首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A tube rheometer system has been constructed for aseptic study of the rheology and fundamental flow properties of mycelial fermentation fluids. The rheometer consists of a U-formed tube circuit starting and ending inside the fermentor. The mash is pumped through the tubes with a lobe rotor pump. The flow is measured by an electromagnetic flow meter. Pressure drops have been measured with a system of differential membrane transducers for different flow rates. The rheometer system was tested with Newtonian and non-Newtonian fluids.  相似文献   

2.
A novel method for real time, localized, flow measurements is applied to blood flow in human fingers. Results for arterial and venous flow in normal subjects and patients with abnormal blood circulation are presented. Effects of blood flow regulation by the autonomic nervous system have been observed. Stricture of the digital arteries could be clearly demonstrated in a patient with Raynaud's phenomenon. Experimental signals due to pulsatile flow in a model system can be simulated in a quantitative way. The calibration, however, depends on the actual spin-spin relaxation time and the shape of the pulsatile flow vs. time curve. Due to these limitations, the volume flow rate can be measured with a relative error of approximately +/- 25%.  相似文献   

3.
Experimental results are presented on physiological pulsatile flow past caged ball and tilting disc aortic valve prostheses mounted in an axisymmetric chamber incorporated in a mock circulatory system. The measurements of velocity profiles and turbulent normal stresses during several times in a cardiac cycle were obtained using laser-Doppler anemometry. Our results show that with increased angle of opening for the tilting disc valves, a large but locally confined vortex is observed along the wall in the minor flow region throughout most of the cardiac cycle. The turbulent normal stresses measured downstream to the tilting disc in the minor flow region parallel to the tilt axis were found to be larger than those measured downstream to the caged ball valves. Comparison of measurements with steady flow at flow rates comparable to peak pulsatile flow rate show that the turbulent normal stresses are larger by a factor of two in pulsatile flow with a frequency of 1.2 Hz.  相似文献   

4.
We have developed an integrated laser trap/flow control video microscope for mechanical manipulation of single biopolymers. The instrument is automated to maximize experimental throughput. A single-beam optical trap capable of trapping micron-scale polystyrene beads in the middle of a 200-microm-deep microchamber is used, making it possible to insert a micropipette inside this chamber to hold a second bead by suction. Together, these beads function as easily exchangeable surfaces between which macromolecules of interest can be attached. A computer-controlled flow system is used to exchange the liquid in the chamber and to establish a flow rate with high precision. The flow and the optical trap can be used to exert forces on the beads, the displacements of which can be measured either by video microscopy or by laser deflection. To test the performance of this instrument, individual biotinylated DNA molecules were assembled between two streptavidin beads, and the DNA elasticity was characterized using both laser trap and flow forces. DNA extension under varying forces was measured by video microscopy. The combination of the flow system and video microscopy is a versatile design that is particularly useful for the study of systems susceptible to laser-induced damage. This capability was demonstrated by following the translocation of transcribing RNA polymerase up to 650 s.  相似文献   

5.
A method for obtaining a continuous estimate of alveolar pressure (PAlv) during periodic flow is described; it was developed to improve the precision of measurements of airway and respiratory tissue impedance using the improved resolution of relatively high-frequency (approximately 5 Hz) singlas. The respiratory system was modulated with a piston pump, and lung volume and the volume change due to compression and expansion of alveolar gas were measured plethysmorgraphically; these signals and an analog divider were used to obtain a continuous solution of Boyle's law during flow. The plethysmorgraph was of the "flow" type; with it volume changes at frequencies up to 10 Hz and with rates of change up to 6 l/s were measured without amplitude or phase distortion. The method permits control of frequency and flow amplitude during PAlv measurement and calibration of PAlv in the absence of an active chest wall. However, it is technically complex.  相似文献   

6.
A 5-megacycle Doppler flow meter, calibrated in-vitro, was found to give a linear response to blood flow in the ranges commonly encountered in haemodialysis. With this, blood flow through artificial kidneys could be measured simply and with a clinically acceptable error. The method is safe, as blood lines do not have to be punctured or disconnected and hence there is no risk of introducing infection. Besides its value as a research tool the flow meter is useful in evaluating new artificial kidneys. Suitably modified it could form the basis of an arterial flow alarm system.  相似文献   

7.
Investigators have had much success solving the "hemodynamic forward problem," i.e., predicting pressure and flow at the entrance of an arterial system given knowledge of specific arterial properties and arterial system topology. Recently, the focus has turned to solving the "hemodynamic inverse problem," i.e., inferring mechanical properties of an arterial system from measured input pressure and flow. Conventional methods to solve the inverse problem rely on fitting to data simple models with parameters that represent specific mechanical properties. Controversies have arisen, because different models ascribe pressure and flow to different properties. However, an inherent assumption common to all model-based methods is the existence of a unique set of mechanical properties that yield a particular pressure and flow. The present work illustrates that there are, in fact, an infinite number of solutions to the hemodynamic inverse problem. Thus a measured pressure-flow pair can result from an infinite number of different arterial systems. Except for a few critical properties, conventional approaches to solve the inverse problem for specific arterial properties are futile.  相似文献   

8.
This paper describes a double-loop servo-controlled pump system for the constant-pressure perfusion of a coronary artery. Due to the transient nature of changes in coronary vasomotor tone, such a perfusion system must have a fast regulatory response. In the first stage, a servo-controlled pump primes a windkessel having a volume of 35 ml with blood. The pumping rate is electronically controlled to maintain a constant pressure within the windkessel max. 700 mmHg. The maximal flow rate is 300 ml/min. To reduce the high pressure in the windkessel to the desired coronary perfusion pressure, a variable flow resistance, comprising a clamped thin-walled silicone tube, is provided in the output line of the system. A fast servo-motor drives the clamp and is controlled by an electronic regulator, using a second feedback loop from the pressure signal measured at the tip of the perfusion cannula. The system stabilizes the coronary perfusion pressure within 300 ms. An additional modulation of the setpoint signal in synchrony with the cardiac cycle improves the phasic pattern of the blood flow, and thus prevents changes in transmural blood flow distribution. The dead volume of the overall system is about 60 ml. Hemolysis caused by this system during five hours of perfusion in vivo is negligible.  相似文献   

9.
Measurement of mammalian sperm deoxyribonucleic acid content is of importance in several areas of biomedical research. When measured in flow systems with orthogonal axes of illumination, flow and detection, an unexpected, distorted distribution consisting of a narrow peak with a lateral extension to the right is observed. Several lines of evidence lead to the conclusion that this effect is an optical-geometric artifact attributable to the flat shape and high index of refraction of mammalian sperm heads. This artifact disappears when an epiillumination flow system is used in which the optic axes for illumination and detection and the flow axis are all coincident. Other approaches also eliminate the artifact. The resulting coefficients of variation observed after acriflavine-Feulgen staining are 4-5%, short of the goal of 1.5% required to distinguish between human sperm bearing X and Y chromosomes and to develop a mutagen test system using mice.  相似文献   

10.
Abstract A field portable, steady-state gas-exchange system which measures both CO2 and water vapour exchange of single intact leaves during fumigations with SO2 is described. Within the leaf cuvette temperature, light, humidity and both CO2 and SO2 concentrations are controlled to preset levels. Gas flow and concentrations are controlled by mass flow controllers. Photosynthetic uptake of CO2 can be determined either by differential depletion or null balance measurement. Water vapour exchange is measured differentially and transpiration and conductance to water vapour determined. Sulphur dioxide is measured directly within the cuvette exhaust gas line by UV-pulse fluorescence. The performance of this system under field conditions is described and the physiological measurements compared with those obtained with other systems.  相似文献   

11.
To measure impedance one measures or estimates flow, which is commonly done by measuring the pressure drop across a pneumotachometer. The frequency response characteristics of standard pneumotachometer/pressure transducers (PPT) limit their use to relatively low frequencies. Also, the frequency response of PPTs has been reported to be "load" dependent. Thus, the frequency response characteristics measured under "no-load" conditions, which theoretically could be used to compensate subsequent measurements, may not be appropriate for measurements made under loaded conditions. Another method of measuring impedance exists which depends on a reference impedance element other than a pneumotachometer. In this method, an oscillatory flow signal with known amplitude is generated and used to force the system being tested. Unlike PPTs, this oscillatory flow generator (OFG) is a closed system that allows measurements to be made only during breath holding. Our objective was to determine whether the frequency response of a PPT could be compensated using measurements made under no-load conditions, such that it accurately measured an impedance load. The frequency response of the PPT under no-load conditions was measured by the OFG and used to compensate the output of the PPT in subsequent impedance measurements. The compensated PPT was used to measure the impedance of a mechanical structure and the impedances of four human subjects. The impedances of the mechanical structure and the subjects were also measured using the OFG.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
We used optical coherence tomography (OCT) angiography with a high-speed swept-source OCT system to investigate retinal blood flow changes induced by visual stimulation with a reversing checkerboard pattern. The split-spectrum amplitude-decorrelation angiography (SSADA) algorithm was used to quantify blood flow as measured with parafoveal flow index (PFI), which is proportional to the density of blood vessels and the velocity of blood flow in the parafoveal region of the macula. PFI measurements were taken in 15 second intervals during a 4 minute period consisting of 1 minute of baseline, 2 minutes with an 8 Hz reversing checkerboard pattern stimulation, and 1 minute without stimulation. PFI measurements increased 6.1±4.7% (p = .001) during the first minute of stimulation, with the most significant increase in PFI occurring 30 seconds into stimulation (p<0.001). These results suggest that pattern stimulation induces a change to retinal blood flow that can be reliably measured with OCT angiography.  相似文献   

13.
To clarify the pathophysiological role of dynamic arterial properties in cardiovascular diseases, we attempted to develop a new control system that imposes desired aortic impedance on in situ rat left ventricle. In 38 anesthetized open-chest rats, ascending aortic pressure and flow waveforms were continuously sampled (1,000 Hz). Desired flow waveforms were calculated from measured aortic pressure waveforms and target impedance. To minimize the difference between measured and desired aortic flow waveforms, the computer generated commands to the servo-pump, connected to a side branch of the aorta. By iterating the process, we could successfully control aortic impedance in such a way as to manipulate compliance and characteristic impedance between 60 and 160% of their respective native values. The error between desired and measured aortic flow waveforms was 70 +/- 34 microl/s (root mean square; 4.4 +/- 1.4% of peak flow), indicating reasonable accuracy in controlling aortic impedance. This system enables us to examine the importance of dynamic arterial properties independently of other hemodynamic and neurohumoral factors in physiological and clinical settings.  相似文献   

14.
A flow system for the study of shear forces upon cultured endothelial cells   总被引:5,自引:0,他引:5  
A parallel plate chamber in a flow system has been designed to study the effects of fluid shear stresses on cells. The system was applied to the study of cultured endothelial cells grown on cover slips which were accommodated in recessed wells in the base plate. Dye injection studies in the chamber indicated laminar flow over the cells. Shear rates measured over the cover slips by an electrochemical technique were found to be linear with flow rate. Laser doppler anemometry showed parabolic profiles between the plates. Endothelial cells subjected to flow showed a correlation between the time required for orientation and the magnitude of the shear stress.  相似文献   

15.
对中国热带农业科学研究院试验场7队割制为割阴刀、1/8树围四天一刀(1/8s↑d/4)的橡胶树品种PR107胶树不同高度树干进行膨压测定。结果表明,割胶前橡胶树树干膨压分布不均匀,割胶后膨压下降较少。说明胶树茎干膨压一直维持在较高水平是气刺微割排胶时间较长的原因之一。  相似文献   

16.
An instrumentation and automation system for a side-vented pan coater with a novel air-flow rate measurement system for monitoring the film-coating process of tablets was designed and tested. The instrumented coating system was tested and validated by film-coating over 20 pilot-scale batches of tablets with aqueous-based hydroxypropyl methylcellulose (HPMC). Thirteen different process parameters were continuously measured and monitored, and the most significant ones were logged for analysis. Laser profilometry was used to measure the surface roughness of the coated tablets. The instrumentation system provided comprehensive and quantitative information on the process parameters monitored. The measured process parameters and the responses of the film-coated tablet batches showed that the coating process is reproducible. The inlet air-flow rate influenced the coating process and the subsequent quality of the coated tablets. Increasing the inlet flow rate accelerated the drying of the tablet surface. At high inlet flow rate, obvious film-coating defects (ie, unacceptable surface roughness of the coated tablets) were observed and the loss of coating material increased. The instrumented and automated pancoating system described, including historical data storage capability and a novel air-flow measurement system, is a useful tool for controlling and characterizing the tablet film-coating process. Monitoring of critical process parameters increases the overall coating process efficiency and predictability.  相似文献   

17.
The Ahmed glaucoma valve (AGV) is a popular glaucoma drainage device, allowing maintenance of normal intraocular pressure in patients with reduced trabecular outflow facility. The uniquely attractive feature of the AGV, in contrast to other available drainage devices, is its variable resistance in response to changes in flow rate. As a result of this variable resistance, the AGV maintains a pressure drop between 7 and 12 mm Hg for a wide range of aqueous humor flow rates. In this paper, we demonstrate that the nonlinear behavior of the AGV is a direct result of the flexibility of the valve material. Due to the thin geometry of the system, the leaflets of the AGV were modeled using the von Kármán plate theory coupled to a Reynolds lubrication theory model of the aqueous humor flow through the valve. The resulting two-dimensional coupled steady-state partial differential equation system was solved by the finite element method. The Poisson's ratio of the valve was set to 0.45, and the modulus was regressed to experimental data, giving a best-fit value 4.2 MPa. Simulation results compared favorably with previous experimental studies and our own pressure-drop/flow-rate data. For an in vitro flow of 1.6 microL/min, we calculated a pressure drop of 5.8 mm Hg and measured a pressure drop of 5.2 +/- 0.4 mm Hg. As flow rate was increased, pressure drop rose in a strongly sublinear fashion, with a flow rate of 20 microL/min giving a predicted pressure drop of only 10.9 mm Hg and a measured pressure drop of 10.5 +/- 1.1 mm Hg. The AGV model was then applied to simulate in vivo conditions. For an aqueous humor flow rate of 1.5-3.0 microL/min, the calculated pressure drops were 5.3 and 6.3 mm Hg.  相似文献   

18.
19.
Superior vena caval blood flow velocity was measured in 30 normal adults (age 20-65, mean 36 yr). The flow velocities were measured by pulsed Doppler echocardiography, using a Duplex system with the transducer at the right supraclavicular fossa, approximating a 0 degrees Doppler angle. Four distinct flow waveforms were found during each cardiac cycle: A, a small retrograde flow during right atrial contraction (peak flow velocity 12.4 +/- 2.2 cm/s); B, a small antegrade flow during right atrial relaxation (15.7 +/- 5.0 cm/s); S, a large antegrade flow during ventricular systole (35.2 +/- 7.3 cm/s); and D, a large antegrade flow during ventricular diastole (23.2 +/- 3.1 cm/s). The wave duration was inversely related to heart rate. The peak flow velocities of the S and D waves were inversely related to the patients' ages. This study provides recognition of the pattern and range of normality essential to extension of this noninvasive technique to the diagnosis of pathological conditions.  相似文献   

20.
Seki J  Satomura Y  Ooi Y 《Biorheology》2004,41(1):45-52
In order to clarify the phase relationship between velocity pulse and pressure pulse propagating along microvessels, the red cell velocity and intravascular pressure were simultaneously measured in the rat pial arterioles of 41-53 microm in diameter with a high temporal resolution by a laser-Doppler anemometer and a servo-null micropressure system. It was found that the velocity pulse preceded the pressure pulse in all the measured arterioles by 18.7-35.6 ms. The corresponding phase difference was 43.6+/-6.9 degrees (mean +/- SD), which is not statistically different from 45 degrees. The value is consistent with the phase difference predicted for the blood flow in microvessels with a small reflection coefficient at frequencies as low as the heart rate of the rats. The present results suggest that the upstream changes in blood flow are transmitted by the velocity pulse faster than by the pressure pulse in the microvasculature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号