degraded individually. In one cell 2 or 3 peroxisomes might be subject to degradation at the same time, but they were never observed together in one autophagosome. However, fusions of autophagic vacuoles in one cell were frequently observed. After inhibition of the cell's energy-metabolism by cyanide ions or during anaerobic incubations the formation of autophagosomes was prevented and degradation was not observed.  相似文献   

12.
《Plant science》1987,50(2):97-104
The degradation of endogenously labelled glycoproteins was studied in Acer pseudoplatanus L. cell suspension cultures in experiments using a dual-label with [14C]mannose and [3H]leucine.After harvesting the cells, protoplasts were prepared and vacuoles isolated. More than 30% of both total newly synthesized proteins (3H radioactivity) and glycoproteins (14C radioactivity) were recovered inside the vacuoles, the lytic compartment of plant cells. Half of these proteins were degraded when isolated vacuoles were incubated for 6 h at 20°C. So, the vacuolar compartment appears to be a major site of glycoprotein degradation in the cell.The glycoproteins were degraded at the same rate as the total newly synthesized proteins. However, some vacuolar hydrolytic enzymes were found to be glycoproteins and resistant to proteolytic attack. The biochemical explanation for such a resistance is not clear at this time, but in Acer cells the presence of covalently bound carbohydrates in proteins does not seem to be involved in the selectivity of protein turnover.  相似文献   

13.
Acute alcohol intoxication decreases muscle protein synthesis, but there is a paucity of data on the ability of alcohol to regulate muscle protein degradation. Furthermore, various types of atrophic stimuli appear to regulate ubiquitin-proteasome-dependent proteolysis by increasing the muscle-specific E3 ligases atrogin-1 and MuRF1 (i.e., "atrogenes"). Therefore, the present study was designed to test the hypothesis that acute alcohol intoxication increases atrogene expression leading to an elevated rate of muscle protein breakdown. In male rats, the intraperitoneal injection of alcohol dose- and time-dependently increased atrogin-1 and MuRF1 mRNA in gastrocnemius, the latter of which was most pronounced. A comparable change was absent in the soleus and heart. The ability of in vivo-administered ethanol to increase atrogene expression was independent of the route of alcohol administration (intraperitoneal vs. oral), as well as of nutritional status (fed vs. fasted) and gender (male vs. female). The increase in atrogin-1 and MuRF1 was independent of alcohol metabolism, and the overproduction of endogenous glucocorticoids and could not be prevented by maintaining the circulating concentration of insulin-like growth factor-I. Despite marked changes in atrogene expression, acute alcohol in vivo did not alter the release of either 3-methylhistidine (MH) or tyrosine from the isolated perfused hindlimb, suggesting that the rate of muscle proteolysis remains unchanged. Moreover, alcohol did not increase the directly determined rate of protein degradation in isolated epitrochlearis muscles or cultured myocytes. Finally, no increase in atrogene expression or 3-MH release was detected in muscle from rats fed an alcohol-containing diet. Our results indicate that although acute alcohol intoxication increases atrogin-1 and MuRF1 mRNA preferentially in fast-twitch skeletal muscle, this change was not associated with increased rates of muscle proteolysis. Therefore, the loss of muscle mass/protein in response to chronic alcohol abuse appears to result primarily from a decrement in muscle protein synthesis, not an increase in degradation.  相似文献   

14.
To investigate the effect of cholesterol composition on the binding of factor VIII (FVIII) and annexin V (AV) to membranes, liposomal membranes with phospholipid bilayers of various compositions of phosphatidylcholine (PC), phosphatidylserine (PS), and cholesterol were constructed. A surface plasmon resonance (SPR) biosensor system was employed to measure the equilibrium and rate constants of the bindings. As expected, PS was found to play a dominant role in the binding of AV; its binding level was directly proportional to the PS composition in a liposome. The binding levels of FVIII and AV to liposome increased with an increase in cholesterol composition in liposome. It seemed to suggest that cholesterol in liposome acts as a ‘phospholipid arrangement’ factor by inducing the formation of PS-rich microdomains. However, in the absence of PS (20% on a mole basis), cholesterol could not exert the binding enhancement effect, which again confirmed the critical role of PS in the bindings. Stability of the AV binding was significantly improved by the increase in cholesterol content; for AV, the dissociation rate constant was decreased approximately fivefold, from 1.7 × 10?3 s?1 in the absence of cholesterol to 3.3 × 10?4 s?1 in the presence of only 10% cholesterol. But, for FVIII the binding stability was not so much influenced by the cholesterol addition (up to 50% on a mole basis). In summary, by using liposomes on an SPR system, we were able to demonstrate quantitatively the apparent effects of cholesterol on the binding affinity and stability of the membrane-binding proteins.  相似文献   

15.
Degradation of the D1 protein of the Photosystem II (PS II) complex was studied in the Fad6/desA::Kmr mutant of a cyanobacterium Synechocystis sp. PCC 6803. The D1 protein of the mutant was degraded during solubilization of thylakoid membranes with SDS at 0°C in darkness, giving rise to the 23 kDa amino-terminal and 10 kDa carboxy-terminal fragments. Moreover, the D2 and CP43 proteins were also degraded under such conditions of solubilization. Degradation of the D2 protein generated 24, 17 and 15.5 kDa fragments, and degradation of the CP43 protein gave rise to 28, 27.5, 26 and 16 kDa fragments. The presence of Ca2+ and urea protected the D1, D2 and CP43 proteins against degradation. Degradation of the D1 protein was also inhibited by the presence of a serine protease inhibitor suggesting that the putative protease involved belonged to the serine class of proteases. The protease had the optimum activity at pH 7.5; it was active at low temperature (0°C) but a brief heating (65°C) during solubilization destroyed the activity. Interestingly, the protease was active in isolated thylakoid membranes in complete darkness, suggesting that proteolysis may be a non-ATP-dependent process. Proteolytic activity present in thylakoid membranes seemed to reside outside of the PS II complex, as demonstrated by the 2-dimensional gel electrophoresis. These results represent the first (in vitro) demonstration of strong activity of a putative ATP-independent serine-type protease that causes degradation of the D1 protein in cyanobacterial thylakoid membranes without any induction by visible or UV light, by active oxygen species or by any chemical treatments.  相似文献   

16.
Degradation of luteinizing hormone releasing hormone (LH-RH) by purified plasma membranes from rat pituitaries was investigated. Synthetic LH-RH (0.5 mg/ml) was incubated (20 min, 37°C) with pituitary plasma membranes (750 μg protein/ml). The reaction was stopped by centrifugation at 4°C. The degradation products were isolated by high pressure liquid chromatography using a reversed-phase column. Amino acid analysis of the degradation products indicated that the N-terminal tripeptide (pGlu-His-Trp) and the N-terminal hexapeptide (pGlu-His-Trp-Ser-Tyr-Gly) sequence of LH-RH are the main degradation products. These results suggest that the main cleavage sites of LH-RH by the pituitary plasma membrane-bound enzymes are the Gly6-Leu7 and the Trp3-Ser4 bonds of the neurohormone.  相似文献   

17.
Microsomal membranes isolated from calf brain contain a sialidase which cleaves ganglioside substrates naturally occurring within these membranes as well as exogenously added [3H]ganglioside GD1a. Micelles of [3H]ganglioside GD1a bind to the microsomal membranes in two steps. The first step, called adsorption, is fast and reversible by treatment with trypsin; the second step, called uptake, is slower and not reversible. The product of the enzymic degradation, [3H]ganglioside GM1, is exclusively located in the ganglioside pool taken up by the sialidase-bearing membranes, and not in the trypsin-releasable pool. Electron spin resonance (ESR) studies using a spin-labelled analogue of ganglioside GD1a indicate that the ganglioside uptake by microsomal membranes is accompanied by the disappearance of the micellar structure and by the 'dilution' of the probe molecules with membrane lipids. These findings suggest that exogenously added ganglioside substrate inserts into the microsomal membrane before it is recognized as substrate by the membrane-bound sialidase. Therefore, the influence of pH, ionic strength and membrane-fluidizing agents on the degradation rate measured with exogenous ganglioside GD1a does not only reflect kinetic parameters of the enzymic reaction itself but also the velocity of ganglioside insertion. Increasing ionic strength reduces the degradation rate. The acceleration of insertion with falling pH values shifts the measured pH optimum of the ganglioside degradation to lower values (pH 3.6) and masks the substantial residual sialidase activity at pH 5-7. The membrane-fluidizing alcohol n-hexanol greatly accelerates ganglioside insertion as well as ganglioside degradation. The latter was clearly demonstrated by studying the hydrolysis of endogenous ganglioside substrates, and is due to a decrease of the apparent Km value and an increase in the Vmax value. The Vmax value was also enhanced by freezing and thawing of the microsomal membranes.  相似文献   

18.
The effect of alloxan-diabetes, and of pharmacological doses of hydrocortisone administered to normal and diabetic rats, on carbamyl phosphate:glucose phosphotransferase and D-glucose-6-phosphate phosphohydrolase (EC 3.1.3.9) activities of isolated hepatic nuclei and microsomes were studied by assay at pH 7 in the absence and presence of deoxycholate. Hormonally related alterations both in activity levels and in the activation by the detergent (i.e. latency) of activities of the two cellular structural elements differed significantly. Most strikingly, (a) a 3--4-fold increase in the levels of activities of nuclei was seen in response either to diabetes or to hydrocortisone administered to normal rats whether or not detergent was added to preparations prior to assay; (b) the normally low degree of stimulation by detergent of activities of nuclei was unaltered in diabetes, and (c) administration of the glucocorticoid to diabetic rats decreased activity levels and increased their activation by detergent. Directly contrasting responses were noted with isolated microsomal preparations. Fundamental differences in the enzymes in these two organelle preparations are thus demonstrated. It appears that both synthetic and hydrolytic activities of this enzyme of nuclei may be manifest in the presence of requisite substrates, and that activities of this organelle may become increasingly prominent under certain hormonally perturbed conditions.  相似文献   

19.
Neutrophil chemotaxis, phagocytosis, and oxygen-dependent microbicidal activity are initiated by interactions of stimuli with the plasma membrane. However, difficulties in neutrophil plasma membrane isolation have precluded studies on the precise structure or function of this cellular component. In this paper, a method is described for the isolation of representative human neutrophil plasma membrane vesicles, using nitrogen cavitation for cell disruption and a combination of differential centrifugation and equilibrium ultracentrifugation in Dextran gradients for membrane fractionation. Multiple biochemical markers and galactose oxidase-tritiated sodium borohydride surface labeling were employed to follow the yield, purity, and distribution of plasma membranes, nuclei, lysosomes, endoplasmic reticulum, mitochondria, and cytosol. According to these markers, neutrophil plasma membranes were exposed to minimal lysosomal hydrolytic enzymes and could be isolated free of other subcellular organelles. In contrast, disruption of neutrophils by mechanical homogenization resulted in > 20% lysosomal rupture and significant plasma membrane proteolysis. Electron microscopy demonstrated that plasma membranes isolated after nitrogen cavitation appeared to be sealed vesicles with striking homogeneity.  相似文献   

20.
Cholecystokinin octapeptide (CCK26-33) is metabolized by neural membranes with an initial cleavage to CCK29-33 and subsequent breakdown to CCK31-33 and CCK32-33; this pattern of proteolysis occurs on incubation with either P2 or purified lysed synaptosomal membranes. To determine whether the pattern of CCK26-33 proteolysis is unique to the brain and whether regional brain differences in its pathway or rate exist, we analyzed the proteolysis of CCK by synaptic membranes of various brain areas and cellular membranes of peripheral tissue. The pattern of degradation in brain did not differ among the regions studied. The overall proteolysis rate, as measured by the formation of tryptophan, was higher in the striatum than in the cortex, although CCK29-33 was formed at the same rate in both areas. In nonneural tissue, the rate of degradation was highest in liver membranes and lowest in pancreatic acinar cell preparations. Thus, it appears that degradative peptidases are not necessarily colocalized with CCK receptors. The pattern of product formation is the same in peripheral compared with CNS membranes; thus, the degradative pathway does not appear to be unique to brain tissue. The enzyme present in synaptic membranes that is responsible for CCK29-33 formation requires a metal ion and sulfydryl groups for the catalysis and thus is a metalloendopeptidase. Furthermore, its activity is inhibited by Ac-Gly-Phe-Nle-al, a peptide aldehyde whose sequence bears some homology to the amino acid sequence in the region of CCK26-33 that is cleaved by this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号