首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Abstract: The relation of cellular cholesterol content to a biochemical expression of oligodendroglial differentiation was studied in cultured C-6 glial cells. Induction of the oligodendroglial marker enzyme 2′: 3′-cyclic nucleotide 3′-phosphohydrolase (CNP) was determined after alteration of the sterol content of cellular membranes by exposure to compactin, a specific inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase and cholesterol synthesis. The sterol content and as a consequence, the sterol/phospholipid molar ratio of C-6 glial cells were decreased by treating the cells, in 10% lipoprotein-poor serum, with various concentrations of compactin for 24 h. The degrees of sterol depletion thus produced were maintained for 48 h after removal of the compactin if the cells were maintained in serum-free medium, the culture conditions necessary for induction of CNP in untreated cells. Forty-eight hours after removal of serum, no induction of CNP occurred in cells previously treated with 0.5 μg/ml of compactin, whereas untreated cells exhibited a three- to fourfold increase in CNP activity. Intermediate degrees of sterol depletion resulted in intermediate degrees of inhibition of the CNP induction. Moreover, the morphological expressions of glial differentiation observed in the untreated cells did not occur in the sterol-depleted cells. That the effect of compactin on the induction of CNP relates to depletion of sterol was indicated by the finding that when low-density lipoprotein was added to the compactin-treated cells, the induction of CNP, the morphological expressions of differentiation and the sterol/phospholipid molar ratios were preserved. The degree of sterol depletion that totally prevented the induction of CNP had no effect on (Na++ K+)-activated ATPase activity, total protein synthesis and cell viability. The data define a critical role for sterol in oligodendroglial differentiation in this model system.  相似文献   

2.
Incubations of Hep G2 cells for 18 h with human low-density lipoprotein (LDL) resulted in a decrease of squalene synthetase activity, whereas heavy high-density lipoprotein (hHDL) stimulated the activity. Simultaneous addition of LDL abolished the hHDL-induced stimulation, indicating that manipulating the regulatory sterol pool within the cells influenced the enzyme activity. Blocking the endogenous cholesterol synthesis either at the 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase site with compactin or at the 2,3-oxidosqualene cyclase site with the inhibitor U18666A gave rise to an elevation of the squalene synthetase activity. Simultaneous addition of mevalonate abolished the compactin-induced increase. However, at total blockade of sterol synthesis by 30 microM U18666A, added compactin and/or mevalonate did not change the enzyme activity further. It was concluded that sterols regulate the squalene synthetase activity, whereas, in contrast with the regulation of the HMG-CoA reductase activity in Hep G2 cells, mevalonate-derived non-sterols did not influence this enzyme.  相似文献   

3.
Abstract: In this study we examined the effects of staurosporine, a potent inhibitor of protein kinase C (PKC), on the differentiation of C6 glial cells and on the expression and cellular distribution of specific PKC isoforms. Staurosporine reduced cell proliferation and induced distinctive changes in the morphological appearance of the cells to that characteristic of cells exhibiting astrocytic phenotypes. The differentiative effect of staurosporine was further indicated by the increased expression of two proteins related to astrocytic phenotypes, glial fibrillary acidic protein (GFAP) and glutamine synthetase. Thus, staurosporine induced a dose-dependent increase both in GFAP immunoreactivity and in the activity and protein levels of glutamine synthetase. Staurosporine also induced a decrease in the expression of PKC-β2 and an increase in that of PKC-γ. In addition, it induced translocation of PKC-ε from the membrane to the cytosol, whereas no differences were observed in the distribution of the other PKC isoforms. The results of our study indicate that staurosporine induced astrocytic phenotypes in glial cells and that changes in the expression and cellular distribution of these PKC isoforms may be related to astrocytic differentiation.  相似文献   

4.
Hep G2 cells were incubated under conditions known to influence the HMG-CoA (3-hydroxy-3-methylglutaryl-CoA) reductase activity, e.g. in the presence of compactin (a competitive inhibitor of HMG-CoA reductase itself) and U18666A (a squalene-2,3-epoxide cyclase inhibitor). We studied the effects of these conditions both on the HMG-CoA reductase activity and on the reductase mRNA content. In the presence of compactin the mRNA content increased, but less than the enzyme activity, as determined after removal of the inhibitor. The increase in mRNA could be prevented by addition of mevalonate or by a combination of low-density lipoprotein (LDL) plus a low concentration of mevalonate. LDL alone prevented the compactin-induced increases in mRNA and activity only partially. The effect of U18666A on reductase mRNA content and activity was biphasic, i.e. a slight decrease at low (0.3-0.5 microM) concentrations, with a concomitant formation of polar sterols [Boogaard, Griffioen & Cohen (1987) Biochem. J. 241, 345-351], and an increase at high (20-30 microM) concentrations, with complete blockage of sterol formation. At these high concentrations of U18666A, additional compactin (2 microM) increased the reductase activity, but not the mRNA content. We conclude that non-sterol metabolites of mevalonate regulate exclusively at the enzyme level, whereas sterol metabolites regulate at the reductase mRNA level. In the latter group of regulators we distinguish mevalonate metabolites which can, and metabolites which cannot, be replaced by exogenous LDL.  相似文献   

5.
The cellular distribution of glutamine synthetase was determined by indirect immunofluorescence in cultures of dissociated brain cells from newborn mice. The enzyme could be detected in about 40% of all cells, among which cells with astrocytic morphology were clearly identified. Treatment with the glucocorticoid dexamethasone led to a strong increase in the number of positivity stained cells. Enzyme induction by dexamethasone was maximal after 36 h and at a concentration of 0.1 micrometer. Under these conditions glutamine synthetase specific activity was elevated about six fold. Steroid hormones other than corticosteroids had no effects. The basal activity in these cultures was near that found in brains of newborn mice, but far below the activity in adult brains, showing that in culture the normal development of these cells is disturbed. A comparison of glial and neuronal cell lines showed that glutamine synthetase is present in both types of cell lines at a very low specific activity. Inducibility of this enzyme by dexamethasone was found in glial but not in neuronal cell lines.  相似文献   

6.
Transglutaminases, calcium-dependent thiol enzymes, may be involved in cellular growth control and differentiation, having an intracellular regulatory role in some post-traslational modifications found in various classes of proteins. In order to elucidate the involvement of this class of enzymes in cellular differentiation processes, we have assayed transglutaminase activity in primary and subcultured rat glial cells. Reduced activity was found from 3rd to 5th passage. In the 5th passage the activity was some 50% of that found in the primary cultures and was not restored by addition of 10 M retinoic acid. The decrease of TGase activity, observed during serial passages, could represent an early metabolic alteration related to cell dedifferentiation and loss of growth control. In fact, the subcultured cells may have undergone a disarranged state, as confirmed by a decrease in GFAP-stained cells and glutamine synthetase activity, respectively, immunocytochemical and biochemical markers of astroglial cells.  相似文献   

7.
Albumin-mediated changes in sperm sterol content during capacitation   总被引:3,自引:0,他引:3  
The role of albumin in mouse sperm capacitation was studied in relation to its activities as a lipid-solubilizing protein and a sterol acceptor. Two bovine serum albumins (BSA) which supported capacitation, Fraction V and fatty acid-free, both contained cholesterol and phospholipid but were without detectable levels of serum high-density lipoprotein (HDL). The lipid content of BSA could be reduced by trichloroacetic acid (TCA) precipitation; however, removal of all detectable lipids required precipitation with ethanolic acetone and diethyl ether extraction. In medium supplemented with Fraction V, fatty acid-free, or TCA-precipitated BSA, mouse sperm were capacitated as evidenced by their ability to fertilize eggs, concomitant with decreases in total cellular sterol and increases in phospholipid content. Delipidated BSA, fractionated on Sephadex G-100 in guanidine HCl also supported capacitation and mediated a 20% decrease in sperm sterol content, while cellular phospholipid levels remained unchanged. When BSA was modified by cholesterol augmentation, fertilization was inhibited in a cholesterol dose-dependent manner. These findings suggest that modulation of sperm lipid levels comprises an event of capacitation and that albumin mediates this process through its activity as a sterol acceptor.  相似文献   

8.
Glutamine synthetase specific activity increases greater than 100-fold during the insulin-mediated differentiation of confluent 3T3-L1 cells into adipocytes. Incubation of the adipocytes for 22 h with 0.5 mM dibutyryl cyclic AMP plus 0.5 mM theophylline, 0.2 mM 8-bromo-cyclic AMP, 10 micro M epinephrine, or 1 microgram of alpha 1-24 adrenocorticotropic hormone/ml decreased glutamine synthetase by greater than 60%. During the same incubation period, there was no effect of these compounds on protein or on the specific activities of glucose-6-P dehydrogenase or hexokinase. In the presence of 0.5 mM theophylline, the dibutyryl cyclic AMP-mediated decrease in glutamine synthetase activity was half-maximal at 50 micro M dibutyryl cyclic AMP. Furthermore, between 10 micro M and 5 mM dibutyryl cyclic AMP, the dibutyryl cyclic AMP-mediated decrease in glutamine synthetase was similar in the absence or presence of 1 microgram of insulin/ml. Immunotitration of glutamine synthetase activity from 3T3 adipocytes indicates that the dibutyryl cyclic AMP-mediated decrease in the activity is due to a decrease in the cellular content of glutamine synthetase molecules. We studied the effects of dibutyryl cyclic AMP on the synthesis and degradation of glutamine synthetase. Synthesis rate was estimated from the incorporation of L-[35S]methionine into glutamine synthetase during a 60-min incubation period. Degradation rate was estimated from the first order disappearance of radioactivity from glutamine synthetase in 3T3 adipocytes previously incubated with L-[35S]methionine. Glutamine synthetase was isolated by immunoprecipitation followed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Incubation of 3T3 adipocytes with dibutyrl cyclic AMP resulted in a rapid decline in the apparent synthesis rate of glutamine synthetase. In addition, dibutyryl cyclic AMP treatment increased the initial rate of glutamine synthetase degradation. The half-life of glutamine synthetase was 24.5 h in control cultures and 16 h in dibutyryl cyclic AMP-treated cultures. In contrast, dibutyryl cyclic AMP had little effect on the synthesis or degradation of soluble protein. Our data indicate that the dibutyryl cyclic AMP-mediated decrease in 3T3 adipocyte glutamine synthetase activity results from a decrease in the synthesis rate and an increase in the initial degradation rate of the enzyme.  相似文献   

9.
Experiments were conducted, using a nonspecific lipid transfer protein, to vary the cholesterol/phospholipid molar ratio of rat proximal small intestinal microvillus membranes in order to assess the possible role of cholesterol in modulating enzymatic activities of this plasma membrane. Cholesterol/phospholipid molar ratios from 0.71 to 1.30 were produced from a normal value of 1.05 by incubation with the transfer protein and an excess of either phosphatidylcholine or cholesterol/phosphatidylcholine liposomes for 60 min at 37 degrees C. Cholesterol loading or depletion of the membranes was accompanied by a decrease or increase, respectively, in their lipid fluidity, as assessed by steady-state fluorescence polarization techniques using the lipid-soluble fluorophore 1,6-diphenyl-1,3,5-hexatriene. Increasing the cholesterol/phospholipid molar ratio also decreased alkaline phosphatase specific activity by approximately 20-30%, whereas decreasing this ratio increased this enzymatic activity by 20-30%. Sucrase, maltase, and lactase specific activities were not affected in these same preparations. Since the changes in alkaline phosphatase activity could be secondary to alterations in fluidity, cholesterol, or both, additional experiments were performed using benzyl alcohol, a known fluidizer. Benzyl alcohol (25 mM) restored the fluidity of cholesterol-enriched preparations to control levels, did not change the cholesterol/phospholipid molar ratio, and failed to alter alkaline phosphatase activity. These findings, therefore, indicate that alterations in the cholesterol content and cholesterol/phospholipid molar ratio of microvillus membranes can modulate alkaline phosphatase but not sucrase, maltase, or lactase activities. Moreover, membrane fluidity does not appear to be an important physiological regulator of these enzymatic activities.  相似文献   

10.
Incubating Hep G2 cells for 18 h with triparanol, buthiobate and low concentrations (less than 0.5 microM) of U18666A, inhibitors of desmosterol delta 24-reductase, of lanosterol 14 alpha-demethylase and of squalene-2,3-epoxide cyclase (EC 5.4.99.7) respectively, resulted in a decrease of the HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A) reductase activity. However, U18666A at concentrations higher than 3 microM increased the HMG-CoA reductase activity in a concentration-dependent manner. None of these inhibitors influenced directly the reductase activity in Hep G2 cell homogenates. Analysis by t.l.c. of 14C-labelled non-saponifiable lipids formed from either [14C]acetate or [14C]mevalonate during the cell incubations confirmed the sites of action of the drugs used. Beside the 14C-labelled substrates of the blocked enzymes and 14C-labelled cholesterol, another non-saponifiable lipid fraction was observed, which behaves as polar sterols on t.l.c. This was the case with triparanol and at those concentrations of U18666A that decreased the reductase activity, suggesting that polar sterols may play a role in suppressing the reductase activity. In the presence of 30 microM-U18666A (sterol formation blocked) the increase produced by simultaneously added compactin could be prevented by addition of mevalonate. This indicates the existence of a non-sterol mevalonate-derived effector in addition to a sterol-dependent regulation. LDL (low-density lipoprotein), which was shown to be able to decrease the compactin-induced increase in reductase activity, could not prevent the U18666A-induced increase. On the contrary, LDL enhanced the U18666A effect, showing that the LDL regulation is not merely the result of introducing cholesterol to the cells.  相似文献   

11.
Confluent 3T3-L1 Swiss mouse fibroblasts acquired morphological and biochemical characteristics of adipocytes when maintained in medium containing 10% calf serum and added insulin. Identical cultures maintained in the absence of added insulin did not differentiate into adipocytes. Incubation of confluent cultures for 48 h with 0.25 μm dexamethasone and 0.5 mm 1-methyl-3-isobutylxanthine yielded subsequent adipocyte differentiation when the culture medium contained 10% fetal calf serum. In contrast, differentiation did not occur when similarly treated cultures were maintained in medium containing 10% calf serum. The increase in glutamine synthetase which occurred during adipocyte differentiation was closely associated with an increased rate of triglyceride synthesis from acetate, with increased protein, and with increases in the activities of glycerol-3-P dehydrogenase and glucose-6-P dehydrogenase. Glutamine synthetase activity remained undetectable in insulin-treated confluent 3T3-C2 cells maintained under conditions which yielded high glutamine synthetase activity in 3T3-L1 cells. (3T3-C2 cells did not differentiate into adipocytes.) Glutamine accumulated in the culture medium of 3T3-L1 adipocytes, but it did not accumulate in the medium from identically treated 3T3-C2 cells. A half-maximal increase in glutamine synthetase specific activity occurred at a culture medium insulin concentration of 10 ng/ml. Neither adipocyte differentiation nor the rise in glutamine synthetase activity were substantially altered by maintaining confluent cultures in medium lacking added glutamine. Incubation of confluent 3T3-L1 cultures with 3 mml-methionine sulfone, a reversible inhibitor of glutamine synthetase, increased by two-fold both the activity and the cellular content of glutamine synthetase. Incubation of confluent 3T3-L1 cultures with 4 mml-glutamine and l-methionine-dl-sulfoximine, an irreversible inhibitor of glutamine synthetase activity, decreased glutamine synthetase activity to less than 5% of the activity in control cultures; however, neither cellular content of the enzyme nor synthesis rate of the enzyme were substantially altered. In the presence of added glutamine, neither methionine sulfone nor methionine sulfoximine had a significant effect on phenotypic adipocyte conversion. By contrast, when confluent cultures were incubated with methionine sulfoximine and no added glutamine, glutamine synthetase remained absent and there was no evidence of adipocyte conversion. Our data indicate (1) that added insulin is required for adipocyte differentiation of 3T3-L1 cells maintained in medium containing calf serum, (2) that glutamine synthetase activity increases during adipocyte conversion regardless of the culture conditions employed to achieve differentiation, and (3) that glutamine synthetase activity may be required for adipocyte differentiation when cultures are maintained in medium lacking added glutamine.  相似文献   

12.
Abstract: Regulation of the biosynthesis of glutamine synthetase was studied in neuroblastoma cells (Neuro-2A) by use of a recently developed, sensitive radioisotopic assay. The removal of glutamine from the culture medium of these cells for 24 h resulted in a 10-fold increase in glutamine synthetase specific activity (15-fold after 2 weeks) compared with the basal level found in cells grown in the presence of 2 m M glutamine. Following the growth of these cells for 2 weeks in the presence of various concentrations of glutamine, a negative linear correlation was observed between the specific activity of glutamine synthetase (from 1.7 to 0.14 unit/mg) and the concentration of glutamine in the growth medium (from 0.5 to 2 m M ). Cycloheximide or actinomycin D blocked the increase in glutamine synthetase activity observed in the absence of glutamine. These results suggest that the removal of glutamine led to the induction of glutamine synthetase by stimulating new enzyme synthesis. The enzyme was not degraded, but only diluted, by growth upon readdition of glutamine to the medium. The influence of glutamine depletion is also reported for C-6 glioma cells and glial cells in primary cultures.  相似文献   

13.
Human high density lipoprotein enriched in free cholesterol was obtained by exposing the lipoprotein to lipid dispersions having a free cholesterol/lecithin molar ratio greater than two. The metabolism of cholesterol was studied in tissue culture cells exposed to normal and cholesterol-enriched lipoproteins. Incubation of Fu5-AH rat hepatoma cells in medium containing cholesterol-enriched lipoprotein resulted in the accumulation of cellular cholesterol whereas normal high density lipoprotein produced no change in cellular content. The accumulated sterol was recovered primarily as esterified cholesterol and was derived almost entirely from lipoprotein free cholesterol. The esterification of incorporated free cholesterol and the cellular cholesterol content were directly related to the molar ratio of free cholesterol to phospholipid in the lipoprotein and to the concentration of lipoprotein in the culture medium. Isotopic experiments utilizing lipoprotein labeled with 125I or [4-14C]cholesteryl oleate demonstrated that a large fraction of the cholesterol incorporated from lipoprotein enriched in free cholesterol occurred by mechanisms that did not result in lipoprotein internalization and degradation. The response of other tissue culture cells to cholesterol/phospholipid dispersions is presented. The data indicate that the lipid composition of a lipoprotein can regulate free cholesterol uptake and esterification as well as cellular cholesterol content.  相似文献   

14.
Induction of N-Glycosylation Activity in Cultured Embryonic Rat Brain Cells   总被引:3,自引:3,他引:0  
Developmental changes in protein N-glycosylation activity have been studied using cultures of dissociated fetal rat brain cells as an in vitro model system. These cultures undergo an initial phase of neurite outgrowth and cell proliferation (4-6 days in culture), followed by a period of cellular differentiation. N-Glycosylation activity has been measured by assaying the incorporation of [2-3H]mannose into dolichol-linked oligosaccharides and glycoprotein over a period of 1-25 days in culture. This study revealed a marked induction of N-glycosylation activity beginning at approximately 1 week of culture. [2-3H]Mannose incorporation into the oligosaccharide-lipid intermediate fraction and glycoprotein reached maximal values between 12 and 16 days of culture and declined thereafter. The major dolichol-linked oligosaccharide labeled by the brain cell cultures was shown to be Glc3Man9GlcNAc2 by HPLC analysis. Parallel incorporation studies with [3H]leucine showed that the increase in protein N-glycosylation was relatively higher than a concurrent increase in cellular protein synthesis observed during the induction period. Maximal labeling of glycoprotein corresponded to the period of glial differentiation, as indicated by a sharp rise in the marker enzymes, 2',3'-cyclic nucleotide 3'-phosphohydrolase (an oligodendroglial marker) and glutamine synthetase (an astroglial marker). The results describe a developmental activation of the N-glycosylation pathway and suggest a possible relationship between N-linked glycoprotein assembly and the growth and differentiation of glial cells.  相似文献   

15.
Induction of glial glutamate transporters in adult mesenchymal stem cells   总被引:5,自引:0,他引:5  
Adult bone marrow mesenchymal stem cells are multipotent cells that can differentiate into a variety of mesodermal tissues. Recent studies have reported on their ability to also evolve into non-mesodermal cells, especially neural cells. While most of these studies revealed that manipulating these cells triggers the expression of typical neurone markers, less is known about the induction of neuronal- or glial-related physiological properties. The present study focused on the characterisation of glutamate transporters expression and activity in rat mesenchymal stem cells grown in culture conditions favouring their differentiation into astroglial cells. Ten days exposure of the cells to the culture supplement G5 was found to increase the expression of nestin (neuro-epithelial stem cell intermediate filament), an intermediate filament protein expressed by neural stem cells. Simultaneously, a robust induction of the high-affinity glutamate transporter GLT-1 (and GLAST) expression was detected by RT-PCR and immunocytochemistry. This expression was correlated with a highly significant increase in the Na+-dependent [3H]D-aspartate uptake. Finally, while glial fibrillary acidic protein immunoreactivity could not be detected, the induced expression of the astrocytic enzyme glutamine synthetase was demonstrated. These results indicate that in vitro differentiation of adult mesenchymal stem cells in neural precursors coincides with the induction of functional glutamate transport systems. Although the astrocytic nature of these cells remains to be confirmed, this observation gives support to the study of mesenchymal stem cells as a promising tool for the treatment of neurological diseases involving glutamate excitoxicity.  相似文献   

16.
Oxygen–glucose deprivation (OGD) in brain cells increases extracellular glutamate concentration leading to excitotoxicity. Glutamate uptake from the synaptic cleft is carried out by glutamate transporters, which are likely to be modulated by oxidative stress. Therefore, oxidative stress is associated with reduced activity of glutamate transporters and glutamine synthetase, thus increasing extracellular glutamate levels that may aggravate damage to brain cells. Atorvastatin, a cholesterol-lowering agent, has been shown to exert neuroprotective effects. The aim of this study was to investigate if in vivo atorvastatin treatment would have protective effects against hippocampal slices subjected to OGD, ex vivo. Atorvastatin pretreatment promoted increased cell viability after OGD and reoxygenation of hippocampal slices. Atorvastatin-induced neuroprotection may be related to diminished oxidative stress, since it prevented OGD-induced decrement of non-proteic thiols (NPSH) levels and increase in the production of reactive oxygen species (ROS). Atorvastatin pretreatment also prevented the OGD-induced decrease in glutamate uptake and glutamine synthetase activity, although it had no effect on OGD-induced excitatory aminoacids release. Addition of cholesterol before OGD and reoxygenation, abolished the protective effect of atorvastatin on cellular viability as well as on glutamate uptake and glutamine synthetase activity. Therefore, atorvastatin is capable of preventing OGD-induced cell death, an effect achieved due to modulation of glutamate uptake and glutamine synthetase activity, and associated with diminished oxidative stress. Additionally, atorvastatin effects were dependent on its action on cholesterol synthesis inhibition. Thus, atorvastatin might be a useful strategy in the prevention of glutamate exitotoxicity involved in brain injuries such as vascular disorders.  相似文献   

17.
An upregulation of the astrocytic proteins GFAP and bFGF within area 2 of the cingulate cortex (Cg2) occurs within 3 hours of parturition in rats. These changes are the result of an interaction between hormonal state and maternal experience and are associated with increased dendritic spine density in this area. Here, we examined whether this upregulation of astrocytic proteins generalized to other glial markers and, in particular those associated with glutamate metabolism. We chose glial markers commonly used to reflect different aspects of glial function: vimentin, like GFAP, is a marker of intermediate filaments; glutamine synthetase (GS), and S-100beta, are used as markers for mature astrocytes and GS has also been used as a specific marker for glutamatergic enzymatic activity. In addition, we examined levels of proteins associated with glutamine synthetase, glutamate, glutamine and two excitatory amino acid transporters found in astrocytes, glt-1 and glast. S100beta immunoreactivity did not vary with reproductive state in either Cg2 or MPOA suggesting no change in the number of mature astrocytes across these conditions. Vimentin-ir did not differ across groups in Cg2, but expression of this protein decreased from Day 1 postpartum onwards in the MPOA. By contrast, GS-ir was increased within 24 h postpartum in Cg2 but not MPOA and similarly to GFAP and bFGF this upregulation of GS resulted from an interaction between hormonal state and maternal experience. Within Cg2, upregulation of GS was not accompanied by changes in the astrocytic glutamatergic transporters, glt-1 and glast, however, an increase in both glutamate and glutamine proteins were observed within the Cg2 of postpartum animals. Together, these changes suggest postpartum upregulation of glutamatergic activity and metabolism within Cg2 that is stimulated by pregnancy hormones and maternal experience.  相似文献   

18.
Compactin, an inhibitor of HMG-CoA (3-hydroxy-3-methylglutaryl-CoA) reductase, decreased cholesterol synthesis in intact Hep G2 cells. However, after the inhibitor was washed away, the HMG-CoA-reductase activity determined in the cell homogenate was found to be increased. Also the high-affinity association of LDL (low-density lipoprotein) to Hep G2 cells was elevated after incubation with compactin. Lipoprotein-depleted serum, present in the incubation medium, potentiated the compactin effect compared with incubation in the presence of human serum albumin. Addition of either mevalonate or LDL prevented the compactin-induced rise in activities of both HMG-CoA reductase and LDL receptor in a comparable manner. It is concluded that in this human hepatoma cell line, as in non-transformed cells, both endogenous mevalonate or mevalonate-derived products and exogenous cholesterol are able to modulate the HMG-CoA reductase activity as well as the LDL-receptor activity.  相似文献   

19.
We have investigated the effects of substituting lipoprotein depleted serum (LPDS) for normal fetal calf serum (FCS) in culture media on cholesterol ester concentrations and the activity of the ester hydrolases in cultured glioblastoma (C-6 glial) cells. Glial cells grown in media supplemented with 10% FCS contained 16–23% of total cholesterol as esterified sterol. Total sterol content of the cells cultured in media supplemented with LPDS was reduced by 55–75% as compared to cells cultured in FCS media and none of this sterol was in esterified form. Cholesterol ester hydrolase activity was maximal at pH values of 4.5 and 6.5 and required Triton X-100 for optimal activity. Cholesterol ester hydrolase activity at pH 4.5 was significantly higher in cells grown in FCS media than in cells cultured in LPDS media, but the activity at pH 6.5 was not significantly different. The protein: DNA ratio of cells cultured in FCS was higher than in cells cultured in LPDS. These findings indicate that the increase in cholesterol ester concentrations in cells is accompanied by increased activity of lysosomal cholesterol ester hydrolase; and suggest that, in cells cultured in FCS, the availability of free cholesterol for incorporation into cellular membranes is regulated by cholesterol ester hydrolase. The findings also indicate that changes in growth and differentiation of cells cultured in LPDS may be related to reduced availability of exogenous cholesterol.  相似文献   

20.
Glutamine synthetase (GS) is the major glutamine-forming enzyme of vertebrates and is accepted to be a marker of astroglial cells. Maturation of astroglial cells is characterized by an increase of GS activity, and the regulation of this enzyme is the topic of many publications. Because of the fundamental role of the GS in controlling brain glutamate and glutamine level, it is essential to understand the mechanism of expression of this enzyme. To our knowledge, the effect of estrogen (17β-estradiol) on GS activity in glial cells has not been reported. We examined the effect of treatment with estrogen on glutamine synthetase enzyme activity in glial cells. C6-glioma cells in later passage have many astrocytic characteristics and provided a convenient and well-established model system. We adapted a colorimetric method to measure GS-catalyzed γ-glutamyltransferase (GT) activity in C6-glioma cells. The assay monitors GT activity of glutamine synthetase by following the absorbance of the product γ-glutamyl hydroxamate at 540 nm. We observed that, the absorbance of γ-glutamyl hydroxamate significantly increased in estrogen treated cells (0.13±0.03), as compared to untreated cells (0.058±0.015). Estrogen also significantly increased concentration of glutamine in C6-glioma cells as measured by fluorometric assay. In addition, western blot analysis showed that estrogen significantly increased the amount of glutamine synthetase compared to control. This estrogen effect could have important physiological implications on cerebral glutamate and glutamine metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号