首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pure starches were isolated from white and red sorghum cultivated in Tidikelt, a hyper arid region situated in south Algeria. Amylose content, X-ray pattern and rheological properties of starches were examined. The amylose content in white sorghum starch (27.1%) was slightly higher than that in red sorghum (24.8%). The swelling power and the solubility behavior of both starches were nearly similar below 65 °C. At higher temperatures, starch isolated from the white sorghum cultivar showed higher swelling power and lower solubility index than pigmented sorghum starch. The pasting properties of starches determined by RVA, Rapid Visco Analyser showed different viscosity peaks. Red sorghum starch had a higher value (4731 cP) than white sorghum starch (4093 cP). For both sorghum, X-ray diffractograms exhibit an A-type diffraction pattern, typical of cereal starches and the relative degrees of crystallinity were estimated at 22.72% and 28.91%, respectively, for local white and red sorghum starch. DSC analysis revealed that sorghum starches present higher temperatures at the peak (70.60 and 72.28 °C for white and red sorghum starches, respectively) and lower gelatinization enthalpies (9.087 and 8.270 J/g for white and red sorghum starches, respectively) than other cereal starches.The results showed that physicochemical and functional properties of sorghum cultivar starches were influenced by the genotype and the environment.  相似文献   

2.
As part of a comparative mapping study between sugarcane and sorghum, a sugarcane cDNA clone with homology to the maize Rp1-D rust resistance gene was mapped in sorghum. The cDNA probe hybridised to multiple loci, including one on sorghum linkage group (LG) E in a region where a major rust resistance QTL had been previously mapped. Partial sorghum Rp1-D homologues were isolated from genomic DNA of rust-resistant and -susceptible progeny selected from a sorghum mapping population. Sequencing of the Rp1-D homologues revealed five discrete sequence classes: three from resistant progeny and two from susceptible progeny. PCR primers specific to each sequence class were used to amplify products from the progeny and confirmed that the five sequence classes mapped to the same locus on LG E. Cluster analysis of these sorghum sequences and available sugarcane, maize and sorghum Rp1-D homologue sequences showed that the maize Rp1-D sequence and the partial sugarcane Rp1-D homologue were clustered with one of the sorghum resistant progeny sequence classes, while previously published sorghum Rp1-D homologue sequences clustered with the susceptible progeny sequence classes. Full-length sequence information was obtained for one member of a resistant progeny sequence class ( Rp1-SO) and compared with the maize Rp1-D sequence and a previously identified sorghum Rp1 homologue ( Rph1-2). There was considerable similarity between the two sorghum sequences and less similarity between the sorghum and maize sequences. These results suggest a conservation of function and gene sequence homology at the Rp1 loci of maize and sorghum and provide a basis for convenient PCR-based screening tools for putative rust resistance alleles in sorghum.  相似文献   

3.
以高粱连作5年为对照(CK),研究了高粱连作3年轮作苜蓿(T1)和葱(T2),对下茬高粱生长、根际土壤微生物及土壤酶活性的影响.结果表明:与CK相比,轮作改善了高粱地上部的生长;T1增产16.5%,效果明显.轮作也促进了高粱根系的生长,T1和T2处理的高粱总根长是CK的1.3和1.4倍,根总表面积是CK的1.6和1.5倍,根体积是CK的2.2和1.6倍,根系生物量是CK的2.0和1.3倍,T1促进了根系在10 cm以下土层中的分布.借助Biolog法对穗花期根际土壤微生物群落功能多样性分析表明,T1和T2处理根际土壤微生物活性显著高于CK,且Shannon多样性指数分别是CK的1.2和1.1倍;轮作提高了根际土壤蔗糖酶活性.综上,轮作苜蓿比轮作葱更能改善高粱根际土壤环境,提高土壤微生物活性和酶活性,控制高粱连作障碍,提高高粱产量.  相似文献   

4.
The combined effect of planting date, insecticide treatment, and host-plant resistance was studied in northeast Louisiana for management of the sorghum midge, Stenodiplosis sorghicola (Coquillett), during 1994 and 1995. Significantly higher numbers of sorghum midges were observed visiting flowering spikelets of the midge-susceptible sorghum hybrid (Delta and Pine Land 'DP1552') than those of the midge-resistant sorghum hybrid (DeKalb 'DK-60'). Numbers of midges averaged 1.2 and 0.6 per flowering panicle in the susceptible and resistant sorghum hybrids, respectively, in 1994 and 1.8 and 1.0, respectively, in 1995. Midge densities increased significantly as the sorghum flowering season progressed. Sorghum midge reached peak densities during the first half of August in 1994 and 1995. The length of the flowering period in the early-planted (mid-March) sorghum was significantly longer compared with the flowering periods in the mid-April, mid-May, or mid-June planted sorghums. This resulted in prolonged exposure of flowering panicles to ovipositing midges and increased midge damage in the early-planted (mid-March) sorghum. Damage by sorghum midge was significantly higher in the early-planted (mid-March) sorghum hybrids than in the late-planted (mid-June) sorghum hybrids. The midge-susceptible hybrid produced highest yields when planted in mid-April and mid-May (optimum period) and lower yields when planted very early (i.e., mid-March) or late (i.e., mid-June). No significant differences were observed in yields for the resistant hybrid at any planting date in 1994. However, in 1995, significantly lower yields were recorded in resistant sorghum planted in mid-June. Levels of sorghum midge damage and sorghum seed yields in the untreated resistant hybrid were not significantly different than those observed in the insecticide-treated susceptible hybrid. Numbers of adult midges captured on sticky traps were positively correlated to numbers of visual estimates of ovipositing midge females visiting flowering spikelets.  相似文献   

5.
以Sb33高粱非胚性、胚性愈伤组织和体胚为材料,用传统石蜡切片法对各组织材料进行组织化学染色,对高粱胚性与非胚性愈伤组织以及体胚进行组织细胞学观察。结果表明:高粱非胚性愈伤组织无淀粉粒积累,高粱胚性愈伤组织淀粉粒积累较多,而与胚性愈伤组织相比,高粱体胚淀粉粒积累更多,这说明淀粉粒的积累与高粱体细胞的胚胎发生密切相关。此外,高粱可通过鱼雷胚基部产生球形胚的方式实现体胚的增殖,高粱离体再生途径以体细胞胚发生为主,并同时存在少量器官发生途径。在高粱体细胞胚胎发生中,外起源和内起源同时存在。本研究为高粱体细胞胚胎发生提供细胞学理论基础。  相似文献   

6.
Sorghum insect problems and management   总被引:1,自引:0,他引:1  
Guo C  Cui W  Feng X  Zhao J  Lu G 《植物学报(英文版)》2011,53(3):178-192
Sorghum (Sorghum bicolor) has high levels of starch, sugar, and fiber and is one of the most important energy crops in the world. Insect damage is one of the challenges that impacts sorghum biomass production. There are at least 150 insect species that can infest sorghum varieties worldwide. These insects can complete several generations within a growing season, they target various parts of sorghum plants at developmental stages, and they cause significant biomass losses. Genetic research has revealed the existence of resistant genetics in sorghum and insect tolerant sorghum varieties have been identified. Various control methods have been developed, yet more effective management is needed for increasing sorghum biomass production. Although there are no transgenic sorghum products on the market yet, biotechnology has been recognized as an important tool for controlling insect pests and increasing sorghum production.  相似文献   

7.
Activity of key nitrogen assimilating enzymes was studied in developing grains of high-lysine opaque sorghum P-721 and normal sorghum CSV-5. The higher percentage of protein in opaque sorghum was mainly due to lower starch content since protein per grain was less than in CSV-5. During grain development, albufn and globulin decreased while prolafne and glutelin increased. Prolafne content in CSV-5 was higher than in opaque sorghum. Average nitrate reductase activity in flag and long leaf were similar in both the varieties. The nitrate reductase activity decreased during grain development. Glutamate dehydrogenase activity was higher during early development and lower at later stages in opaque sorghum than in CSV-5. Glutamate oxaloacetate transaminase activity was higher and glutamine synthetase lower in opaque sorghum than in CSV-5 grains during development. Glutamate synthase activity was higher in opaque sorghum up to day 20 and lower thereafter than in CSV-5. It is suggested that reduced activities of glutamine synthetase as well as glutamate synthase in opaque sorghum as compared to CSV-5 during later stages of development may restrict protein accumulation in the former.  相似文献   

8.
Cytogenetic maps of sorghum chromosomes 3-7, 9, and 10 were constructed on the basis of the fluorescence in situ hybridization (FISH) of approximately 18-30 BAC probes mapped across each of these chromosomes. Distal regions of euchromatin and pericentromeric regions of heterochromatin were delimited for all 10 sorghum chromosomes and their DNA content quantified. Euchromatic DNA spans approximately 50% of the sorghum genome, ranging from approximately 60% of chromosome 1 (SBI-01) to approximately 33% of chromosome 7 (SBI-07). This portion of the sorghum genome is predicted to encode approximately 70% of the sorghum genes ( approximately 1 gene model/12.3 kbp), assuming that rice and sorghum encode a similar number of genes. Heterochromatin spans approximately 411 Mbp of the sorghum genome, a region characterized by a approximately 34-fold lower rate of recombination and approximately 3-fold lower gene density compared to euchromatic DNA. The sorghum and rice genomes exhibit a high degree of macrocolinearity; however, the sorghum genome is approximately 2-fold larger than the rice genome. The distal euchromatic regions of sorghum chromosomes 3-7 and 10 are approximately 1.8-fold larger overall and exhibit an approximately 1.5-fold lower average rate of recombination than the colinear regions of the homeologous rice chromosomes. By contrast, the pericentromeric heterochromatic regions of these chromosomes are on average approximately 3.6-fold larger in sorghum and recombination is suppressed approximately 15-fold compared to the colinear regions of rice chromosomes.  相似文献   

9.
Wild sorghums are extremely diverse phenotypically, genetically and geographically. However, there is an apparent lack of knowledge on the genetic structure and diversity of wild sorghum populations within and between various eco-geographical regions. This is a major obstacle to both their effective conservation and potential use in breeding programs. The objective of this study was to assess the genetic diversity and structure of wild sorghum populations across a range of eco-geographical conditions in Kenya. Sixty-two wild sorghum populations collected from the 4 main sorghum growing regions in Kenya were genotyped using 18 simple sequence repeat markers. The study showed that wild sorghum is highly variable with the Coast region displaying the highest diversity. Analysis of molecular variance showed a significant variance component within and among wild sorghum populations within regions. The genetic structure of wild sorghum populations indicated that gene flow is not restricted to populations within the same geographic region. A weak regional differentiation was found among populations, reflecting human intervention in shaping wild sorghum genetic structure through seed-mediated gene flow. The sympatric occurrence of wild and cultivated sorghums coupled with extensive seed-mediated gene flow, suggests a potential crop-to-wild gene flow and vice versa across the regions. Wild sorghum displayed a mixed mating system. The wide range of estimated outcrossing rates indicate that some environmental conditions may exist where self-fertilisation is favoured while others cross-pollination is more advantageous.  相似文献   

10.
Comparative Genome Mapping of Sorghum and Maize   总被引:20,自引:0,他引:20  
R. Whitkus  J. Doebley    M. Lee 《Genetics》1992,132(4):1119-1130
Linkage relationships were determined among 85 maize low copy number nuclear DNA probes and seven isozyme loci in an F2 population derived from a cross of Sorghum bicolor ssp. bicolor x S. bicolor ssp. arundinaceum. Thirteen linkage groups were defined, three more than the 10 chromosomes of sorghum. Use of maize DNA probes to produce the sorghum linkage map allowed us to make several inferences concerning processes involved in the evolutionary divergence of the maize and sorghum genomes. The results show that many linkage groups are conserved between these two genomes and that the amount of recombination in these conserved linkage groups is roughly equivalent in maize and sorghum. Estimates of the proportions of duplicated loci suggest that a larger proportion of the loci are duplicated in the maize genome than in the sorghum genome. This result concurs with a prior estimate that the nuclear DNA content of maize is three to four times greater than that of sorghum. The pattern of conserved linkages between maize and sorghum is such that most sorghum linkage groups are composed of loci that map to two maize chromosomes. This pattern is consistent with the hypothesized ancient polyploid origin of maize and sorghum. There are nine cases in which locus order within shared linkage groups is inverted in sorghum relative to maize. These may have arisen from either inversions or intrachromosomal translocations. We found no evidence for large interchromosomal translocations. Overall, the data suggest that the primary processes involved in divergence of the maize and sorghum genomes were duplications (either by polyploidy or segmental duplication) and inversions or intrachromosomal translocations.  相似文献   

11.
The potential of sorghum as an alternative substrate for lager beer brewing was recognized over five decades ago. Factors which appear to influence brewing with sorghum include: the variety of sorghum, storage time, steep period, germination time, duration and levels of temperature-time sequence of the kilning cycle and temperature-time regimes during mashing. Malts from sorghum varieties that have high diastatic power, amylase and starch contents are desirable. Soluble and insoluble amylases in grain sorghum contribute towards the hydrolysis of grain constituents during mashing. Optimizing conditions for malting, mashing and fermentation are therefore necessary for the production of acceptable sorghum lager beer. This review aims to update research results on lager beer brewing with sorghum.  相似文献   

12.
13.
Pressed and wilted samples of sweet sorghum [Sorghum bicolor (L.) Moench var. Rio] were ensiled for periods up to 155 days. A kinetic study of the biochemical changes which occurred during ensiling showed that in wilted sorghum ensilage invert sugars and mannitol levels collectively were maintained at 65% of the original ferment able sugar content of the sorghum. The acidic environment produced by ensiling also served as a pretreatment that resulted in enhanced yields of reducing sugar when the sorghum was contacted with cellulolytic enzymes. The quantity of sugar obtained from enzymatic hydrolysis more than compensated for carbohydrate used by organisms during the ensiling process. Both Saccharomyces uvarum and Clostridium acetobutylicum were able to ferment a medium constituted from pressed sorghum juice and the solution resulting from enzymatic hydrolysis of sweet sorghum ensilage.  相似文献   

14.
A dual-fluorescent-dye protocol to visualize and quantify Clostridium phytofermentans ISDg (ATCC 700394) cells growing on insoluble cellulosic substrates was developed by combining calcofluor white staining of the growth substrate with cell staining using the nucleic acid dye Syto 9. Cell growth, cell substrate attachment, and fermentation product formation were investigated in cultures containing either Whatman no. 1 filter paper, wild-type Sorghum bicolor, or a reduced-lignin S. bicolor double mutant (bmr-6 bmr-12 double mutant) as the growth substrate. After 3 days of growth, cell numbers in cultures grown on filter paper as the substrate were 6.0- and 2.2-fold higher than cell numbers in cultures with wild-type sorghum and double mutant sorghum, respectively. However, cells produced more ethanol per cell when grown with either sorghum substrate than with filter paper as the substrate. Ethanol yields of cultures were significantly higher with double mutant sorghum than with wild-type sorghum or filter paper as the substrate. Moreover, ethanol production correlated with cell attachment in sorghum cultures: 90% of cells were directly attached to the double mutant sorghum substrate, while only 76% of cells were attached to wild-type sorghum substrate. With filter paper as the growth substrate, ethanol production was correlated with cell number; however, with either wild-type or mutant sorghum, ethanol production did not correlate with cell number, suggesting that only a portion of the microbial cell population was active during growth on sorghum. The dual-staining procedure described here may be used to visualize and enumerate cells directly on insoluble cellulosic substrates, enabling in-depth studies of interactions of microbes with plant biomass.  相似文献   

15.
A comparative study of sorghum and barley grains reveals structural and physiological differences in their aleurone, embryo and starchy endosperm cells. These differences are responsible for the observed differences in their malting characteristics. Reports on brewing trials with sorghum favour its use as an adjunct to barley malt. Nevertheless, a recent successful resolution of the incompatibility of the gelatinization and saccharification temperatures of sorghum starch through the adoption of a new mashing technique has greatly improved its extract yield. A similar report on the discovery of a Nigerian-grown sorghum variety with improved β-amylase activity as well as high diastatic power will obviously ensure better fermentable extracts. Further research on the development and trial of new sorghum varieties is strongly recommended. The purpose of this review, however, is to highlight research efforts aimed at alleviating the problems of sorghum as a brewing material.  相似文献   

16.
 A sorghum composite linkage map was constructed with two recombinant inbred line populations using heterologous probes already mapped on maize and sugarcane. This map includes 199 loci revealed by 188 probes and distributed on 13 linkage groups. A comparison based on 84 common probes was performed between the sorghum composite map and a map of a sugarcane (Saccharum spp.) cultivar being developed and presently comprising 10 tentative linkage groups. A straight synteny was observed for 2 pairs of linkage groups; in two cases, 1 sorghum linkage group corresponded to 2 or 3 sugarcane linkage groups, respectively; in two cases 1 sugarcane link- age group corresponded to 2 separate sorghum linkage groups; for 2 sorghum linkage groups, no complete correspondance was found in the sugarcane genome. In most cases loci appeared to be colinear between homoeologous chromosomal segments in sorghum and sugarcane. These results are discussed in relation to published data on sorghum genomic maps, with specific reference to the genetic organization of sugarcane cultivars, and they, illustrate how investigations on relatively simple diploid genomes as sorghum will facilitate the mapping of related polyploid species such as sugarcane. Received: 12 August 1996 / Accepted: 30 August 1996  相似文献   

17.
Spatial and temporal expression patterns of the sorghum SBEI, SBEIIA and SBEIIB genes, encoding, respectively, starch branching enzyme (SBE) I, IIA and IIB, in the developing endosperm of sorghum (Sorghum bicolor) were studied. Full-length genomic and cDNA clones for sorghum were cloned, and the SBEIIA cDNA was used together with gene-specific probes for sorghum SBEIIB and SBEI. In contrast to sorghum SBEIIB, which was expressed primarily in endosperm and embryo, SBEIIA was also expressed in vegetative tissues. All three genes shared a similar temporal expression profile during endosperm development, with a maximum activity at 15-24 d after pollination. This differed from barley and maize, in which SBEI gene activity showed a significantly later onset compared to that of SBEIIA and SBEIIB. Expression of the three SBE genes in the sorghum endosperm exhibited a diurnal rhythm during a 24-h cycle.  相似文献   

18.
Abstract

Sorghum has been grown as a food crop for many centuries in Africa and India. Food-grade sorghum is becoming an increasingly important crop in the developed world, especially as a cereal grain option for people with celiac disease. The highest quality sorghum flours and food products are produced using grain from food-grade sorghum varieties. Food-grade sorghum varieties differ from conventional varieties in several key traits. The objective of this review article is to describe and summarize these differences and important considerations for food-grade sorghum production.  相似文献   

19.
Sorghum halepense L. (johnsongrass) is one of the world's most noxious weeds, and a paradigm for the potential dangers of crop-weed hybridization. Introduced into the southeastern United States about 200 years ago, S. halepense is a close relative of cultivated sorghum (Sorghum bicolor). Both artificial crossing and experimental field studies have demonstrated the potential for S. halepensex S. bicolor hybrid formation, but no prior study has addressed the long-term persistence of sorghum genes in johnsongrass populations. We surveyed 283 loci (on all 10 sorghum linkage groups) to identify 77 alleles at 69 loci that are found in US sorghum cultivars but are absent from a worldwide sampling of johnsongrass genotypes. These putatively cultivar-specific alleles were present in up to 32.3% of individuals in johnsongrass populations adjacent to long-term sorghum production fields in Texas and Nebraska. Lower frequencies of cultivar-specific alleles at smaller numbers of loci are found in johnsongrass populations from New Jersey and Georgia with no recent exposure to cultivated sorghum, suggesting that introgressed sorghum alleles may be dispersed across long distances. The number of cultivar-specific alleles and extensive multilocus patterns of cultivar-specific allelic composition observed at both linked and unlinked loci in the johnsongrass populations, are inconsistent with alternatives to introgression such as convergence, or joint retention of ancestral polymorphisms. Naturalized johnsongrass populations appear to provide a conduit by which transgenes from sorghum could become widely disseminated.  相似文献   

20.
P K Subudhi  H T Nguyen 《Génome》2000,43(2):240-249
Several molecular maps have been constructed in sorghum (Sorghum bicolor L. Moench) using a variety of probes from different grass species such as sorghum, maize, sugarcane, rice, oat, and barley. In order to enhance the utility of the existing mapping information by the sorghum research community, alignment and integration of all major molecular maps is necessary. To achieve this objective, a genetic map of 214 loci with a total map distance of 1200 cM was constructed using 98 F7 sorghum recombinant inbred lines (RILs) from a cross between two inbred lines, B35 and Tx7000. Few cDNA clones of sorghum and maize related to photosynthesis and drought stress were mapped on this map for the first time. Five major restriction fragment length polymorphism (RFLP) maps independently developed in this species were used for alignment purpose. The distributions of previously mapped markers were compared with their respective sorghum maps to align each of the linkage groups. In general, consistent linear order among markers was maintained in all the linkage maps. The successful alignment of these RFLP maps will now allow selection of a large number of markers for any region of the sorghum genome with many potential applications ranging from fine mapping and marker-assisted selection to map-based cloning for the improvement of sorghum and related species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号