首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sensitive and specific guanine nucleotide regulatory process has recently been shown to rapidly mediate a substantial release of Ca2+ from endoplasmic reticulum within the N1E-115 neuronal cell line (Gill, D. L., Ueda, T., Chueh, S. H., and Noel, M. W. (1986) Nature 320, 461-464). The relationship between this mechanism and Ca2+ efflux mediated by the intracellular regulator inositol 1,4,5-trisphosphate (IP3) has been investigated. Using saponin-permeabilized N1E-115 cells, studies reveal a number of distinctions between the activation of Ca2+ release mediated by GTP and IP3. Thus, the GTP-mediated Ca2+ release process is specifically activated by polyethylene glycol which increases both GTP sensitivity and the extent of GTP-activated Ca2+ release; in contrast, IP3-dependent Ca2+ release is unaffected by polyethylene glycol. The non-hydrolyzable GTP analogue guanosine 5'-O-(3-thio)triphosphate, which completely inhibits GTP-mediated Ca2+ release, does not alter release mediated by IP3. Decreasing the release temperature from 37 to 4 degrees C decreases IP3-activated Ca2+ release by only 20%, whereas the action of GTP on Ca2+ release is abolished at 4 degrees C. Activation of Ca2+ release by IP3 is completely inhibited by increasing free Ca2+ from 0.1 to 10 microM, whereas the fraction of GTP-dependent Ca2+ release (approximately 50% of ionophore-releasable Ca2+) remains unaltered with increasing free Ca2+. These distinctions between IP3- and GTP-mediated Ca2+ release indicate that the two effectors function via distinct mechanisms to activate Ca2+ release; however, they do not preclude the possibility that coupling between the two mechanisms can occur or that a common Ca2+-translocating pathway activated by both effectors exists.  相似文献   

2.
Recent evidence has revealed that a highly sensitive and specific guanine nucleotide regulatory process controls intracellular Ca2+ release within N1E-115 neuroblastoma cells (Gill, D. L., Ueda, T., Chueh, S. H., and Noel, M. W. (1986) Nature 320, 461-464). The present report documents GTP-induced Ca2+ release within quite distinct cell types, including the DDT1MF-2 smooth muscle cell line. GTP-induced Ca2+ release has similar GTP sensitivity and specificity among cells and rapidly mobilizes up to 70% of Ca2+ specifically accumulated within a nonmitochondrial Ca2+-pumping organelle within permeabilized DDT2MF-2 cells. Maximal GTP-induced release of Ca2+ is observed to be greater than inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release (the latter being approximately 30% of total releasable Ca2+). After maximal IP3-induced release, further IP3 addition is ineffective, whereas subsequent addition of GTP further releases Ca2+ to equal exactly the extent of Ca2+ release observed by addition of GTP in the absence of IP3. This suggests that IP3 releases Ca2+ from the same pool as GTP, whereas GTP also releases from an additional pool. The effects of GTP appear to be reversible since simple washing of GTP-treated cells restores their previous Ca2+ uptake properties. Electron microscopic analysis of GTP-treated membrane vesicles reveals their morphology to be unchanged, whereas treatment of vesicles with 3% polyethylene glycol, known to enhance GTP-mediated Ca2+ release, clearly induces close coalescence of membranes. In the presence of 4 mM oxalate, GTP induces a rapid and profound uptake, as opposed to release, of Ca2+. The findings suggest that GTP-activated Ca2+ movement is a widespread phenomenon among cells, which can function on the same Ca2+ pool mobilized by IP3, and although activating Ca2+ movement by a mechanism distinct from IP3, does so via a process that does not appear to involve fusion between membranes.  相似文献   

3.
Recent studies have identified inositol 1,4,5-tris-phosphate(InsP3)-sensitive and -insensitive Ca2+ pools and a GTP-dependent mechanism that transfers Ca2+ between them. Here, the Ca2+ pump-inhibitory sesquiterpene lactone, thapsigargin, is shown to distinguish these two Ca2+ pools and identify a third Ca2+ pumping pool unresponsive to InsP3 or GTP. Using saponin-permeabilized DDT1MF-2 smooth muscle cells, approximately 75% of total intracellular ATP-dependent Ca2+ accumulation is blocked by thapsigargin with an IC50 of 30 nM. In contrast, 1 mM vanadate or 5 microM A23187 block 100% of Ca2+ accumulation. The thapsigargin-responsive Ca2+ pool corresponds exactly to that released by 10 microM InsP3 in the presence of 10 microM GTP. Indeed, addition of InsP3 with GTP has no effect on Ca2+ accumulated in the presence of 3 microM thapsigargin whereas A23187 releases all the remaining Ca2+. Added after maximal Ca2+ uptake, thapsigargin induces only slow Ca2+ release consistent with blockade of pumping activity. Unlike InsP3, the action of thapsigargin is entirely heparin insensitive. The large increment in Ca2+ uptake caused by 12 mM oxalate is completely reversed by thapsigargin, indicating that thapsigargin functions on an oxalate-permeable pool. Moreover, the still larger uptake induced by GTP in the presence of oxalate is also completely reversed by either thapsigargin or InsP3. The results indicate that thasigargin blocks Ca2+ uptake into two discrete pools: the InsP3-sensitive, oxalate-permeable Ca2+ pool and the InsP3-insensitive, oxalate-impermeable Ca2+ pool that can be "recruited" into the InsP3-sensitive pool by GTP-dependent Ca2+ translocation (Ghosh, T. K., Mullaney, J.M., Tarazi, F.I., and Gill, D.L. (1989) Nature 340, 236-239). Additionally, a third Ca2+ pool is defined, unreleasable by InsP3 or GTP, and containing a thapsigargin-insensitive Ca2+ pump.  相似文献   

4.
The Ca2+ accumulating properties of a nonmitochondrial intracellular organelle within cultured N1E-115 neuroblastoma cells containing an (ATP + Mg2+)-dependent Ca2+ pump were recently described in detail (Gill, D. L., and Chueh, S. H. (1985) J. Biol. Chem. 260, 9289-9297). Using both saponin-permeabilized N1E-115 cells and microsomal membranes from cells, this report describes the effectiveness of both inositol 1,4,5-trisphosphate (IP3) and guanine nucleotides in mediating Ca2+ release from this internal organelle, believed to be endoplasmic reticulum. Using permeabilized N1E-115 cells, 2 microM IP3 effects rapid release (t1/2 less than 20 s) of approximately 40% of accumulated Ca2+ releasable with 5 microM A23187. Half-maximal Ca2+ release occurs with 0.5 microM IP3, and maximal release with 3 microM IP3. Using a frozen microsomal membrane fraction isolated from lysed cells, 2 microM IP3 rapidly releases (t1/2 less than 30 s) 10-20% of A23187-releasable Ca2+ accumulated within nonmitochondrial Ca2+-pumping vesicles, although only in the presence of 3% polyethylene glycol (PEG). 10 microM GTP, but not guanosine 5'-(beta, gamma-imido)triphosphate (GMPPNP), increases the extent of release in the presence of IP3. Importantly, however, GTP alone induces a substantial release of Ca2+ (up to 40% of releasable Ca2+) with a t1/2 value (60-90 s) slightly longer than that for IP3. The effects of IP3 and GTP are approximately additive, and both effects require 3% PEG. Half-maximal Ca2+ release occurs with 1 microM GTP, with maximal release at 3-5 microM GTP; 20 microM GMPPNP has no effect on release and only slightly inhibits 5 microM GTP; 20 microM GDP promotes full release, but only after a 90-s lag, and initially inhibits the action of 5 microM GTP. Using permeabilized N1E-115 cells, 5 microM GTP with 3% PEG releases greater than 50% of releasable Ca2+; without PEG, GTP still mediates approximately 30% release of Ca2+ from cells. Neither IP3, GTP, or both together (with or without PEG) effects release of Ca2+ accumulated within synaptic plasma membrane vesicles. The profound effectiveness of GTP on Ca2+ release has important implications for intracellular Ca2+ regulation and is probably related to Ca2+ release mediated by IP3.  相似文献   

5.
The effects of heparin on intracellular calcium release in monolayers of permeabilised cultured rabbit smooth muscle cells were determined using 45Ca effluxes. Low molecular weight heparin inhibited inositol 1,4,5-trisphosphate (InsP3) induced Ca2+ release (IC50 = 0.8 microgram/ml), but not guanosine 5'-O-(3-thio triphosphate) (GTP gamma S) stimulated Ca2+ release. Only a small inhibition was noted with high molecular weight heparin and de-N-sulphated heparin, although chondroitin sulphate A potently inhibited the InsP3 response. These results indicate the competitive and specific nature of the heparin effect and give information about the structure of the InsP3 site.  相似文献   

6.
The diastereomers of adenosine 5'-O-[1-thio]triphosphate (ATP[alpha S]) and adenosine 5'-O-[2-thio]triphosphate (ATP[beta S]) were utilized to seek unambiguous assignment of Mg2+ coordination to ATP when bound to ATP-AMP phosphotransferase from beef heart mitochondria (AK2). Similarly, the diastereomers of guanosine 5'-O-[thio]triphosphate (GTP[alpha S]) and guanosine 5'-O-[2-thio]triphosphate (GTP[beta S]) were utilized to seek unambiguous assignment of Mg2+ coordination to GTP when bound to GTP-AMP phosphotransferase from beef heart mitochondria (AK3). Furthermore the diastereomers of guanosine 5'-O-[1-thio]diphosphate (GDP-[alpha S]) have been used to assign Mg2+ coordination to GDP when bound to AK3. The ratios (V for isomer Sp)/(V for isomer Rp) obtained in the presence of Mg2+ and Cd2+ are compared to those already published for ATP-AMP phosphotransferases from pig muscle (AK1) [Kalbitzer et al. (1983) Eur. J. Biochem. 133, 221-227] and from baker's yeast (AKy) [Tomasselli and Noda (1983) Eur. J. Biochem. 132, 109-115]. In all cases, coordination of Mg2+ to the beta-phosphate via the pro-R oxygen is present, as shown by reversal of specificity for the diastereomers of ATP [beta S] or GTP [beta S] respectively on changing the metal ion. In contrast, there is no reversal of specificity for the diastereomers of ATP [alpha S] or GTP[alpha S], or for GDP[alpha S] in the case of AK3 for the reverse reaction, indicating that there is no interaction of the metal with the alpha-phosphate group. The observed stereospecificity for the alpha-thiophosphate is consistent with the assumption of an interaction of the pro-R oxygen of the alpha-phosphate group with the enzyme.  相似文献   

7.
G protein regulation of human platelet membrane phospholipase A2 activity was investigated at pH 8.0 and 9.0 by studying the effects of the nonhydrolyzable GTP analogue, guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), and of F-/Al3+ ions on arachidonic acid (AA) release. The membrane acted as the source of the enzyme, the substrate, and the G protein. At pH 8.0, 10 and 100 microM GTP gamma S stimulated AA mobilization at least 6-fold. Optimum AA release conditions required 1 mM Ca2+ and 5 mM Mg2+. Nonspecific nucleotide effect was excluded since similar stimulatory effects on AA release were not observed by ATP, GTP, ADP, and NADP. Although at pH 9.0 the GTP gamma S-stimulated AA release was greater than at pH 8.0, it constituted only 26% of the total. At both pH values the effect of F- (10 mM) in the presence of Al3+ (2 microM) was similar to that of GTP gamma S. The G protein inhibitor, guanosine 5'-O-(2-thiodiphosphate), inhibited the GTP gamma S-stimulated AA release by about 80% at pH 8.0 and by 100% at pH 9.0. To determine a possible contribution to AA mobilization by the phospholipase C and diacylglycerol lipase pathway, the effects of neomycin, a phospholipase C inhibitor, were investigated. 100 microM neomycin did not inhibit the GTP gamma S-stimulated AA release at pH 8.0 and only slightly so (17%) at pH 9.0. At pH 8.0 in the presence of Ca2+ the released fatty acids consisted mainly of arachidonic and docosahexaenoic acids (80 and 8%, respectively). GTP gamma S had no effect on the fatty acid profile but only on their quantity. These results provide evidence of G protein regulation of phospholipase A2 activity in isolated platelet membranes.  相似文献   

8.
The effects of guanosine triphosphate (GTP) on the release and uptake of Ca2+ in nonmitochondrial intracellular store sites of human peripheral lymphocytes were examined. GTP in the presence of 3% polyethylene glycol released Ca2+ from the intracellular store sites of lymphocytes in a dose-dependent manner, and the maximal release was obtained at 10 microM GTP. GDP and 5'-GMP also enhanced the release of Ca2+. On the other hand, Ca2+ uptake in the presence of oxalate by saponin-treated lymphocytes was stimulated by GTP and this stimulation was abolished when polyethylene glycol was concomitantly present. The dose dependence of the stimulated Ca2+ uptake by GTP was much the same as that of the Ca2+ released by GTP. These results indicate that GTP has an inherent activity to release Ca2+ as well as to stimulate the uptake of Ca2+ in nonmitochondrial intracellular store sites of saponin-treated lymphocytes. The stimulatory effect of polyethylene glycol on GTP-mediated Ca2+ release may occur by inhibiting functions of the Ca2+ pump.  相似文献   

9.
The inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release was studied using streptolysin O-permeabilized bovine adrenal chromaffin cells. The IP3-induced Ca2+ release was followed by Ca2+ reuptake into intracellular compartments. The IP3-induced Ca2+ release diminished after sequential applications of the same amount of IP3. Addition of 20 microM GTP fully restored the sensitivity to IP3. Guanosine 5'-O-(3-thio)triphosphate (GTP gamma S) could not replace GTP but prevented the action of GTP. The effects of GTP and GTP gamma S were reversible. Neither GTP nor GTP gamma S induced release of Ca2+ in the absence of IP3. The amount of Ca2+ whose release was induced by IP3 depended on the free Ca2+ concentration of the medium. At 0.3 microM free Ca2+, a half-maximal Ca2+ no Ca2+ release was observed with 0.1 microM IP3; at this Ca2+ concentration, higher concentrations of IP3 (0.25 microM) were required to evoke Ca2+ release. At 8 microM free Ca2+, even 0.25 microM IP3 failed to induce release of Ca2+ from the store. The IP3-induced Ca2+ release at constant low (0.2 microM) free Ca2+ concentrations correlated directly with the amount of stored Ca2+. depending on the filling state of the intracellular compartment, 1 mol of IP3 induced release of between 5 and 30 mol of Ca2+.  相似文献   

10.
Upon osmotic swelling human epithelial cells exhibited significant increases in the membrane capacitance. Evidence for exocytosis includes its dependency on temperature, cytosolic Ca2+ and ATP as well as its sensitivity to guanosine 5'-O-(3-thio)triphosphate (GTP gamma S) and N-ethylmaleimide (NEM). A role of the osmotic exocytosis in the subsequent cell volume regulation is suggested.  相似文献   

11.
Electrically permeabilized RINm5F cells were used to assess the factors required for activation of protein kinase C (PKC) and insulin secretion. PKC was activated either by phorbol 12-myristate 13-acetate (PMA) or by the generation of endogenous diacylglycerol in response to the nonhydrolyzable guanine nucleotide analog guanosine 5'-O-(thiotriphosphate) (GTP gamma S). As shown previously, both PMA and GTP gamma S elicit Ca2+-independent insulin secretion. This effect was mimicked by guanyl-5'-yl imidodiphosphate (Gpp(NH)p) but not by guanosine 5'-O-(3-fluorotriphosphate) and guanosine 5'-O-(3-phenyltriphosphate) possessing only one negative charge in the gamma-phosphate group. The action of PMA was mediated by PKC, since the agent caused both phosphorylation of specific protein substrates and association of the enzyme with cellular membranes. This translocation was independent of the Ca2+ concentration employed. In contrast, GTP gamma S only promoted association of PKC with membranes at 10(-6) and 10(-5) M Ca2+ and failed to alter significantly protein phosphorylation in the absence of Ca2+. Neither Gpp(NH)p, which stimulates insulin release, nor the other two GTP analogs, increased the proportion of PKC associated with membranes. To verify that the Ca2+-dependent effect of GTP gamma S on PKC is due to activation of phospholipase C, we measured the generation of diacylglycerol. GTP gamma S indeed stimulated diacylglycerol production in the leaky cells by about 50% at Ca2+ concentrations between 10(-7) and 10(-5) M, an effect which was almost abolished in the absence of Ca2+. Thus, at 10(-7) M Ca2+, the concentration found in resting intact cells, the generated diacylglycerol was not sufficient to cause PKC insertion into the membrane, demonstrating that both elevated Ca2+ and diacylglycerol are necessary for translocation to occur. It is concluded that while PKC activation by PMA elicits Ca2+-independent insulin secretion, the kinase seems not to mediate the stimulatory action of GTP analogs in the absence of Ca2+.  相似文献   

12.
The intracellular nonmitochondrial calcium pools of saponin-permeabilized NG108-15 cells were characterized using inositol 1,4,5-trisphosphate (IP3) and GTP. IP3 or GTP alone induced release of 47 and 68%, respectively, of the calcium that was releasable by A23187. GTP induced release of a further 24% of the calcium after IP3 treatment, whereas IP3 induced release of a further 11% of the calcium after GTP treatment. Guanosine 5'-O-(3-thio)triphosphate had little effect on IP3-induced calcium release but completely inhibited GTP-induced calcium release. In contrast, heparin inhibited the action of IP3 but not that of GTP. The results imply the existence of at least three nonmitochondrial pools: (a) 31% is releasable by IP3 and GTP, (b) 11% is releasable by IP3 alone, and (c) 24% is releasable by GTP alone. GTP enhanced calcium uptake in the presence of oxalate with an EC50 of 0.6 microM and stimulated calcium release in the absence of oxalate with an EC50 of 0.32 microM. The similar EC50 values for these dual effects of GTP on calcium movement suggest that GTP exerts its dual action by the same mechanism.  相似文献   

13.
In the present study, the effects of the cytosolic Ca2+ transport inhibitor on ATP-dependent Ca2+ uptake by, and unidirectional passive Ca2+ release from, sarcoplasmic reticulum enriched membrane vesicles were examined in parallel experiments to determine whether inhibitor-mediated enhancement in Ca2+ efflux contributes to inhibition of net Ca2+ uptake. When assays were performed at pH 6.8 in the presence of oxalate, low concentrations (less than 100 micrograms/mL) of the inhibitor caused substantial inhibition of Ca2+ uptake by SR (28-50%). At this pH, low concentrations of the inhibitor did not cause enhancement of passive Ca2+ release from actively Ca2+-loaded sarcoplasmic reticulum. Under these conditions, high concentrations (greater than 100 micrograms/mL) of the inhibitor caused stimulation of passive Ca2+ release but to a much lesser extent when compared with the extent of inhibition of active Ca2+ uptake (i.e., twofold greater inhibition of Ca2+ uptake than stimulation of Ca2+ release). When Ca2+ uptake and release assays were carried out at pH 7.4, the Ca2+ release promoting action of the inhibitor became more pronounced, such that the magnitude of enhancement in Ca2+ release at varying concentrations of the inhibitor (20-200 micrograms/mL) was not markedly different from the magnitude of inhibition of Ca2+ uptake. In the absence of oxalate in the assay medium, inhibition of Ca2+ uptake was observed at alkaline but not acidic pH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Whereas the chemotactic peptide, N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMet-Leu-Phe), induced NADPH-oxidase-catalyzed superoxide (O2-) formation in human neutrophils, purine and pyrimidine nucleotides per se did not stimulate NADPH oxidase but enhanced O2- formation induced by submaximally and maximally stimulatory concentrations of fMet-Leu-Phe up to fivefold. On the other hand, FMet-Leu-Phe primed neutrophils to generate O2- upon exposure to nucleotides. At a concentration of 100 microM, purine nucleotides enhanced O2- formation in the effectiveness order adenosine 5'-O-[3-thio]triphosphate (ATP[gamma S]) greater than ITP greater than guanosine 5'-O-[3-thio]triphosphate (GTP[gamma S]) greater than ATP = adenosine 5'-O-[2-thio]triphosphate (Sp-diastereomer) = GTP = guanosine 5'-O-[2-thio]diphosphate (GDP[beta S] = ADP greater than adenosine 5'-[beta, gamma-imido]triphosphate = adenosine 5'-O-[2-thio]triphosphate] (Rp-diastereomer). Pyrimidine nucleotides stimulated fMet-Leu-Phe-induced O2- formation in the effectiveness order uridine 5'-O-[3-thio]triphosphate (UTP[gamma S]) = UTP greater than CTP. Uracil (UDP[beta S]) = uridine 5'-O[2-thio]triphosphate (Rp-diastereomer) (Rp)-UTP[beta S]) = UTP greater than CTP. Uracil nucleotides were similarly effective potentiators of O2- formation as the corresponding adenine nucleotides. GDP[beta S] and UDP[beta S] synergistically enhanced the stimulatory effects of ATP[gamma S], GTP[gamma S] and UTP[gamma S]. Purine and pyrimidine nucleotides did not induce degranulation in neutrophils but potentiated fMet-Leu-Phe-induced release of beta-glucuronidase with similar nucleotide specificities as for O2- formation. In contrast, nucleotides per se induced aggregation of neutrophils. Treatment with pertussis toxin prevented aggregation induced by both nucleotides and fMet-Leu-Phe. Our results suggest that purine and pyrimidine nucleotides act via nucleotide receptors, the nucleotide specificity of which is different from nucleotide receptors in other cell types. Neutrophil nucleotide receptors are coupled to guanine-nucleotide-binding proteins. As nucleotides are released from cells under physiological and pathological conditions, they may play roles as intercellular signal molecules in neutrophil activation.  相似文献   

15.
We have characterized a magnesium-dependent guanylate cyclase in homogenates of Dictyostelium discoideum cells. 1) The enzyme shows an up to 4-fold higher cGMP synthesis in the presence of GTP analogues with half-maximal activation at about 1 microM guanosine 5'-O-(3-thio)triphosphate (GTP gamma S) or 100 microM guanosine 5'-(beta, gamma-imido)triphosphate; little or no stimulation was observed with GTP, guanosine mono- and diphosphates or with adenine nucleotides, with the exception of the ATP analogue adenosine 5'-(beta, gamma-imido)triphosphate. 2) Both basal and GTP gamma S-stimulated guanylate cyclase activity were rapidly lost from homogenates as was the ability of GTP gamma S to stimulate the enzyme after cell lysis. 3) Inclusion of 25 microM GTP gamma S during cell lysis reduced the KM for GTP from 340 to 85 microM and increased the Vmax from 120 to 255 pmol/min.mg protein, as assayed in homogenates 90 s after cell lysis. 4) Besides acting as an activator, GTP gamma S was also a substrate for the enzyme with a KM = 120 microM and a Vmax = 115 pmol/min.mg protein. 5) GTP gamma S-stimulated, Mg2+-dependent guanylate cyclase was inhibited by submicromolar concentrations of Ca2+ ions, and by inositol 1,4,5-trisphosphate in the absence of Ca2+ chelators. 6) Guanylate cyclase activity was detected in both supernatant and pellet fractions after 1 min centrifugation at 10,000 x g; however, only sedimentable enzyme was stimulated by GTP gamma S. We suggest that the Mg2+-dependent guanylate cyclase identified represents the enzyme that in intact cells is regulated via cell surface receptors, and we propose that guanine nucleotides are allosteric activators of this enzyme and that Ca2+ ions play a role in the maintenance of the enzyme in its basal state.  相似文献   

16.
In membranes derived from NG108-15 cells, the opioid peptide [D-Ala2,D-Leu5]enkephalin (DADLE) stimulates a low Km GTPase. The nucleotide analogs guanosine 5'-O-(2-thio)diphosphate (GDP beta S), guanosine 5'-(beta,gamma-imido)triphosphate [Gpp(NH)p] and guanosine 5'-O-(3-thio)-triphosphate (GTP gamma S) inhibit the basal enzymatic activity with the order of potency GTP gamma S greater than Gpp (NH)p greater than GDP beta S. In the presence of DADLE, the inhibition isotherms of GDP beta S and Gpp(NH)p are shifted to the right five- and fourfold, respectively, compared to the inhibition observed in the absence of DADLE. In contrast, the IC50 of GTP gamma S for inhibiting the enzyme is reduced by 55% in the presence of the opioid. Both Gpp(NH)p and GTP gamma S produce a concentration-dependent increase in the Km(app) of GTPase, without affecting its Vmax, indicating a competitive inhibition. However, the replots of Km(app) versus inhibitor concentration are hyperbolic, suggesting a partial type of inhibition. Both Gpp(NH)p and GTP gamma S, but not GTP, induce an increase in the EC50 of DADLE for stimulating GTPase. These findings indicate that the basal and the opioid-stimulated low Km GTPase differ in their respective sensitivities to inhibition by guanine nucleotide analogs.  相似文献   

17.
An intracellular (ATP + Mg2+)-dependent Ca2+ pumping mechanism has been identified and characterized within the cultured clonal neuroblastoma cell line N1E-115. Using cell suspensions treated with 0.005% saponin which selectively permeabilizes the plasma membrane in 95-98% of the cells, it was possible to show clearly that the intracellular Ca2+ pump mechanism is of non-plasma membrane origin and therefore can be compared directly with the Ca2+ pump characterized in detail in synaptosomal membrane vesicles (Gill, D. L., Grollman, E. F., and Kohn, L. D. (1981) J. Biol. Chem. 256, 184-192; Gill, D. L., Chueh, S. H., and Whitlow, C. L. (1984) J. Biol. Chem. 259, 10807-10813) which was proven by flux reversal studies to be derived from the neural plasma membrane (Gill, D. L. (1982) J. Biol. Chem. 257, 10986-10990). The intracellular Ca2+ pump in N1E-115 cells is distinct from mitochondrial Ca2+ accumulation and is increased up to 8-fold higher as cells reach confluency. In similarity to the neural plasma membrane pump, the intracellular Ca2+ pump within N1E-115 cells has high affinity for Ca2+ (Km = 0.28 microM), is dependent on both ATP (Km = 26 microM) and either Mg2+ or Mn2+ which half-maximally activate Ca2+ pumping at 0.35 mM and 0.32 mM, respectively, and shows similar specificity for Sr2+ and Ba2+ which half-maximally inhibit Ca2+ transport at 50 microM and 1.5 mM, respectively. In contrast to the neural plasma membrane pump, the intracellular Ca2+ pump displays approximately 40-fold higher sensitivity to La3+ (IC50 = 5 microM) and an apparent 400-fold lower sensitivity to VO4(3-) (IC50 = 185 microM), although the inhibitory effectiveness of VO4(3-) is increased 37-fold by a 15-min preincubation of the permeabilized cells with VO4(3-) in the absence of ATP (apparent IC50 = 5 microM). In further contrast to the neural plasma membrane Ca2+ pump, the intracellular pump within N1E-115 cells is stimulated more than 20-fold by oxalate (giving prolonged linear Ca2+ accumulation), is resistant to low saponin concentrations, and is not modified by calmodulin even after extensive treatment with ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid and/or calmodulin antagonist drugs. However, calmidazolium is effective in inhibiting the intracellular Ca2+ pump with an IC50 of approximately 2 microM.  相似文献   

18.
The effects of GTP, with or without polyethylene glycol (PEG), on the release and uptake of Ca2+ were examined by using saponin-treated macrophages and sarcoplasmic reticulum isolated from skeletal muscles. The application of GTP in concentrations in the range 0.1-10 microM induced a gradual, small but sustained release of Ca2+ from the saponin-treated macrophages. The addition of PEG to GTP markedly enhanced the GTP-mediated Ca2+ release. GTP at the same concentration ranges used for Ca2+ release decreased the amount of Ca2+ uptake, at a steady state, but stimulated the rate of Ca2+ accumulation in the presence of oxalate, the Ca2+-precipitating anion. The addition of PEG abolished the GTP-evoked stimulation of Ca2+ accumulation in the presence of oxalate. The stimulating effect on the rate of Ca2+ accumulation by GTP and its elimination by PEG were not due to changes in the permeability of oxalate by either GTP or PEG, or both. The Ca2+-releasing effect of GTP without PEG was enhanced by eliminating the uptake activity by decreasing the content of ATP. These results indicate that GTP has an inherent activity to release Ca2+ from non-mitochondrial intracellular stores of saponin-treated macrophages, and PEG enhances the GTP-mediated Ca2+ release, partly owing to its eliminating effect on GTP-stimulated Ca2+ uptake activity. These effects of GTP observed with saponin-permeabilized macrophages were not apparent in the isolated skeletal-muscle sarcoplasmic reticulum.  相似文献   

19.
Permeabilized rat hepatocytes were used to study the effects of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) and GTP on Ca2+ uptake and release by ATP-dependent intracellular Ca2+ storage pools. Under conditions where these Ca2+ pools were completely filled, maximal doses of Ins(1,4,5)P3 released only 25-30% of the sequestered Ca2+. The residual Ca2+ was freely releasable with the Ca2+ ionophore ionomycin. Addition of GTP in the absence of Ins(1,4,5)P3 did not cause Ca2+ release and had no effect on the steady-state level of Ca2+ accumulation by intracellular storage pools. However, after a 3-4-min treatment with GTP the size of the Ins(1,4,5)P3-releasable Ca2+ pool was increased by about 2-fold, with a proportional decrease in the residual Ca2+ available for release by ionomycin. In contrast to the situation with freshly permeabilized cells, permeabilized hepatocytes from which cytosolic components had been washed out exhibited direct Ca2+ release in response to GTP addition. The potentiation of Ins(1,4,5)P3-induced Ca2+ release by GTP in permeabilized hepatocytes was concentration-dependent with half-maximal effects at about 5 microM GTP. The dose response to Ins(1,4,5)P3 was not shifted by GTP; instead GTP increased the amount of Ca2+ released at all Ins(1,4,5)P3 concentrations. The effects of GTP were not mimicked by other nucleotides or nonhydrolyzable GTP analogues. In fact, guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) inhibited the actions of GTP. However, this inhibition only occurred when GTP gamma S was added prior to GTP, suggesting that the GTP effect is not readily reversible once the cells have been permeabilized. Experiments using vanadate to inhibit the ATP-dependent Ca2+ uptake pump showed that Ins(1,4,5)P3 releases all of the Ca2+ within the Ins(1,4,5)P3-sensitive Ca2+ pool even in the absence of GTP. The increase of Ins(1,4,5)P3-induced Ca2+ release brought about by GTP was also unaffected by vanadate. It is concluded that GTP increases the proportion of the sequestered Ca2+ which is available for release by Ins(1,4,5)P3, either by unmasking latent Ins(1,4,5)P3-sensitive Ca2+ release sites or by allowing direct Ca2+ movement between Ins(1,4,5)P3-sensitive and Ins(1,4,5)P3-insensitive Ca2+ storage pools.  相似文献   

20.
Addition of a guanine nucleotide analog, guanosine 5'-O-(thiotriphosphate) (GTP gamma S)(1-100 microM) induced release of [3H]arachidonic acid from [3H]arachidonate-prelabeled rabbit neutrophils permeabilized with saponin. The chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced arachidonate release was enhanced by GTP gamma S, Ca2+, or their combination. Ca2+ alone (up to 100 microM) did not effectively stimulate lipid turnover. However, the combination of fMLP plus GTP gamma S elicited greater than additional effects in the presence of resting level of free Ca2+. The addition of 100 microM of GTP gamma S reduced the Ca2+ requirement for arachidonic acid liberation induced by fMLP. Pretreatment of neutrophils with pertussis toxin resulted in the abolition of arachidonate release and diacylglycerol formation. Neomycin (1 mM) caused no significant reduction of arachidonate release. In contrast, about 40% of GTP gamma S-induced arachidonate release was inhibited by a diacylglycerol lipase inhibitor, RHC 80267 (30 microM). These observations indicate that liberation of arachidonic acid is mediated by phospholipase A2 and also by phospholipase C/diacylglycerol lipase pathways. Fluoride, which bypasses the receptor and directly activates G proteins, induced arachidonic acid release and diacylglycerol formation. The fluoride-induced arachidonate release also appeared to be mediated by these two pathways. The loss of [3H]arachidonate was seen in phosphatidylinositol, phosphatidylcholine, and phosphatidylethanolamine. These data indicate that a G protein is involved between the binding of fMLP to its receptor and activation of phospholipase A2, and also that the arachidonic acid release is mediated by both phospholipase A2 and phospholipase C/diacylglycerol lipase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号