首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrogen re-mobilization and changes in free amino acids werestudied as a function of time in leaves, stubble, and rootsduring ryegrass (Lolium perenne L.) re-growth. Experiments with15N labelling clearly showed that during the first days nearlyall the nitrogen in new leaves came from organic nitrogen re-mobilizedfrom roots and stubble. On the days of defoliation, stubblehad the highest content of free amino acids with 23 mg per gdry weight against 15 mg and 14 mg in leaves and roots, respectively.The major amino acids in leaves were asparagine (23% of totalcontent in free amino acids), aminobutyrate, serine, glutamine,and glutamate (between 7% and 15%) whereas in roots and stubblethe contribution of amides was high, especially asparagine (about50%). Re-growth after cutting was associated with a rapid increaseof the free amino acid content in leaves, with a progressivedecrease in roots while stubble content remained virtually unchanged.In leaves, asparagine increased from the first day of re-growth,while the aspartate level remained unchanged and glutamine increasedstrongly on the first day but decreased steadily during thenext few days of re-growth. Asparagine in stubble and rootschanged in opposite directions: in stubble it tended to increasewhereas in roots it clearly decreased. In contrast, stubbleand roots showed a similar decrease in glutamine. In these twoplant parts, as in leaves, aspartate remained at a low level.Results concerning free amino acids are discussed with referenceto nitrogen re-mobilization from source organs (stubble androots) to the sink organ (regrowing leaves). Key words: Lolium perenne L, re-growth, nitrogen, free amino acids, glutamine, asparagine  相似文献   

2.
稻田温室气体减排措施对稻米氨基酸含量的影响   总被引:1,自引:0,他引:1  
为探索稻田中温室气体减排措施对稻米氨基酸含量的影响,用10个不同方法对双季稻田进行处理,并使用高效液相色谱分别测定了各处理稻田中所产稻米中的16种氨基酸的含量,其中色谱柱为Agilent Zorbax AAA分析柱,柱前衍生使用邻苯二甲醛(OPA)和9-芴甲基氯甲酸酯(FMOC-CL)为衍生试剂。结果发现:1)10个处理中的稻米16种氨基酸种类齐全,施氮肥+添加生物质炭48 t/hm2+间歇灌溉(NPK+HBC+IF)处理中所得氨基酸总量为6520.7 mg/100g,效果最佳;对照组处理(不施加氮肥+无稻草还田+间歇灌溉)所得氨基酸含量4338.0 mg/100g为最低。以对照组处理所得必需氨基酸百分含量36.8%为最高值;无稻草还田+长期淹水(NPK+CF)处理方法所得必需氨基酸百分含量33.1%为最低值。10个处理中16种氨基酸中含量较高的氨基酸均为天冬氨酸、谷氨酸和精氨酸,含量最低的均为甲硫氨酸;2)施氮肥量相同时,长期淹水与间歇灌溉相比,氨基酸总量增加185.1 mg/100g,非必需氨基酸百分含量增加3%,谷氨酸、组氨酸和丝氨酸含量明显升高,但亮氨酸含量显著降低;3)施用氮肥能提高稻米中的氨基酸含量,且随着氮肥使用量的增加,氨基酸含量也随之增加,组氨酸含量增加显著;4)供氮量相同时,添加猪粪使氨基酸总含量升高了286.0 mg/100g,此结果表明,在供氮量相同的情况下,施用猪粪更有利于稻米氨基酸含量的提高;5)灌溉模式相同时,稻草还田配施氮肥对必需氨基酸和氨基酸总量均有提高,天冬氨酸、谷氨酸和组氨酸的含量增加较多,甲硫氨酸含量略有下降;随着稻草还田量的增加,对非必需氨基酸影响较为明显;当稻草半量还田(还田量为3 t/hm2)时,稻米中氨基酸总量增加最多;稻草全量还田+长期淹水(NPK+HRS+CF)与稻草半量还田+间歇灌溉(NPK+LRS+IF)处理中的氨基酸含量基本接近,但必需氨基酸含量前者略高于后者,说明稻草还田与水肥管理对氨基酸含量影响可能存在交互作用;6)添加生物质炭配施氮肥提高了稻米必需氨基酸与非必需氨基酸含量,且随着生物质炭添加量的增加而增加;与稻草还田、添加猪粪处理相比,生物质炭的添加对氨基酸总含量提升的效果最为显著,对稻田实际生产具有指导意义且具有一定的环境效益。  相似文献   

3.
The effect of age on non-protein constituents of tobacco leaves (N. tabacum L., var. Bright Yellow) has been studied. For this purpose leaves in three different stalk positions, upper, middle and lower, which represent young, mature and over-mature leaves, respectively, were harvested in the day-time and at night.

The total amino nitrogen content both in the day-time and at night decreases from the upper leaf position downwards. As for the individual groups, the content of both upper and middle leaves increases in the day-time and that of the lower ones increases at night.

In general, the content of the individual amino acids is high in the upper leaves and low in the lower ones. Proline and γ-aminobutyric acid, as a ratio of the total amino acid content, show a marked difference with position, in other words with age of the leaves.

The levels of proline decrease very sharply from the upper leaf position downwards and that of γ-aminobutyric acid exhibits an opposite trend in both samples at night and in the day-time. These trends are very prominent in the case of the midribs.

The contents of other amino acids, regardless of position, show similar trends with time to those reported in the previous paper1), and the aspartic acid content increases at night.  相似文献   

4.
In the present study, non-aqueous fractionation (NAQF) and GC-MS were used to obtain a spatially resolved view of metabolism in mature leaves of soybean (Glycine max Merr.). NAQF of lyophilized soybean leaves was performed using CCl4-n-heptane and ultracentrifugation that yielded a gradient comprised of six fractions. Chlorophyll content, and marker enzyme activities, phosphoenolpyruvate carboxylase (PEPC) and α-mannosidase, were utilized as stroma, cytosol and vacuole markers, respectively. GC-MS analyses of each fraction resulted in the identification of around 100 different metabolites. The distribution of these identified compounds showed a decreasing order from the vacuole to cytosol to chloroplast stroma. In other words, a greater number of identified compounds were found in the vacuole when compared to the cytosol or stroma. Levels of sugars, organic acids and fatty acids showed greater relative abundances in the vacuole with 50, 55, and 50% of the respective pools. A greater relative abundance of amino acids was observed in the cytosol where 45% of the total of amino acids content was recorded. The relatively large pool of sugars and phenolic acids in the vacuole compartment implies high levels of starch metabolism and phenylpropanoid biosynthesis. The low amino acids pool, on the other hand, suggests low nitrogen accumulation in the leaves of soybean. Hierarchical cluster analysis on the most abundant metabolites revealed three clusters containing 10, 20, and 2 of the 32 selected metabolites. The data were discussed in term of NAQF and GC-MS analysis of soybean mature leaves, and also in term of distribution and compartmentation of metabolites at subcellular levels.  相似文献   

5.
The time course of endopeptidase activity (digestion of azocasein at pH 4.6) in leaves of intact plants of Nicotiana rustica L. was studied and related to changes in the contents of chlorophyll, total nitrogen and soluble and insoluble protein nitrogen. Endopeptidase activity increased several fold during senescence. However, the course of protein degradation did not reflect the steep slope of azocaseolytic activity. When single mature leaves were darkened, senescence proceeded faster than in illuminated leaves but the amount of nitrogen mobilized and translocated did not differ greatly between darkened and illuminated leaves. However, in contrast to leaves in light, azocaseolytic activity did not increase.
Gelatin zymograms obtained using isoelectric focusing of extracts of mature leaves showed several bands in the pH 4.0 to 6.5 region of the gels. During senescence in both light and dark the position and number of bands remained largely unchanged. In leaves in light, the activity of endopeptidases focusing in the range pH 4.1 to 5.0 increased greatly. In leaves in dark, however, no major changes in activity could be detected. The results suggest that in tobacco leaves endopeptidase activity normally increases considerably during senescence but this increase is not a prerequisite for an effective protein degradation.
Separation and analysis of free amino acids showed that during senescence in light the levels of all amino acids decreased considerably. In leaves senescing in the dark there were large increases in the levels of glutamine and asparagine, concomitant decreases in glutamate and aspartate, and considerable increases in all other amino acids.  相似文献   

6.
以武夷肉桂为研究对象,研究不同施氮量对乌龙茶幼龄茶树生长和生理的影响。结果表明,幼龄茶树对氮肥的需求不强烈,其新梢生物量、根生物量和总生物量以及茶叶产量随施氮量的增加而下降。茶树新梢全氮、叶绿素、游离氨基酸、茶多酚和咖啡碱的含量随施氮量的增加而增加,而茶树碳氮比随着施氮量增加而下降;但施氮并没有影响茶树总碳含量。老叶叶绿素含量、根全氮和硝态氮含量、新梢总糖含量与施氮量呈二次曲线回归关系,适度施氮促进根对氮的吸收、老叶叶绿素合成和新梢总糖代谢,过度施氮则相反。新梢生物量与其硝态氮含量和游离氨基酸总量显著负相关;根生物量与根碳氮比和新梢咖啡碱含量显著负相关;茎叶生物量和总生物量与根含氮量显著正相关,但与新梢硝态氮和氨基酸含量显著负相关。过度施氮造成茶树生产力下降的主要原因是因为过度施氮极显著提高了茶树氨基酸代谢水平,使用于茶树生长的碳代谢产物(如总糖)减少,进而影响茶树的生长。  相似文献   

7.
为探讨米老排(Mytilaria laosensis)叶片的潜在利用价值和开发前景,对其叶片的营养成分进行了测定.结果表明,9 a生植株的幼嫩叶片中粗蛋白、粗脂肪和水分含量显著低于成熟叶片;2 a生和10 a生米老排叶片的膳食纤维含量均超过50%,总糖含量为15.04%~16.25%;幼树叶片的维生素C含量[1651m...  相似文献   

8.
Stress state in plants caused by salinization conditions is characterized by the disturbance of ionic and osmotic homeostasis. The maintenance of the latter is reached by accumulation of osmolytes including free amino acids and soluble sugars in cells. The free amino acid level in the 8-day-old control seedling leaves was higher, than in the roots, whereas the contrary picture was observed in 17-day-old plant tissues. At the same time 8-day-old seedling roots contained more total sugars, than leaves, although the reduced sugar content was nearly a half of the total sugar content. A decrease of both total and reduced sugar levels was observed in 17-day-old seedling tissues. One-day exposure of 7-day-old seedlings to 0.1 M NaCl increased the free amino acid content especially in roots, than in leaves, and the total sugar content in maize leaves, whereas in roots this level remained without changes. The prolongation of salt exposure to 10 days leads to osmolyte content decrease. The seed treatment with Methyure and Ivine intensified accumulation of free amino acids and soluble sugars in the root and leaf tissues under salinization conditions.  相似文献   

9.
VOS  J; BIEMOND  H 《Annals of botany》1992,70(1):27-35
Potatoes (Solanum tuberosum L) were planted in pots in a temperature-controlledglasshouse to collect data on the rate of leaf apearance, leafexpansion, apical lateral branching and active life spans ofleaves The treatments consisted of three rates of nitrogen supply,i e the NI treatment with 2 5 g N per pot and the N2 and N3treatments with 8 and 16 g N per pot, respectively The rate of leaf appearance was 0·53 leaves d–1(one leaf per 28 °C d) and was negligibly affected by nitrogensupply The rate of leaf expansion was related to leaf numberand nitrogen supply The areas of mature leaves increased withleaf number on the main stem to reach a maximum for leaf numbers12–14, and declined for higher leaf numbers Leaves onapical lateral branches declined in mature area with increasein leaf number The expansion rate of leaves was the dominantfactor that determined the mature leaf area, irrespective ofleaf number and nitrogen treatment The smallest leaves wereobserved at the lowest rate of nitrogen supply Nitrogen promotedapical branching and hence the total number of leaves that appearedon a plant The proportion of total leaf area contributed byleaves on apical branches increased with time and nitrogen supply Active life span, i e the period of time between leaf appearanceand yellowing of the leaf, showed a similar relation to leafnumber as mature leaf area, at least in qualitative terms Leavesof the N3 treatment showed systematically longer life spansthan leaves of the NI and N2 treatment in the order of 3 weeksThe number of main stem leaves was not affected by nitrogensupply Potato, Solanum tuberosum L, leaf development, leaf extension, plant structure, nitrogen nutrition  相似文献   

10.
Carbon (C) and nitrogen (N) metabolism are integrated processes that modulate many aspects of plant growth, development, and defense. Although plants with deficient N metabolism have been largely used for the elucidation of the complex network that coordinates the C and N status in leaves, studies at the whole-plant level are still lacking. Here, the content of amino acids, organic acids, total soluble sugars, starch, and phenylpropanoids in the leaves, roots, and floral buds of a nitrate reductase (NR) double-deficient mutant of Arabidopsis thaliana (nia1 nia2) were compared to those of wild-type plants. Foliar C and N primary metabolism was affected by NR deficiency, as evidenced by decreased levels of most amino acids and organic acids and total soluble sugars and starch in the nia1 nia2 leaves. However, no difference was detected in the content of the analyzed metabolites in the nia1 nia2 roots and floral buds in comparison to wild type. Similarly, phenylpropanoid metabolism was affected in the nia1 nia2 leaves; however, the high content of flavonol glycosides in the floral buds was not altered in the NR-deficient plants. Altogether, these results suggest that, even under conditions of deficient nitrate assimilation, A. thaliana plants are capable of remobilizing their metabolites from source leaves and maintaining the C–N status in roots and developing flowers.  相似文献   

11.
Summary The effect of fertilization with nitrogen and copper on the amino acid composition of oat straw has been studied.The plants (Avena sativa cv Yielder) were grown in peat with a very low copper content and supplied with two levels of nitrogen (NH4 or NO3) and three levels of copper sulphate.The higher level of nitrogen stimulated growth only when copper was added, whereas, without copper, it had an adverse effect on growth and prevented grain formation altogether. The higher level of nitrogen increased the nitrogen content of the straw at all levels of copper, but particularly in plants receiving no copper.Total amino acids in the straw hydrolysate of copper sufficient oats accounted for about 50% of the total N and was about 20% higher in copper-deficient tissues. The addition of copper caused a decrease in the amounts of all amino acids. The relative proportions of most of the amino acids to glycine remained fairly constant. Threonine, serine, alanine, iso-leucine, histidine and arginine showed small significant differences with copper treatment, whereas valine, tyrosine, phenylalanine, proline, lysine and cysteic acid (derived from cysteine and cystine) showed no differences. The proportion of aspartic acid relative to glycine in the straw hydrolysate was greatly increased in copper deficient plants supplied with the higher level of nitrogen, particularly as ammonium. The proportion of glutamic acid was also increased by the higher level of nitrogen, but showed no effect of added copper. Most of the difference in aspartic acid could be accounted for as free asparagine. The possible reasons for higher proportions of asparagine are discussed in relation to the metabolism of the oat plant.  相似文献   

12.
The present study analyses changes in nitrogen compounds, amino acid composition, and glutamate metabolism in the resurrection plant Sporobolus stapfianus during dehydration stress. Results showed that older leaves (OL) were desiccation-sensitive whereas younger leaves (YL) were desiccation-tolerant. OL lost their soluble protein more rapidly, and to a larger extent than YL. Enzymes of primary nitrogen assimilation were affected by desiccation and the decrease in the glutamine synthetase (GS, EC 6.3.1.2) and ferredoxin-dependent GOGAT (Fd-GOGAT, EC 1.4.7.1) activities was higher in OL than in YL, thus suggesting higher sensibility to dehydration. Moreover, YL showed higher total GS enzyme activity at the end of the dehydration stress and was shown to maintain high chloroplastic GS protein content during the entire stress period. Free amino acid content increased in both YL and OL between 88% and 6% relative water content. Interestingly, OL and YL did not accumulate the same amino acids. OL accumulated large amounts of proline and gamma-aminobutyrate whereas YL preferentially accumulated asparagine and arginine. It is concluded (i) that modifications in the nitrogen and amino acid metabolism during dehydration stress were different depending on leaf development and (ii) that proline and gamma-aminobutyrate accumulation in S. stapfianus leaves were not essential for the acquisition of desiccation tolerance. On the contrary, the accumulation of large amounts of asparagine and arginine in the YL during dehydration could be important and serve as essential nitrogen and carbon reservoirs useful during rehydration. In this context, the role of GS for asparagine accumulation in YL is discussed.  相似文献   

13.
The difference between drought tolerance of juvenile and mature leaves of the winter-deciduous dwarf shrub bilberry (Vaccinium myrtillus L.) from a northern boreal environment was investigated. It was hypothesised that mature leaves are more drought sensitive than juvenile leaves. Bilberry plants were allowed to dry out by excluding irrigation when leaves were at juvenile and mature stages. Tissue water content decreased at both phenological stages, but the response was more pronounced in the mature leaves. Anthocyanin concentrations increased as the tissue water content decreased, and again this occurred to a greater extent in the mature leaves. Chlorophyll concentrations decreased only marginally at the juvenile stage, while the decrease was significant in the mature leaves. Chlorophyll degradation was enhanced by drought stress. Soluble proteins decreased and protein oxidation increased in the mature leaves, and degradation of oxidised proteins increased in the drought-stressed plants. The results suggest that leaves of bilberry are more sensitive to drought stress at the mature stage, and that drought stress accelerates senescence at the mature stage. The significance of the results is that dry periods during the juvenility of leaves are not as detrimental as they may be later in summer. In addition, the strategy of a winter-deciduous plant is obviously to protect its perennial parts from severe drought by accelerated leaf senescence at the mature stage. Therefore, the deciduous life form may provide an excellent adaptation against drought also in northern ecosystems. The role of anthocyanins in photoprotection under drought stress is also discussed.  相似文献   

14.
施氮水平对小麦籽粒发育过程中氨基酸含量的影响   总被引:11,自引:0,他引:11  
施氮能提高小麦籽粒蛋白质氨基酸的含量,并与施氮水平呈正相关;但对普通小麦必需氨基酸与蛋白质氨基酸的比值没有影响,而硬粒小麦4286随施氮水平的提高,该比值下降。在开花后32d以前,籽粒发育过程中游离氨基酸与施氮水平呈正相关,以后,籽粒中游离氨基酸趋于相近,表明施氮增加了游离氨基酸的库源,不同基因型小麦对施氮水平的反应不同,在同等施氮水平和栽培条件下,籽粒中蛋白质氨基酸和游离氨基酸含量为硬粒小麦4286>小偃6号>小偃107,不同施氮水平下,籽粒中氨基酸含量为高氮>中氮>低氮。  相似文献   

15.
BIEMOND  H.; VOS  J. 《Annals of botany》1992,70(1):37-45
Potatoes (Solanum tuberosum L.) were planted in pots in a temperature-controlledglasshouse The treatments consisted of three levels of nitrogensupply, ie 25, 8 and 16 g N per pot (treatments called N1, N2and N3) The accumulation rates of dry matter and nitrogen showedan upper limit of response to nitrogen supply, N3 plants continuedto accumulate dry matter and N at a constant rate for a longerperiod of time than N2 and N1 plants The uptake of nitrogenslowed earlier in time than the rate of dry matter accumulationin all treatments. The proportion of the dry matter in tubersof mature plants was not affected by nitrogen treatment, butthe start of tuber bulking was delayed in the N3 plants Thefinal proportion of total plant nitrogen in the tubers was similarfor all treatments The concentration of nitrogen in the drymatter of mature plants increased with the level of N supplyMaximum haulm weight increased with the level of N supply Apicallateral branches of the first and second order made up largerproportions of the total haulm dry weight and total leaf areaas more nitrogen was supplied. Yet, the distribution of drymatter over stems and leaves was not different between nitrogentreatments Stems were the most responsive to N treatment interms of N concentrations In each of the component organs (stems, leaves, tubers) theconcentration of nitrogen declined with time Fairly strong associationswere observed between the concentrations of N in component organs.The concentration of nitrate in leaves usually increased initiallywith leaf age, peaked and declined. A substantial part of thedifferences between treatments in the concentrations of N inleaf dry matter were attributable to differences in nitrateconcentration Nitrate in stems and tubers fell virtually belowthe limit of detection at total nitrogen concentrations of lessthan 1%, but increased in proportion to total N above that threshold,especially in stems Potato, Solanum tuberosum L, dry matter production, dry matter distribution, nitrogen nutrition, nitrogen distribution, nitrogen concentration  相似文献   

16.
Bean plants ( Phaseolus vulgaris L. cv. Processer) were grown in water culture with separate air supply to roots for four to five weeks at five levels of SO2 ranging from 10 μg m−3 to 950 μg m−3. At harvest the plant material was divided into six fractions: root, stem, fruit and leaves of three age groups.
Plants were mainly affected at and above approx. 250 μg m−3 SO2. Fresh weight was reduced in mature and old leaves, and roots and fruit. Dry weight was also reduced in mature and old leaves, and roots and stem. A reduction was found in chlorophyll a and chlorophyll b in mature and old leaves, and also starch was reduced in the leaves. Sulfur content of leaves and fruit increased with exposure time and concentration, while Br, Ca, Cl, K, Mn, P and Zn increased at the highest SO2 level only. Total (but not specific) peroxidase activity increased in all aerial fractions, i.e. soluble protein increased just like peroxidase activity. Seventeen studied amino acids all increased on the average by 38% in mature bean pods.
The observed effects may be parts of a reaction for survival and propagation of the plant, as fruit quality was not affected, indeed, it sometimes improved slightly. The latter observation is of commercial interest.  相似文献   

17.
Caterpillars and spider mites are herbivores with different feeding mechanisms. Spider mites feed on the cell content via stylets, while caterpillars, as chewing herbivores, remove larger amounts of photosynthetically active tissue. We investigated local and systemic effects of short-term caterpillar and spider mite herbivory on cotton in terms of primary metabolism and growth processes. After short-term caterpillar feeding, leaf growth and water content were decreased in damaged leaves. The glutamate/glutamine ratio increased and other free amino acids were also affected. In contrast, mild spider mite infestation did not affect leaf growth or amino acid composition, but led to an increase in total nitrogen and sucrose concentrations. Both herbivores induced locally increased dark respiration, suggesting an increased mobilization of storage compounds potentially available for synthesis of defensive substances, but did not affect assimilation and transpiration. Systemically induced leaves were not significantly affected by the treatments performed in this study. The results show that cotton plants do not compensate the loss of photosynthetic tissue with higher photosynthetic efficiency of the remaining tissue. However, early plant responses to different herbivores leave their signature in primary metabolism, affecting leaf growth. Changes in amino acid concentrations, total nitrogen and sucrose content may affect subsequent herbivore performance.  相似文献   

18.
The effects of leaf age on water relations, organic solute, and total ion accumulation were studied in mature and immature leaves of two-year-old grapevines (Vitis vinifera L., cv. Savatiano) grown under water stress conditions. Osmotic potential at full turgor decreased significantly in leaves of stressed plants, irrespective of leaf age, indicating the occurrence of an active osmotic adjustment. The apoplastic water fraction (A) increased during leaf ontogeny in both control and stressed plants. However, the values of A were lower in stressed plants. Starch concentration decreased significantly in both mature and immature leaves during the drought cycle, while the relative proportion of monosaccharides and sucrose was markedly different in immature leaves compared to mature. The accumulation of total inorganic ions, induced by drought, was also age dependent, increasing significantly with leaf age, while there were no significant differences in total amino acids content. Inorganic ions and carbohydrates seem to be the major component of osmotic adjustment in mature and immature grapevine leaves, respectively.  相似文献   

19.
Cultivar TMV-2 of groundnut plant {Arachis hypogaea L.) was grown in a nutrient solution containing fluchloralin at the rate of either 2 mg litre-1 or 4 mg litre“1. Protein synthesis and hydroxyproline content in the cell walls of roots, stem and leaves were determined. Free amino acids content and total ammonia in leaves and roots were also analysed. Presence of fluchloralin did not adversely affect protein synthesis. No significant effect of herbicide was observed on hydroxyproline content of a purified cell wall fraction of groundnut roots, stem and leaves. The total amount of ammonia increased in roots and leaves of plants which received the higher concentration of fluchloralin. With the exception of aspartic acid, asparagine, glutamic acid and glutamine, free amino acids content decreased considerably with herbicide treatment. Alanine and glycine were strongly reduced. It is suggested that transamination reactions could be affected and the process of senescence may be enhanced.  相似文献   

20.
Increases in growth at elevated [CO2] may be constrained by a plant's ability to assimilate the nutrients needed for new tissue in sufficient quantity to match the increase in carbon fixation and/or the ability to transport those nutrients and carbon in sufficient quantity to growing organs and tissues. Analysis of metabolites provides an indication of shifts in carbon and nitrogen partitioning due to rising atmospheric [CO2] and can help identify where bottlenecks in carbon utilization occur. In this study, the carbon and nitrogen balance was investigated in growing and fully expanded soybean leaves exposed to elevated [CO2] in a free air CO2 enrichment experiment. Diurnal photosynthesis and diurnal profiles of carbon and nitrogen metabolites were measured during two different crop growth stages. Diurnal carbon gain was increased by c. 20% in elevated [CO2] in fully expanded leaves, which led to significant increases in leaf hexose, sucrose, and starch contents. However, there was no detectable difference in nitrogen-rich amino acids and ureides in mature leaves. By contrast to mature leaves, developing leaves had high concentrations of ureides and amino acids relative to low concentrations of carbohydrates. Developing leaves at elevated [CO2] had smaller pools of ureides compared with developing leaves at ambient [CO2], which suggests N assimilation in young leaves was improved by elevated [CO2]. This work shows that elevated [CO2] alters the balance of carbon and nitrogen pools in both mature and growing soybean leaves, which could have down-stream impacts on growth and productivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号