首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The differences between leaves of different age according to their descending insertion level (starting from the youngest, 18th leaf) were compared with the changes occurring during the corresponding period of ontogenesis of the 18th unshaded leaf using the gas exchange [net photosynthetic CO2 uptake (P N ), water vapour efflux (E)] of the adaxial and abaxial surfaces of tobacco leaves as an example. Experimental elimination of the influence of shading during the involved period of ontogenesis of the 18th leaf manifested itself by a relatively slower decrease inP N and by fluctuation of theE values at approximately the same level. Thus the differences between leaves of different insertion levels cannot be exclusively ascribed to the effect of their ontogenetic age.  相似文献   

2.
Previous evidence has demonstrated that vertical leaves of Styrax camporum, a woody shrub from the Brazilian savanna, have a higher net photosynthetic rate (P N) compared with horizontal leaves, and that it is detected only if gas exchange is measured with light interception by both leaf surfaces. In the present study, leaf temperature (T leaf), gas exchange and chlorophyll (Chl) a fluorescence with light interception on adaxial and also on abaxial surfaces of vertical and horizontal mature fully-expanded leaves subjected to water deficit (WD) were measured. Similar gas-exchange and fluorescence values were found when the leaves were measured with light interception on the respective surfaces of horizontal and vertical leaves. WD reduced P N values measured with light interception on leaf surfaces of both leaf types, but the effective quantum yield of PSII (ΦPSII) and the apparent electron transport rate (ETR) were reduced only when the leaves were measured with light interception on the adaxial surface. WD did not decrease the maximum quantum yield of PSII (Fv/Fm) or increase T leaf, even at the peak of WD stress. Vertical leaf orientation in S. camporum is not related to leaf heat avoidance. In addition, the similar P N values and the lack of higher values of ΦPSII and ETR in vertical compared with horizontal leaves measured with light interception by each of the leaf surfaces suggests that the vertical leaf position is not related to photoprotection in this species, even when subjected to drought conditions. The exclusion of this photoprotective role could raise the alternative hypothesis that diverse leaf angles sustain whole plant light interception efficiency increased in this species.  相似文献   

3.
The epicuticular wax covering on plant surface plays important roles in protecting plants against UV radiation. However, the role of epicuticular wax in affecting leaf gas exchange under enhanced ultraviolet-B (UV-B) radiation remains obscure. In the present study, different aged leaves of Brassica napus were used to analyze the responses of crystal structure and chemical constituents of epicuticular wax to UV-B radiation and the effects of such responses on gas exchange indices. Enhanced UV-B radiation significantly decreased the amount of esters in all leaves except the first leaf, amount of secondary alcohols in the second, third and fourth leaves, and amount of primary alcohols in the second and third leaves, while increased the amounts of ketones and aldehydes in the first leaf. Enhanced UV-B level had no significant effect on the amounts of alkanes and total wax in all leaves. Exposure to UV-B radiation resulted in wax fusion on adaxial leaf and stomata opening on abaxial leaf. Fusions of plates and rods on adaxial leaf surface covered most of the stomata, thereby influencing the photosynthesis in the upper mesophyll of leaves. Enhanced UV-B level significantly reduced the net photosynthesis rate (P N) but increased the stomata conductance (g s), concentrations of intercellular CO2 (C i ), and transpiration rate (E) in all leaves. Both UV-B radiation and the wax fusion induced by enhanced UV-B radiation resulted in different stomata status on abaxial and adaxial leaf surface, causing decrease of P N, and increase of g s, C i and E in leaves.  相似文献   

4.
CO2 uptake (P N ) and water vapour efflux (E) through adaxial and abaxial surfaces were measured separately and the corresponding diffusive resistances for water vapour (r 1) were calculated in leaves of different insertion levels during vegetative growth of tobacco plants. Relatively higher values of the abaxialP N/E ratio in comparison with the adaxial one were found in agreement with relatively higherE ad/E ab coefficients and the distribution of the gas exchange in plants in all measurements carried out. Because of the more rapid decrease of theP N rates as compared with theE rates theP N/E ratios of both surfaces decreased gradually from young to old leaves. The decreasing values ofE ad/E ab andP N,ab/P N,ab coefficients showed thatr 1,ab increased with the age of the leaves more quickly thanr 1,ab.  相似文献   

5.
Proietti  P.  Palliotti  A. 《Photosynthetica》1997,33(1):63-69
Leaves of olive cultivars Frantoio and Maurino were irradiated with different irradiances from above, from below, or simultaneously from both directions to determine the contribution of the abaxial and adaxial leaf surfaces to photosynthesis. In both cultivars, irradiation of both sides of the leaf caused increases in net photosynthetic rate (P N) and apparent quantum yield compared to irradiating only one surface with the equal photosynthetic photon flux density (PPFD), but the PPFD needed to saturate P N decreased. At high and medium PPFD the P N determined at irradiating both leaf surfaces was less than the sum obtained at irradiation of only the upper or the lower surface with the same PPFD. At PPFD higher than 1000 μmol m-2 s-1 in cv. Frantoio and 1200 μmol m-2 s-1 in cv. Maurino, P N did not vary. At low PPFD (<200 μmol m-2 s-1), P N at irradiating the adaxial and abaxial leaf surfaces simultaneously was about the sum of the values obtained by irradiating the upper and lower surfaces separately. Consequently the compensation irradiance was reduced from about 50 μmol m-2 s-1 to about 30 μmol m-2 s-1 when irradiating both leaf surfaces. The natural leaf orientation of the olive cultivar influenced the utilization of radiant energy by the abaxial surface. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

6.
Styrax caporum is a native shrub from the Brazilian savanna. Most of its leaves are diaheliotropic, whereas some are paraheliotropic, mainly at noon. A previous study of this species revealed higher stomatal conductance (gs) and transpiration rates (E) in para- compared to diaheliotropic leaves, and a rise in CO2 assimilation rates (A) with an increase of irradiance for paraheliotropic leaves. We hypothesized that this species exploits the paraheliotropism to enhance the light use efficiency, and that it is detected only if gas exchange is measured with light interception by both leaf surfaces. Gas exchange was measured with devices that enabled light interception on only one of the leaf surfaces and with devices that enabled light interception by both leaf surfaces. Water relations, relative reflected light intensity, leaf temperature (Tl), and leaf anatomical analyses were also performed. When both leaf surfaces were illuminated, a higher A, E, and gs were observed in para- compared to diaheliotropic leaves; however, A did not depend on gs, which did not influence CO2 accumulation in the stomatal cavity (Ci). When only the adaxial leaf surface was illuminated, a greater A was detected for para- than for diaheliotropic leaves only at 11:00 h; no differences in Tl were observed between leaf types. Light curves revealed that under non-saturating light the adaxial side of paraheliotropic leaves had higher A than the abaxial side, but they showed similar values under saturating light. Although the abaxial leaf side was highly reflective, both surfaces presented the same response pattern for green light reflection, which can be explained by the compact spongy parenchyma observed in the leaves, increasing light use efficiency in terms of CO2 consumption for paraheliotropic leaves. We propose that paraheliotropism in S. camporum is not related to leaf heat avoidance or photoprotection.  相似文献   

7.
The influence of leaf orientation and position within shoots on individual leaf light environments, carbon gain, and susceptibility to photoinhibition was studied in the California chaparral shrub Heteromeles arbutifolia with measurements of gas exchange and chlorophyll fluorescence, and by application of a three-dimensional canopy architecture model. Simulations of light absorption and photosynthesis revealed a complex pattern of leaf light environments and resulting leaf carbon gain within the shoots. Upper, south-facing leaves were potentially the most productive because they intercepted greater daily photon flux density (PFD) than leaves of any other orientation. North-facing leaves intercepted less PFD but of this, more was received on the abaxial surface because of the steep leaf angles. Leaves differed in their response to abaxial versus adaxial illumination depending on their orientation. While most had lower photosynthetic rates when illuminated on their abaxial as compared to adaxial surface, the photosynthetic rates of north-facing leaves were independent of the surface of illumination. Because of the increasing self-shading, there were strong decreases in absorbed PFD and daily carbon gain in the basipetal direction. Leaf nitrogen per unit mass also decreased in the basipetal direction but on a per unit area basis was nearly constant along the shoot. The decrease in leaf N per unit mass was accounted for by an increase in leaf mass per unit area (LMA) rather than by movement of N from older to younger leaves during shoot growth. The increased LMA of older lower leaves may have contributed directly to their lower photosynthetic capacities by increasing the limitations to diffusion of CO2 within the leaf to the sites of carboxylation. There was no evidence for sun/shade acclimation along the shoot. Upper leaves and especially south-facing upper leaves had a potential risk for photoinhibition as demonstrated by the high PFDs received and the diurnal decreases in the fluorescence ratio F v/F m. Predawn F v/F m ratios remained high (>0.8) indicating that when in their normal orientations leaves sustained no photoinhibition. Reorientation of the leaves to horizontal induced a strong sustained decrease in F v/F m and CO2 exchange that slowly recovered over the next 10–15?days. If leaves were also inverted so that the abaxial surface received the increased PFDs, then the reduction in F v/F m and CO2 assimilation was much greater with no evidence for recovery. The heterogeneity of responses was due to a combination of differences between leaves of different orientation, differences between responses on their abaxial versus adaxial surfaces, and differences along the shoot due to leaf age and self-shading effects.  相似文献   

8.
Though mulberry (Morus alba) tree shows great adaptations to various climate conditions, their leaf water status and photosynthesis are sensitive to climate changes. In the current study, seven widely planted mulberry cultivars in Chongqing, Southwest China, were selected to analyze leaf cuticular wax characteristics, gas exchange index, post-harvest leaf water status and their relationships, aiming to provide new theory in screening high resistant mulberry cultivars. Mulberry trees formed rounded cap-type idioblasts on the adaxial leaf surface. Film-like waxes and granule-type wax crystals covered leaf surfaces, varying in crystal density among cultivars. The stomatal aperture on the abaxial surface of cultivars with high wax amount was smaller than that of cultivars with low wax amount. The amount of total wax was negatively correlated with the net photosynthetic rate (P N), transpiration rate (E) and stomatal conductance (g s) and positively correlated with the moisture retention capacity. It suggested that both cuticular wax and stomatal factor might be involved in regulating water loss in mulberry leaves under field conditions. The variability in moisture retention capacity and cuticular wax characteristics might be important in evaluating and screening mulberry cultivars for increasing silk quality and silkworm productivity.  相似文献   

9.
Epidermal conductances for water vapour transfer(gep), water vapour efflux(E), and net photosynthetic CO2 uptake (P N ) through adaxial and abaxial leaf surfaces were estimated, simultaneously during the development of water stress in primary leaves ofPhaseolus vulgaris L. Hydration level was characterized by water saturation deficit (ΔW sat ), water potential (Τ w ), osmotic potential (Τ8) and pressure potential (Τp). The conductance of the abaxial epidermis was consistently greater than that of the adaxial epidermis, but the response of both surfaces to the increase in water stress corresponded: with increasing water stress epidermal conductances slightly increased, reached a plateau and then sharply decreased (at a rate of about 1.10x10-6 cm s-1 Pa-1 and 1.55x10-6 cm s-1 Pa-1 of Τw for adaxial and abaxial epidemics, respectively) to very low value. The curves expressing relationship between epidermal conductances and Δ Wsat, Τw, Τs, as well as Τp were of a similar character. E and PN through adaxial and abaxial surfaces were practically not affected until water stress reached the “critical” value (Τw from — 8.2 to — 9.2 x 105 Pa). With further increase in water deficit, however, they sharply decreased. The “critical” value of Τw was the same for both leaf surfaces.  相似文献   

10.
11.
Net CO2 exchange rates, stomatal and internal resistances for CO2-transport were followed on fully expanded Witloof chicory leaves (Cichorium intybus L. cv. Foliosum) for several months during vegetative growth. Maximum net CO2 exchange rate (Pmax) stayed high with a sudden drastic drop at the end of the growing season largely due to an increase in internal diffusion resistance. During an analogous growth period the H2O vapour diffusion resistances of leaves for four selections were measured. The adaxial stomatal resistance was always higher than the abaxial one. Stomatal densities calculated for those selections showed higher values at the abaxial leaf side.  相似文献   

12.
《Plant science》1986,44(1):73-76
Ozone-induced stress ethylene emissions from the adaxial and abaxial leaf surfaces of four plant species (Glycine max [L.] Merr. cv. Dare, Lycopersicon esculentum Mill cv. Roma VF, Eucalyptus globulus Labill. and Hedera helix L.) were studied to determine if the stress ethylene diffused through the stomata or cuticle. In plants not exposed to ozone, basal ethylene was detected above both the adaxial and abaxial leaf surfaces of all the plant species examined, indicating that some ethylene can diffuse across the leaf cuticle. Ozone induced stress ethylene production in all species examined. Significant ozone-induced ethylene concentrations were detected above both surfaces of amphistomatous soybean (Glycine) and tomato (Lycopersicon) leaves. In contrast, ozone-induced ethylene production was associated only with the leaf surface (abaxial) that contained stomata for hypostomatous blue gum eucalyptus and English ivy (Hedera) leaves; the leaf surface (adaxial) of the eucalyptus and ivy leaves which did not contain stomata did not release significant amounts of stress ethylene. These data indicate that ozone-induced stress ethylene primarily diffuses from the leaf via the stomata.  相似文献   

13.
Kalanchoë daigremontiana, a species possessing crassulacean acid metabolism, was grown at four photon flux densities (1300, 400, 60, and 25 micromole photons per square meter per second). In leaves which had developed at 1300 and 400 micromole photons per square meter per second, CO2 was mainly incorporated through the lower, shaded leaf surfaces, and the chlorenchyma adjacent to the lower surfaces showed a higher degree of nocturnal acid synthesis than the chlorenchyma adjacent to the upper surfaces. In leaves acclimated to 60 and 25 micromole photons per square meter per second, the gradient in CAM activity was reversed, i.e. more CO2 was taken up through the upper than through the lower surfaces and nocturnal acidification was higher in the tissue next to the upper surfaces. Total net carbon gain and total nocturnal acid synthesis were highest in leaves which had developed at 400 micromole photons per square meter per second. Chlorophyll content was markedly reduced in leaves which had developed at 1300 micromole photons per square meter per second, especially in the exposed adaxial parts. There was also a sustained reduction in photosystem II photochemical efficiency as indicated by measurements of the ratio of variable over maximum chlorophyll a fluorescence. These findings suggest that, at high growth photon flux densities, the reduced activity of the exposed portions of these succulent leaves is caused by (a) the adverse effects of excess light, (b) together with a genotypic component which favors CO2 uptake and acid synthesis in the abaxial (lower) leaf parts even when light is not or only marginally excessive. This latter component is predominant at medium photon flux densities, e.g. at 400 micromole photons per square meter per second. It becomes overridden, however, under conditions of deep shade when strongly reduced light levels in the abaxial parts of the leaf chlorenchyma severely limit photosynthesis.  相似文献   

14.
The localization of the key photoreductive and oxidative processes and some stress-protective reactions within leaves of mesophytic C3 plants were investigated. The role of light in determining the profile of Rubisco, glutamate oxaloacetate transaminase, catalase, fumarase, and cytochrome-c-oxidase across spinach leaves was examined by exposing leaves to illumination on either the adaxial or abaxial leaf surfaces. Oxygen evolution in fresh paradermal leaf sections and CO2 gas exchange in whole leaves under adaxial or abaxial illumination was also examined. The results showed that the palisade mesophyll is responsible for the midday depression of photosynthesis in spinach leaves. The photosynthetic apparatus was more sensitive to the light environment than the respiratory apparatus. Additionally, examination of the paradermal leaf sections by optical microscopy allowed us to describe two new types of parenchyma in spinach—pirum mesophyll and pillow spongy mesophyll. A hypothesis that oxaloacetate may protect the upper leaf tissue from the destructive influence of active oxygen is presented. The application of mathematical modeling shows that the pattern of enzymatic distribution across leaves abides by the principle of maximal ecological utility. Light regulation of carbon metabolism across leaves is discussed.  相似文献   

15.
Xu  Hui-Lian  Gauthier  L.  Desjardins  Y.  Gosselin  A. 《Photosynthetica》1997,33(1):113-123
Gross photosynthetic capacity (P G ) of greenhouse-grown tomato plants (Lycopersicon esculentum Mill.) decreased as the leaf aged. The P G of the 10th, 15th and 18th leaves from the top was only 76, 37, and 18 % of P G of the 5th leaf, respectively. Quantum yield (Y Q ) and dark respiration rate (R D ) were also lower in older leaves than in the younger ones. Net photosynthetic rate (P G ) was apparent in young fruits (about 10 g FM) or young petioles but no P N was found in large fruits (40 g or more FM) and stems because of high R D . Both P G and R D were lower in older fruits and petioles or in lower parts of the stem compared to the younger ones or upper parts of stem. A sharp decrease in chlorophyll (Chl) content was only measured in the senescing 18th leaf. The Chl content in petioles, stems and fruits was proportional to P G . Decreases in P G of older leaves were attributed to decreases in content rather than activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) since soluble protein content was lower in older leaves than in the younger ones but the specific activity (activity per unit of protein) of RuBPCO was not so. The estimated values of P N of the 10th, 15th and 18th leaves inside the canopy were only 50, 21, and 7 % of that in the 5th leaf. Therefore, leaves below the 18th can be removed in order to ensure a good air circulation and prevent diseases. The significance of photosynthesis in fruit, stem and petioles is not negligible because photosynthesis re-fixes the respired CO2. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

16.
The results of multiyear studies of gas exchange in intact attached leaves of several willow species (Salix sp.) were analyzed. Measurements were performed with a portable Li-6400 infrared gas analyzer both on plants in their natural environment and on rooted cuttings grown in a greenhouse. Individual attached leaves were placed into the leaf chamber where climatic conditions were either similar to or different from those outside the chamber. The maximal rates of net photosynthesis (P n) and transpiration (E) were only observed with the provision that the environmental variables inside and outside the chamber were identical. On rainy or cloudy days, the P n and E values observed under optimum conditions inside the leaf chamber were lower than their potential maxima by 12–18% and 35–45%, respectively. Deviation of temperature in the chamber by 5–7°C from the external level and fluctuations of ambient temperature affected P n but not E rates of tested leaves. Variations in relative air humidity in the chamber directly influenced E but had no effect on P n of attached leaves. It was shown that the maximum rates of gas exchange in the attached willow leaf could be only attained by providing optimum conditions for the whole plant.  相似文献   

17.
The leaves of two tropical grasses (Panicum maximum Jacq. andPaspalum notatum Flügge) recovered from water deficit within 1 to 3 h after surface wetting. No substantial differences were found in absorption activity of abaxial and adaxial leaf epidermes between apical and basal parts of a leaf blade, or between leaves of different age.  相似文献   

18.
The response of adaxial and abaxial stomatal conductance in Rumex obtusifolius to growth at elevated atmospheric concentrations of CO2 (250 μmol mol?1 above ambient) was investigated over two growing seasons. The conductance of both the adaxial and abaxial leaf surfaces was found to be reduced by elevated concentrations of CO2. Elevated CO2 caused a much greater reduction in conductance for the adaxial surface than for the abaxial surface. The absence of effects upon stomatal density indicated that the reductions were probably the result of changes in stomatal aperture. Partitioning of gas exchange between the leaf surfaces revealed that increased concentrations of CO2 caused increased rates of photosynthesis only via the abaxial surface. Additionally, leaf thickness was found to increase during growth at elevated concentrations of CO2. The tendency for these amphistomatous leaves to develop a distribution of conductance approaching that of hypostomatous leaves clearly reduced their maximum photosynthetic potential. This conclusion was supported by measurements of stomatal limitation, which showed greater values for the adaxial surfaces, and greater values at elevated CO2. This reduction in photosynthesis may in part be caused by higher diffusive limitations imposed because of increased leaf thickness. In an uncoupled canopy, asymmetrical stomatal responses of the kind identified here may appreciably reduce transpiration. Species which show symmetrical responses are less likely to show reduced transpirational rates, and a redistribution of water loss between species may occur. The implications of asymmetrical stomatal responses for photosynthesis and canopy transpiration are discussed.  相似文献   

19.
An apparent anomaly in peanut leaf conductance   总被引:3,自引:2,他引:1       下载免费PDF全文
Pallas JE 《Plant physiology》1980,65(5):848-851
Conductance to gaseous transfer is normally considered to be greater from the abaxial than from the adaxial side of a leaf. Measurements of the conductance to water vapor of peanut leaves (Arachis hypogaea L.) under well watered and stress conditions in a controlled environment, however, indicated a 2-fold higher conductance from the adaxial side of the leaf than from the abaxial. Studies of conductance as light level was varied showed an increase in conductance from either surface with increasing light level, but conductance was always greater from the adaxial surface at any given light level. In contrast, measurements of soybean (Glycine max [L.] Merr.) and snapbean (Phaseolus vulgaris L.) leaf conductance showed an approximate 2-fold greater conductance from the abaxial surface than from the adaxial. Approximately the same number of stomata were present on both peanut leaf surfaces and stomatal size was similar. Electron microscopic examination of peanut leaves did not reveal any major structural differences between stomata on the two surfaces that would account for the differences in conductance. Light microscope studies of leaf sections revealed an extensive network of bundle sheaths with achloraplastic bundle sheath extensions; the lower epidermis was lined with a single layer of large achloraplastic parenchyma cells. Measurements of net photosynthesis made on upper and lower leaf surfaces collectively and individually indicated that two-thirds of the peanut leaf's total net photosynthesis can be attributed to diffusion of CO2 through the adaxial leaf surface. Possibly the high photosynthetic efficiency of peanut cultivars as compared with certain other C3 species is associated with the greater conductance of CO2 through their upper leaf surfaces.  相似文献   

20.
Stomatal conductances of normally oriented and inverted leaves were measured as light levels (photosynthetic photon flux densities) were increased to determine whether abaxial stomata of Vicia faba leaves were more sensitive to light than adaxial stomata. Light levels were increased over uniform populations of leaves of plants grown in an environmental chamber. Adaxial stomata of inverted leaves reached maximum water vapor conductances at a light level of 60 micromoles per square meter per second, the same light level at which abaxial stomata of normally oriented leaves reached maximum conductances. Abaxial stomata of inverted leaves reached maximum conductances at a light level of 500 micromoles per square meter per second, the same light level at which adaxial stomata of normally oriented leaves reached maximum conductances. Maximum conductances in both normally oriented and inverted leaves were about 200 millimoles per square meter per second for adaxial stomata and 330 millimoles per square meter per second for abaxial stomata. Regardless of whether leaves were normally oriented or inverted, when light levels were increased to values high enough that upper leaf surfaces reached maximum conductances (about 500 micromoles per square meter per second), light levels incident on lower, shaded leaf surfaces were just sufficient (about 60 micromoles per square meter per second) for stomata of those surfaces to reach maximum conductances. This `coordinated' stomatal opening on the separate epidermes resulted in total leaf conductances for normally oriented and inverted leaves that were the same at any given light level. We conclude that stomata in abaxial epidermes of intact Vicia leaves are not more sensitive to light than those in adaxial epidermes, and that stomata in leaves of this plant do not respond to light alone. Additional factors in bulk leaf tissue probably produce coordinated stomatal opening on upper and lower leaf epidermes to optimally meet photosynthetic requirements of the whole leaf for CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号