首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein kinases C (PKCs) are a family of isoenzymes sensitive to oxidative modifications and involved in the transduction signal pathways that regulate cell growth. As such, they can act as cellular sensors able to intercept intracellular redox changes and promote the primary adaptive cell response. In this study, we have demonstrated that PKC isoforms are specifically influenced by the amount of intracellular glutathione (GSH). The greatest GSH depletion is associated with a maximal reactive oxygen species (ROS) production and accompanied by an increase in the activity of the delta isoform and a concomitant inactivation of alpha. ROS generation induced early morphological changes in GSH-depleted neuroblastoma cells characterized, at the intracellular level, by the modulation of PKC-delta activity that was involved in the pathway leading to apoptosis. When cells were pretreated with rottlerin, their survival was improved by the ability of this compound to inhibit the activity of PKC-delta and to counteract ROS production. These results define a novel role of PKC-delta in the cell signaling pathway triggered by GSH loss normally associated with many neurodegenerative diseases and clinically employed in the treatment of neuroblastoma.  相似文献   

2.
MYCN amplification occurs in approximately 20% of human neuroblastomas and is associated with early tumor progression and poor outcome, despite intensive multimodal treatment. However, MYCN overexpression also sensitizes neuroblastoma cells to apoptosis. Thus, uncovering the molecular mechanisms linking MYCN to apoptosis might contribute to designing more efficient therapies for MYCN-amplified tumors. Here we show that MYCN-dependent sensitization to apoptosis requires activation of p53 and its phosphorylation at serine 46. The p53(S46) kinase HIPK2 accumulates on MYCN expression, and its depletion by RNA interference impairs p53(S46) phosphorylation and apoptosis. Remarkably, MYCN induces a DNA damage response that accounts for the inhibition of HIPK2 degradation through an ATM- and NBS1-dependent pathway. Prompted by the rare occurrence of p53 mutations and by the broad expression of HIPK2 in our human neuroblastoma series, we evaluated the effects of the p53-reactivating compound Nutlin-3 on this pathway. At variance from other tumor histotypes, in MYCN-amplified neuroblastoma, Nutlin-3 further induced HIPK2 accumulation, p53(S46) phosphorylation, and apoptosis, and in combination with clastogenic agents purged virtually the entire cell population. Altogether, our data uncover a novel mechanism linking MYCN to apoptosis that can be triggered by the p53-reactivating compound Nutlin-3, supporting its use in the most difficult-to-treat subset of neuroblastoma.  相似文献   

3.
Changes in the intracellular redox environment of cells have been reported to be critical for the activation of apoptotic enzymes and the progression of programmed cell death. Glutathione (GSH) depletion is an early hallmark observed in apoptosis, and we have demonstrated that GSH efflux during death receptor-mediated apoptosis occurs via a GSH transporter. We now evaluate the relationship between GSH depletion, the generation of reactive oxygen species (ROS), and the progression of apoptosis. Simultaneous single cell analysis of changes in GSH content and ROS formation by multiparametric FACS revealed that loss of intracellular GSH was paralleled by the generation of different ROS including hydrogen peroxide, superoxide anion, hydroxyl radical, and lipid peroxides. However, inhibition of ROS formation by a variety of antioxidants showed that GSH loss was independent from the generation of ROS. Furthermore, GSH depletion was observed to be necessary for ROS generation. Interestingly, high extracellular thiol concentration (GSH and N-acetyl-cysteine) inhibited apoptosis, whereas, inhibition of ROS generation by other non-thiol antioxidants was ineffective in preventing cell death. Finally, GSH depletion was shown to be a necessary for the progression of apoptosis activated by both extrinsic and intrinsic signaling pathways. These results document a necessary and critical role for GSH loss in apoptosis and clearly uncouple for the first time GSH depletion from ROS formation.  相似文献   

4.
Intracellular glutathione (GSH) depletion induced by buthionine sulfoximine (BSO) caused cell death that seemed to be apoptosis in C6 rat glioma cells. Arachidonic acid (AA) promoted BSO-induced cell death by accumulating reactive oxygen species (ROS) or hydroperoxides. AA inhibited caspase-3 activation and internucleosomal DNA fragmentation during the BSO-induced GSH depletion. Furthermore, AA reduced intracellular ATP content, induced dysfunction of mitochondrial membrane and enhanced 8-hydroxy-2'-deoxyguanosine (8-OH-dG) production. There was significant increase of 12-lipoxygenase activity in the presence of AA under the BSO-induced GSH depletion in C6 cells. These results suggest that AA promotes cell death by changing to necrosis from apoptosis through lipid peroxidation initiated by lipid hydroperoxides produced by 12-lipoxygenase under the GSH depletion in C6 cells. Some ROS such as hydroperoxide produced by unknown pathway make hydroxy radicals and induce 8-OH-dG formation in the cells. The conversion of apoptosis to necrosis may be a possible event under GSH depleted conditions.  相似文献   

5.
Mitochondrial glutathione pool is vital in protecting cells against oxidative stress as the majority of the cellular reactive oxygen species are generated in mitochondria. Oxidative stress is implicated as a causative factor in neuronal death in neurodegenerative disorders. We hypothesized that depletion of mitochondrial glutathione leads to mitochondrial dysfunction and apoptotic death of SK-N-SH (human neuroblastoma) cells and investigated the neuroprotective strategies against GSH depletion. SK-N-SH cells were treated with two distinct inhibitors of glutathione metabolism: L-buthionine-(S, R)-sulfoximine (BSO) and ethacrynic acid (EA). EA treatment caused depletion of both the total and mitochondrial glutathione (while BSO had no effect on mitochondrial glutathione), enhanced rotenone-induced ROS production, and reduced the viability of SK-N-SH cells. Glutathione depletion by BSO or EA demonstrated positive features of mitochondria-mediated apoptosis in neuroblastoma cell death. Prevention of apoptosis by Bcl2 overexpression or use of antioxidant ebselen did not confer neuroprotection. Co-culture with U-87 (human glioblastoma) cells protected SK-N-SH cells from the cell death. Our data suggest that depletion of mitochondrial glutathione leads to mitochondrial dysfunction and apoptosis. The study indicates that preventing mitochondrial glutathione depletion could become a novel strategy for the development of neuroprotective therapeutics in neurodegenerative disorders.  相似文献   

6.
We identified a key oncogenic pathway underlying neuroblastoma progression: specifically, MYCN, expressed at elevated level, transactivates the miRNA 17-5p-92 cluster, which inhibits p21 and BIM translation by interaction with their mRNA 3' UTRs. Overexpression of miRNA 17-5p-92 cluster in MYCN-not-amplified neuroblastoma cells strongly augments their in vitro and in vivo tumorigenesis. In vitro or in vivo treatment with antagomir-17-5p abolishes the growth of MYCN-amplified and therapy-resistant neuroblastoma through p21 and BIM upmodulation, leading to cell cycling blockade and activation of apoptosis, respectively. In primary neuroblastoma, the majority of cases show a rise of miR-17-5p level leading to p21 downmodulation, which is particularly severe in patients with MYCN amplification and poor prognosis. Altogether, our studies demonstrate for the first time that antagomir treatment can abolish tumor growth in vivo, specifically in therapy-resistant neuroblastoma.  相似文献   

7.
As we reported previously, GADD153 is upregulated in colon cancer cells exposed to curcumin. In the present study, we ascertained the involvement of glutathione and certain sulfhydryl enzymes associated with signal transduction in mediating the effect of curcumin on GADD153. Curcumin-induced GADD153 gene upregulation was attenuated by reduced glutathione (GSH) or N-acetylcysteine (NAC) and potentiated by the glutathione synthesis inhibitor, L-buthionine-(S,R)-sulfoximine (BSO). Additionally, GSH and NAC decreased the intracellular content of curcumin. Conversely, curcumin decreased intracellular glutathione and also increased the formation of reactive oxygen species (ROS) in cells, but either GSH or NAC prevented both of these effects of curcumin. In affecting the thiol redox status, curcumin caused activation of certain sulfhydryl enzymes involved in signal transduction linked to GADD153 expression. Curcumin increased the expression of the phosphorylated forms of PTK, PDK1, and PKC-delta, which was attenuated by either GSH or NAC and potentiated by BSO. Furthermore, selective inhibitors of PI3K and PKC-delta attenuated curcumin-induced GADD153 upregulation. Collectively, these findings suggest that a regulatory thiol redox-sensitive signaling cascade exists in the molecular pathway leading to induction of GADD153 expression as caused by curcumin.  相似文献   

8.
The primary objective of this study was to determine the sequence of biochemical signaling events that occur after modulation of the cellular redox state in the B cell lymphoma line, PW, with emphasis on the role of mitochondrial signaling. L-Buthionine sulphoximine (BSO), which inhibits gamma glutamyl cysteine synthetase (gammaGCS), was used to modulate the cellular redox status. The sequence and role of mitochondrial events and downstream apoptotic signals and mediators was studied. After BSO treatment, there was an early decline in cellular glutathione (GSH), followed by an increase in reactive oxygen species (ROS) production, which induced a variety of apoptotic signals (detectable at different time points) in the absence of any external apoptotic stimuli. The sequence of biochemical events accompanying apoptosis included a 95% decrease in total GSH and a partial (25%) preservation of mitochondrial GSH, without a significant increase in ROS production at 24h. Early activation and nuclear translocation of the nuclear factor kappa B subunit Rel A was observed at approximately 3h after BSO treatment. Cytochrome c release into the cytosol was also seen after 24h of BSO treatment. p53 protein expression was unchanged after redox modulation for up to 72 h, and p21waf1 independent loss of cellular proliferation was observed. Surprisingly, a truncated form of p53 was expressed in a time-dependent manner, beginning at 24h after BSO incubation. Irreversible commitment to apoptosis occurred between 48 and 72 h after BSO treatment when mitochondrial GSH was depleted, and there was an increase in ROS production. Procaspase 3 protein levels showed a time-dependent reduction following incubation with BSO, notably after 48 h, that corresponded with increasing ROS levels. At 96 h, caspase 3 cleavage products were detectable. The pan-caspase inhibitor zVADfmk, partially blocked the induction of apoptosis at 48 h, and was ineffective after 72 h. PW cells could be rescued from apoptosis by removing them from BSO after up to 48, but not 72 h incubation with BSO. Mitochondrial transmembrane potential (DeltaPsi(m)) remained intact in most of the cells during the 72 h observation period, indicating that DeltaPsi(m) dissipation is not an early signal for the induction of redox dependent apoptosis in PW cells. These data suggest that a decrease in GSH alone can act as a potent early activator of apoptotic signaling. Increased ROS production following mitochondrial GSH depletion, represents a crucial event, which irreversibly commits PW cells to apoptosis.  相似文献   

9.
Neuroblastoma, a tumor of the peripheral sympathetic nervous system, is the most common and deadly extracranial tumor of childhood. The majority of high-risk neuroblastoma exhibit amplification of the MYCN proto-oncogene and increased neoangiogenesis. Both MYCN protein stabilization and angiogenesis are regulated by signaling through receptor tyrosine kinases (RTKs). Therefore, inhibitors of RTKs have a potential as a treatment option for high-risk neuroblastoma. We used receptor tyrosine kinase antibody arrays to profile the activity of membrane-bound RTKs in neuroblastoma and found the multi-RTK inhibitor sunitinib to tailor the activation of RTKs in neuroblastoma cells. Sunitinib inhibited several RTKs and demonstrated potent antitumor activity on neuroblastoma cells, through induction of apoptosis and cell cycle arrest. Treatment with sunitinib decreased MYCN protein levels by inhibition of PI3K/AKT signaling and GSK3β. This effect correlates with a decrease in VEGF secretion in neuroblastoma cells with MYCN amplification. Sunitinib significantly inhibited the growth of established, subcutaneous MYCN-amplified neuroblastoma xenografts in nude mice and demonstrated an anti-angiogenic effect in vivo with a reduction of tumor vasculature and a decrease of MYCN expression. These results suggest that sunitinib should be tested as a treatment option for high risk neuroblastoma patients.  相似文献   

10.
Cancer cell survival is known to be related to the ability to counteract oxidative stress, and glutathione (GSH) depletion has been proposed as a mechanism to sensitize cells to anticancer therapy. However, we observed that GI-ME-N cells, a neuroblastoma cell line without MYCN amplification, are able to survive even if GSH-depleted by l-buthionine-(S,R)-sulfoximine (BSO). Here, we show that in GI-ME-N cells, BSO activates Nrf2 and up-regulates heme oxygenase-1 (HO-1). Silencing of Nrf2 restrained HO-1 induction by BSO. Inhibition of HO-1 and silencing of Nrf2 or HO-1 sensitized GI-ME-N cells to BSO, leading to reactive oxygen/nitrogen species overproduction and decreasing viability. Moreover, targeting the Nrf2/HO-1 axis sensitized GI-ME-N cells to etoposide more than GSH depletion. Therefore, we have provided evidence that in GI-ME-N cells, the Nrf2/HO-1 axis plays a crucial role as a protective factor against cellular stress, and we suggest that the inhibition of Nfr2/HO-1 signaling should be considered as a central target in the clinical battle against neuroblastoma.  相似文献   

11.
Arsenic trioxide (ATO) affects many biological processes such as cell proliferation, apoptosis, differentiation and angiogenesis. L-buthionine sulfoximine (BSO) is an inhibitor of GSH synthesis. We tested whether ATO reduced the viability of lung cancer A549 cells in vitro, and investigated the in vitro effect of the combination of ATO and BSO on cell viability in relation to apoptosis and the cell cycle. ATO caused a dose-dependant decrease of viability of A549 cells with an IC50 of more than 50 muM. Low doses of ATO or BSO (1~10 muM) alone did not induce cell death. However, combined treatment depleted GSH content and induced apoptosis, loss of mitochondrial transmembrane potential (DeltaPsi(m)) and cell cycle arrest in G2. Reactive oxygen species (ROS) increased or decreased depending on the concentration of ATO. In addition, BSO generally increased ROS in ATO-treated A549 cells. ROS levels were at least in part related to apoptosis in cells treated with ATO and/or BSO. In conclusion, we have demonstrated that A549 lung cells are very resistant to ATO, and that BSO synergizes with clinically achievable concentration of ATO. Our results suggest that combination treatment with ATO and BSO may be useful for treating lung cancer.  相似文献   

12.
The present study was designed to evaluate the apoptotic efficacy of selenium (Se) under glutathione-deprived conditions. Testicular cells were used as a model to assess the above. For the study, cells were maintained for 4 h under various treatments; control (media only), selenium (0.5 microM and 1.5 microM), BSO (20 nM), selenium + BSO (0.5 microM Se + 20 nM BSO and 1.5 microM Se + 20 nM BSO). The treated cells were harvested for various estimations viz. viability, GSH, GSSG, redox ratio, ROS generation and integrity of DNA. mRNA was extracted for RT-PCR analysis of JNK, p38, caspase 3 and Bcl-2. It was observed that the cell viability decreased concomitant with the decrease in GSH levels, increase in GSSG levels and increase in the generation of ROS in the combined treatment group in comparison to control and individual treatments. Also, there was an increase in the mRNA expression of JNK and p38 MAPK along with an increase in caspase 3 expression and decrease in Bcl-2 expression. The integrity of DNA was also found to be altered in the combined treatment. Thus, the results presented in this work agree with those earlier reports in a notion that sodium selenite causes apoptosis and the toxicity of selenite is mediated by increase of intracellular ROS. Also, reduction in endogenous GSH along with selenite treatment is associated with increased apoptosis, increased expression of p38 and JNK MAPK, decreased Bcl-2 expression, and increase in caspase-3 expression. Our data indicates that GSH participates in apoptosis in testicular cells and that depletion of this molecule may be critical in predisposing these cells to apoptotic cell death.  相似文献   

13.
In a previous study, E47 HepG2 cells that overexpress human CYP2E1 were shown to be more sensitive to cisplatin than C34 cells that do not express CYP2E1. In this study, we found that this sensitivity was due to an earlier activation of ERK in the E47 cells compared to the C34 cells. Glutathione depletion by L-buthionine sulfoximine (BSO) enhanced cisplatin cytotoxicity via increasing production of reactive oxygen species (ROS) and activation of ERK. In contrast, elevation of glutathione by glutathione ethyl ester (GSHE) decreased cisplatin/BSO cytotoxicity by decreasing ROS production and ERK activation. Inhibition of ERK activation by U0126 protected against cisplatin/BSO cytotoxicity via inhibiting ROS production but not restoring intracellular glutathione content. Examination of the mode of cell death showed that U0126 inhibited cisplatin-induced necrosis but not apoptosis. Cisplatin-induced apoptosis was caspases-dependent; BSO switched cisplatin-induced apoptosis to necrosis via decreasing activity of caspases, and GSHE switched cisplatin/BSO-induced necrosis back to apoptosis through maintaining activity of caspases. Similar to GSHE, U0126 partially switched cisplatin/BSO induced necrosis to apoptosis via restoring activity of caspases. Cisplatin lowered levels of thioredoxin, especially in the presence of BSO. Although U0126 failed in restoring intracellular glutathione levels, it restored thioredoxin levels, which maintain the activity of the caspases. These results suggest that thioredoxin can replace glutathione to promote the active thiol redox state necessary for caspase activity, and thus glutathione and thioredoxin regulate the mode of cisplatin toxicity in E47 cells via redox regulation of caspase activity.  相似文献   

14.
alpha-Hederin, a pentacyclic triterpene saponin isolated from the seeds of Nigella sativa, was recently reported to have potent in vivo antitumor activity against LL/2 (Lewis Lung carcinoma) in BDF1 mice. In this study we observed that alpha-hederin caused a dose- and time-dependent increase in apoptosis of murine leukemia P388 cells. In order to evaluate the possible mechanisms for apoptosis, the effects of alpha-hederin on intracellular thiol concentration, including reduced glutathione (GSH), and protein thiols, and the effects of pretreatment with N-acetlycysteine (NAC), a precursor of intracellular GSH synthesis, or buthionine sulfoxime (BSO), a specific inhibitor of intracellular GSH synthesis, on alpha-hederin-induced apoptosis were investigated. It was found that alpha-hederin rapidly depleted intracellular GSH and protein thiols prior to the occurrence of apoptosis. NAC significantly alleviated alpha-hederin-induced apoptosis, while BSO augmented alpha-hederin-induced apoptosis significantly. The depletion of cellular thiols observed after alpha-hederin treatment caused disruption of mitochondrial membrane potential (deltapsi(m)) and subsequently increased the production of reactive oxygen species (ROS) in P388 cells at an early time point. Bongkrekic acid (BA), a ligand of the mitochondrial adenine nucleotide translocator, and cyclosporin (CsA) attenuated the alpha-hederin-induced loss of deltapsi(m), and ROS production. Thus, oxidative stress after alpha-hederin treatment is an important event in alpha-hederin-induced apoptosis. As observed in this study, permeability transition of mitochondrial membrane occurs after depletion of GSH and precedes a state of reactive oxygen species (ROS) generation. Further, we observed that alpha-hederin caused the release of cytochrome c from the mitochondria to cytosol, leading to caspase-3 activation. Our findings thus demonstrate that changes in intracellular thiols and redox status leading to perturbance of mitochondrial functions are important components in the mechanism of alpha-hederin-induced cell death.  相似文献   

15.
To date, glutathione (GSH) depletion is the earliest biochemical alteration shown in brains of Parkinson's disease patients, but the role of GSH in dopamine cell survival is debated. In this study we show that GSH depletion, produced with GSH synthesis inhibitor, L-buthionine-(S,R)-sulfoximine (BSO), induces selectively neuronal cell death in neuron/glia, but not in neuronal-enriched midbrain cultures and that cell death occurs with characteristics of necrosis and apoptosis. BSO produces a dose- and time-dependent generation of reactive oxygen species (ROS) in neurons. BSO activates extracellular signal-regulated kinases (ERK-1/2), 4 and 6 h after treatment. MEK-1/2 and lipoxygenase (LOX) inhibitors, as well as ascorbic acid, prevent ERK-1/2 activation and neuronal loss, but the inhibition of nitric oxide sintase (NOS), cyclo-oxygenase (COX), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) does not have protective effects. Co-localization studies show that p-ERK-1/2 expression after BSO treatment increased in astrocytes and microglial cells, but not in neurons. Selective metabolic impairment of glial cells with fluoroacetate decreased ERK activation. However, blockade of microglial activation with minocycline did not. Our results indicate that neuronal death induced by GSH depletion is due to ROS-dependent activation of the ERK-1/2 signalling pathway in glial cells. These data may be of relevance in Parkinson's disease, where GSH depletion and glial dysfunction have been documented.  相似文献   

16.
Neuroblastoma is a type of pediatric cancer. The sensitivity of neuroblastoma (NB) cancer cells to chemotherapy and radiation is inhibited by the presence of antioxidants, such as glutathione (GSH), which is crucial in counteracting the endogenous production of reactive oxygen species (ROS). We have previously demonstrated that cells depleted of GSH undergo apoptosis via oxidative stress and Protein kinase C (PKC) δ activation. In the present study, we transfected PKCδ in NB cells resistant to oxidative death induced by L-buthionine-S,R-sulfoximine (BSO), a GSH-depleting agent. Cell responses, in terms of ROS production, apoptosis and DNA damage were evaluated. Moreover, PKCδ activation was monitored by analyzing the phosphorylation status of threonine 505 residue, carrying out PKC activity assay and investigating the subcellular localization of the kinase. The cell responses obtained in BSO-resistant cells were also compared with those obtained in BSO-sensitive cells subjected to the same experimental protocol. Our results demonstrate, for the first time, that PKCδ induces DNA oxidation and ROS overproduction leading to apoptosis of BSO-resistant NB cells and potentiates the cytotoxic effects induced by BSO in sensitive cells. Moreover, PKCδ overexpression enhances the sensitivity of NB cells to etoposide, a well-characterised drug, commonly used in neuroblastoma therapy. Altogether our data provide evidence of a pro-oxidant role of PKCδ that might be exploited to design new therapeutic strategies aimed at selective killing of cancer cells and overcoming drug resistance. However, it becomes evident that a more detailed understanding of ROS-mediated signaling in cancer cells is necessary for the development of redox-modulated therapeutic approaches.  相似文献   

17.
To enhance the efficacy of fenretinide (4HPR)-induced reactive oxygen species (ROS) in neuroblastoma, 4HPR was combined with buthionine sulfoximine (BSO), an inhibitor of glutathione (GSH) synthesis, in neuroblastoma cell lines and spheroids, the latter being a three-dimensional tumor model. 4HPR exposure (2.5-10 μM, 24 h) resulted in ROS induction (114-633%) and increased GSH levels (68-120%). A GSH depletion of 80% of basal levels was observed in the presence of BSO (25-100 μM, 24 h). The 4HPR-BSO combination resulted in slightly increased ROS levels (1.1- to 1.3-fold) accompanied by an increase in cytotoxicity (110-150%) compared to 4HPR treatment alone. A correlation was observed between the ROS-inducing capacity of each cell line and the increase in cytotoxicity induced by 4HPR-BSO compared to 4HPR. No significant correlation between baseline antioxidant levels and sensitivity to 4HPR or BSO was observed. In spheroids, 4HPR-BSO induced a strong synergistic growth retardation and induction of apoptosis. Our data show that BSO increased the cytotoxic effects of 4HPR in neuroblastoma monolayers and spheroids in ROS-producing cell lines. This indicates that the 4HPR-BSO combination might be a promising new strategy in the treatment of neuroblastoma.  相似文献   

18.
Hypothermia induces injury in its own right, but the mechanisms involved in the cell damage are still unclear. The aim of this study was to test the effects that glutathione (GSH) depletion induces on cell death in isolated rat hepatocytes, kept at 4 degrees C for 20 h, by modulating intracellular GSH concentration with diethylmaleate and buthionine sulfoximine (DEM and BSO). Untreated hepatocytes showed Annexin V stained cells (AnxV(+)), scarce propidium iodide stained cells (PI(+)) and presented a low level of lactate dehydrogenase (LDH) leakage after 20 h at 4 degrees C and rewarming at 37 degrees C. When DEM and BSO were added before cold storage, we observed a few AnXV(+) cells and an increase in PI(+) cells associated with LDH release in the incubation medium. Conversely, the addition of DEM and BSO only during rewarming caused a marked increase in cell death by apoptosis. Production of reactive oxygen species (ROS) and thiobarbituric acid species (TBARS), associated with a decrease in GSH concentrations, was higher when DEM and BSO were added before cold storage. Cells treated with DEM and BSO before cold storage showed lower ATP energy stores than hepatocytes treated with DEM and BSO only during rewarming. Pretreatment of hepatocytes with deferoxamine protected against apoptotic and necrotic morphology in conditions of GSH depletion. These results suggest that pretreatment of hepatocytes with DEM and BSO before cold storage induces necrosis, while the treatment of hepatocytes only during rewarming increases apoptosis. In both conditions, iron represents a crucial mediator of cell death.  相似文献   

19.
Oxidative stress due to excessive reactive oxygen species (ROS) and depleted antioxidants such as glutathione (GSH) can give rise to apoptotic cell death in acutely diabetic hearts and lead to heart disease. At present, the source of these cardiac ROS or the subcellular site of cardiac GSH loss [i.e., cytosolic (cGSH) or mitochondrial (mGSH) GSH] has not been completely elucidated. With the use of rotenone (an inhibitor of the electron transport chain) to decrease the excessive ROS in acute streptozotocin (STZ)-induced diabetic rat heart, the mitochondrial origin of ROS was established. Furthermore, mitochondrial damage, as evidenced by loss of membrane potential, increases in oxidative stress, and reduction in mGSH was associated with increased apoptosis via increases in caspase-9 and -3 activities in acutely diabetic hearts. To validate the role of mGSH in regulating cardiac apoptosis, L-buthionine-sulfoximine (BSO; 10 mmol/kg ip), which blocks GSH synthesis, or diethyl maleate (DEM; 4 mmol/kg ip), which inactivates preformed GSH, was administered in diabetic rats for 4 days after STZ administration. Although both BSO and DEM lowered cGSH, they were ineffective in reducing mGSH or augmenting cardiomyocyte apoptosis. To circumvent the lack of mGSH depletion, BSO and DEM were coadministered in diabetic rats. In this setting, mGSH was undetectable and cardiac apoptosis was further aggravated compared with the untreated diabetic group. In a separate group, GSH supplementation induced a robust amplification of mGSH in diabetic rat hearts and prevented apoptosis. Our data suggest for the first time that mGSH is crucial for modulating the cell suicide program in short-term diabetic rat hearts.  相似文献   

20.
Nitric oxide (NO) has been postulated to be required, together with reactive oxygen species (ROS), for the activation of the hypersensitive reaction, a defense response induced in the noncompatible plant-pathogen interaction. However, its involvement in activating programmed cell death (PCD) in plant cells has been questioned. In this paper, the involvement of the cellular antioxidant metabolism in the signal transduction triggered by these bioactive molecules has been investigated. NO and ROS levels were singularly or simultaneously increased in tobacco (Nicotiana tabacum cv Bright-Yellow 2) cells by the addition to the culture medium of NO and/or ROS generators. The individual increase in NO or ROS had different effects on the studied parameters than the simultaneous increase in the two reactive species. NO generation did not cause an increase in phenylalanine ammonia-lyase (PAL) activity or induction of cellular death. It only induced minor changes in ascorbate (ASC) and glutathione (GSH) metabolisms. An increase in ROS induced oxidative stress in the cells, causing an oxidation of the ASC and GSH redox pairs; however, it had no effect on PAL activity and did not induce cell death when it was generated at low concentrations. In contrast, the simultaneous increase of NO and ROS activated a process of death with the typical cytological and biochemical features of hypersensitive PCD and a remarkable rise in PAL activity. Under the simultaneous generation of NO and ROS, the cellular antioxidant capabilities were also suppressed. The involvement of ASC and GSH as part of the transduction pathway leading to PCD is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号