首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Acta Oecologica》2001,22(1):1-8
Seeds of Drosera anglica collected in Sweden were dormant at maturity in late summer, and dormancy break occurred during cold stratification. Stratified seeds required light for germination, but light had to be given after temperatures were high enough to be favorable for germination. Seeds stratified in darkness at 5/1 °C and incubated in light at 12/12 h daily temperature regimes of 15/6, 20/10 and 25/15 °C germinated slower and to a significantly lower percentage at each temperature regime than those stratified in light and incubated in light. Length of the stratification period required before seeds would germinate to high percentages depended on (1) whether seeds were in light or in darkness during stratification and during the subsequent incubation period, and (2) the temperature regime during incubation. Seeds collected in 1999 germinated to 4, 24 and 92 % in light at 15/6, 20/10 and 25/15 °C, respectively, after 2 weeks of stratification in light. Seeds stratified in light for 18 weeks and incubated in light at 15/6, 20/10 and 25/15 °C germinated to 87, 95 and 100 %, respectively, while those stratified in darkness for 18 weeks and incubated in light germinated to 6, 82 and 91 %, respectively. Seeds collected from the same site in 1998 and 1999, stratified in light at 5/1 °C and incubated in light at 15/6 °C germinated to 22 and 87 %, respectively, indicating year-to-year variation in degree of dormancy. As dormancy break occurred, the minimum temperature for germination decreased. Thus, seed dormancy is broken in nature by cold stratification during winter, and by spring, seeds are capable of germinating at low habitat temperatures, if they are exposed to light.  相似文献   

2.
We tested the hypothesis that seeds of the monocarpic perennial Ferula gummosa from the Mediterranean area and central Asia have deep complex morphophysiological dormancy. We determined the water permeability of seeds, embryo morphology, temperature requirements for embryo growth and seed germination and responses of seeds to warm and cold stratification and to different concentrations of GA3. The embryo has differentiated organs, but it is small (underdeveloped) and must grow inside the seed, reaching a critical embryo length, seed length ratio of 0.65–0.7, before the seed can germinate. Seeds required 9 weeks of cold stratification at <10°C for embryo growth, dormancy break and germination to occur. Thus, seeds have morphophysiological dormancy (MPD). Furthermore, GA3 improved the germination percentage and rate at 5°C and promoted 20 and 5% germination of seeds incubated at 15 and 20°C, respectively. Thus, about 20% of the seeds had intermediate complex MPD. For the other seeds in the seed lot, cold stratification (5°C) was the only requirement for dormancy break and germination and GA3 could not substitute for cold stratification. Thus, about 80% of the seeds had deep complex MPD.  相似文献   

3.
The studies were carried out on Fagus sylvatica seeds during stratification and their germination. After imbibition beechnuts were subjected to cold (3 °C — temperature which breaks dormancy) or warm (15 °C — temperature unable to break dormancy) stratification and alternatively were treated with polyamine synthesis inhibitors: canavanine and DFMO (difluoromethylornithine). After cold stratification in embryo axes we found (using 2-D electrophoresis) about 150 new proteins absent in dry seeds. Exogenous spermidine increased the protein synthesis, percent of germinated seeds and accelerated breaking of dormancy. In contrast, canavanine and DFMO decreased dynamic of protein synthesis, quantity of proteins probably synthesised de novo, and percent of germinated seeds. The maximum of polyamine content in embryo axes during cold stratification preceded such the maximum during warm stratification. Irrespective of the influence of PAs and inhibitors of PA synthesis, the comparison of electrophoregrams and autoradiograms showed that different groups synthesised de novo appeared after different periods of cold stratification. Probably the part of this protein is associated with Fagus sylvatica seeds dormancy breaking.  相似文献   

4.
The broad objective of this research was to define the role of warm (≥15°C) stratification in breaking dormancy in seeds with stony endocarps that require warm-plus-cold (~0°-10°C) stratification for germination. This question was addressed using seeds (true seed + endocarp, hereafter called seeds) of Empetrum hermaphroditum. Only 2-5% of freshly matured seeds collected in September and October at five sites in Sweden germinated in light at daily alternating temperature regimes of 15°/6°, 20°/10°, and 25°/15°C. Dormancy was not due to impermeability of the stony endocarp surrounding each seed, and embryos did not grow prior to radicle emergence. Thus, seeds did not have physical, morphological, or morphophysiological dormancy. Long periods of either cold stratification (20 or 32 wk) or warm stratification (16 wk) resulted in a maximum of 22-38 and 10% germination, respectively, in light at 25°/15°C. After 12 wk warm stratification plus 20 wk cold stratification, 83-93% of the seeds germinated in light at the three temperature regimes. For a cold stratification period of 20 wk, germination increased with increase in length of the preceding warm stratification treatment. Gibberellic acid (GA(3)) promoted germination of 77-87% of the seeds. Based on dormancy-breaking requirements and response to GA(3), 62-78% of the seeds had intermediate physiological dormancy; the others had nondeep physiological dormancy. Contrary to suggestions of several other investigators that warm stratification is required to make the endocarp permeable to water via its breakdown by microorganisms, our results with E. hermaphroditum show that this is not the case. In this species, warm stratification is part of the dormancy-breaking requirement of embryos in seeds with intermediate physiological dormancy.  相似文献   

5.
Freshly harvested, dormant seeds of Amaranthus retroflexus were unable to germinate at 25 and 35 °C. To release their dormancy at the above temperatures, the seeds were stratified at a constant temperature (4 °C) under laboratory conditions or at fluctuating temperatures in soil or by outdoor burial in soil. Fully dormant, or seeds stratified or buried (2006/2007 and 2007/2008) for various periods were treated with exogenous gibberellic acid (GA3), ethephon and abscisic acid (ABA). Likewise, the effects of these regulators, applied during stratification, on seed germination were determined. The results indicate that A. retroflexus seed dormancy can be released either by stratification or by autumn–winter burial. The effect of GA3 and ethylene, liberated from ethephon, applied after various periods of stratification or during stratification, depends on dormancy level. GA3 did not affect or only slightly stimulated the germination of non-stratified, fully dormant seeds at 25 and 35 °C respectively. Ethylene increased germination at both temperatures. Seed response to GA3 and ethylene at 25 °C was increased when dormancy was partially removed by stratification at constant or fluctuating temperatures or autumn–winter burial. The response to GA3 and ethylene increased with increasing time of stratification. The presence of GA3 and ethephon during stratification may stimulate germination at 35 °C. Thus, both GA3 and ethylene can partially substitute the requirement for stratification or autumn–winter burial. Both hormones may also stimulate germination of secondary dormant seeds, exhumed in September. The response to ABA decreased in parallel with an increasing time of stratification and burial up to May 2007 or March 2008. Endogenous GAn, ethylene and ABA may be involved in the control of dormancy state and germination of A. retroflexus. It is possible that releasing dormancy by stratification or partial burial is associated with changes in ABA/GA and ethylene balance and/or sensitivity to these hormones.  相似文献   

6.
Aruncus dioicus (Walter) Fernald (Rosaceae) is a perennial herbaceous plant whose young shoots are traditionally collected in the wild and consumed as a food in NE Italy. The aim of this study was to determine the germination requirements of its seeds in order to start its cultivation, and to assess the germination of six accessions of the species. Viability of seeds ranged from 86 to 97% in the various accessions. Germination rate was almost null in seeds of two accessions, and ranged from 10.5 to 37.3 in the other ones. The seed coat was permeable to water. Treatments with GA3, KNO3 and mechanical scarification did not enhance the germination, while the cold stratification treatment at 2 °C for different periods improved the germination rate and the mean germination time as compared with the untreated seeds. With 45 days of cold stratification, the germination rate and mean germination time (respectively, 90.1% and 7.7 dd) of seeds were different from those of the untreated seeds. Cold stratified seeds germinated under artificial light and did not germinate in the dark. Seeds of A. dioicus displayed an intermediate physiological dormancy, removable by a cold stratification treatment, requiring both light and cold conditions.  相似文献   

7.
Fluctuating temperature plays a critical role in determining the timing of seed germination in many plant species. However, the physiological and biochemical mechanisms underlying such a response have been paid little attention. The present study investigated the effect of plant growth regulators and cold stratification in regulating Leymus chinensis seed germination and dormancy response to temperature. Results showed that seed germination was less than 2 % at all constant temperatures while fluctuating temperature significantly increased germination percentage. The highest germination was 71 % at 20/30 °C. Removal of the embryo enclosing material of L. chinensis seed germinated to 74 %, and replaced the requirement for fluctuating temperature to germinate, by increasing embryo growth potential. Applications of GA4+7 significantly increased seed germination at constant temperature. Also, inhibition of GA biosynthesis significantly decreased seed germination at fluctuating temperatures depending upon paclobutrazol concentration. This implied GA was necessary for non-dormant seed germination and played an important role in regulating seed germination response to temperature. Inhibition of ABA biosynthesis during imbibition completely released seed dormancy at 20/30 °C, but showed no effect on seed germination at constant temperature, suggesting ABA biosynthesis was important for seed dormancy maintenance but may not involve in seed germination response to temperature. Cold stratification with water or GA3 induced seed into secondary dormancy, but this effect was reversed by exogenous FL, suggesting ABA biosynthesis during cold stratification was involved in secondary dormancy. Also, cold stratification with FL entirely replaced the requirement of fluctuating temperature for germination with seeds having 73 % germination at constant temperature. This appears to be attributed to inhibition of ABA biosynthesis and an increase of GA biosynthesis during cold stratification, leading to an increased embryo growth potential. We suggest that fluctuating temperature promotes seed germination by increasing embryo growth potential, mainly attributed to GA biosynthesis during imbibitions. ABA is important for seed dormancy maintenance and induction but showed less effect on non-dormant seed germination response to temperature.  相似文献   

8.
Investigations on seeds of Scrophularia marilandica L. were undertaken to determine their germination requirements. Seeds were collected from three naturally occurring sites and one greenhouse-grown population in London, Ontario in September and October of 1997. Some were set to germinate immediately after collection; others were stored in or on soil outside and/or under controlled laboratory conditions before testing. Germination was assessed under two light/temperature regimes (35°C 14 h light, 20°C 10 h dark and 25°C 14 h light, 10°C 10 h dark), in continuous darkness, and in the presence of two germination-promoting chemicals (GA3 and KNO3). Fresh seeds germinated best at 35/20°C, while stored seeds germinated best at 25/10°C. No differences in percent germination were found among three seed-maturity stages. All chemical treatments, except 0.01 M KNO3, increased percent germination. Significant differences were found both among and within sites for most chemical treatments, but exposure to 3 × 10−4 M GA3 caused almost every seed to germinate. When compared to the control, both the gibberellic acid and the soil-storage treatments contributed to faster germination. Exposure of seeds to naturally prevailing conditions on the soil surface followed by testing under the 25/10°C regime produced the highest percent germination. No seeds germinated in the dark. In summary, seeds of S. marilandica exhibit physiological dormancy, which can be alleviated by exposure to light, after-ripening and/or cold stratification. It is probable that the differences in germination response among sites can be attributed to differences in environmental conditions during seed production. These experiments indicate that the seeds of S. marilandica must be buried shortly after dispersal in order to form a persistent seed bank.  相似文献   

9.
  • Information on the optimal conditions to promote the germination of Lamprocapnos spectabilis (L.) Fukuhara seeds is limited; consequently, this study was conducted to establish the requirements to break seed dormancy and promote germination.
  • The selected seeds had morphophysiological dormancy and had not begun embryo development. To study the dormancy breaking and embryo development processes, seeds were subjected to constant or changing temperature treatments during moist stratification.
  • High temperature and humidity resulted in vigorous embryo growth, with the longest embryos occurring after 1 month of incubation at 20 °C. At 4 °C, the seeds required incubation period of at least 3 months to germinate. Embryo growth and germination were higher with changing high and low temperatures than under a constant temperature, and changing temperatures also considerably changed the endogenous hormone levels, embryo development and germination. Bioactive gibberellin (GA) content was higher in seeds incubated at 20 °C for 1 month, then at 4 °C for 2 months. The content of endogenous abscisic acid in seeds subjected to the same treatment decreased by 97.6% compared with that of the untreated seeds.
  • Embryo growth and seed germination require changing high and low temperatures; however, exogenous GA3 could substitute for high temperatures, as it also causes accelerated germination. In this study, the seeds of L. spectabilis were identified as an intermediate simple type, a sub‐level of morphophysiologically dormant seeds.
  相似文献   

10.
Reactive oxygen (ROS) and nitrogen (RNS) species play a signaling role in seed dormancy alleviation and germination. Their action may be described by the oxidative/nitrosative “window/door”. ROS accumulation in embryos could lead to oxidative modification of protein through carbonylation. Mature apple (Malus domestica Borkh.) seeds are dormant and do not germinate. Their dormancy may be overcome by 70–90 days long cold stratification. The aim of this work was to analyze the relationship between germinability of embryos isolated from cold (5 °C) or warm (25 °C) stratified apple seeds and ROS or nitric oxide (NO) production and accumulation of protein carbonyl groups. A biphasic pattern of variation in H2O2 concentration in the embryos during cold stratification was detected. H2O2 content increased markedly after 7 days of seeds imbibition at 5 °C. After an additional two months of cold stratification, the H2O2 concentration in embryos reached the maximum. NO production by the embryos was low during entire period of stratification, but increased significantly in germination sensu stricto (i.e. phase II of the germination process). The highest content of protein carbonyl groups was detected after 6 weeks of cold stratification treatment. Fluctuation of H2O2 and protein carbonylation seems to play a pivotal role in seed dormancy alleviation by cold stratification, while NO appears to be necessary for seed germination.  相似文献   

11.
Much of the seed germination research on Carex has focused on wetland species, and little is known about the species of arid habitats. Here, we investigated seed dormancy and germination of Carex physodes, which is an important component of the plant community of the Gurbantunggut Desert of the Junggar Basin in Xinjiang, China. Our studies included the effects of mechanical and chemical scarification, dry storage, treatment with GA3, wet‐cold stratification, and burial in the field. No freshly matured achenes germinated over a range of temperature regimes after treatment with GA3, 6 months of dry storage or removal of part of the endosperm. The mechanical scarification resulted in < 5% achene germination, however, higher percentage of achene germination occurred after removal of the pericarp (60%), H2SO4 scarification (30%) or scarification in 10% NaOH (85%). Six and nine months of wet‐cold stratification promoted < 40% achene germination. The optimal germination temperatures ranged from 25/10°C to 35/20°C. Maximum germination after 9 months of burial at a depth of 3 cm in the field was 36%. These results indicate that the seeds have non‐deep physiological dormancy (PD) and that the pericarp contains germination inhibitors and has strong mechanical resistance to germination.  相似文献   

12.
In this study, we show that seeds of Ilex maximowicziana collected from northern and southern Taiwan differ in germination responses to temperature. Seeds produced by plants growing in the tropical environment of southern Taiwan were more responsive (in a positive way) to higher incubation temperatures than those produced by plants growing in the subtropical environment of northern Taiwan. On the other hand, seeds produced in northern Taiwan were more responsive (in a positive way) to low incubation temperatures and to cold stratification than those from southern Taiwan. Germination percentages and rates of seeds from northern Taiwan were higher at 20/10°C than at 30/20°C, reaching a plateau of >80% germination after 12 weeks incubation, whereas germination of seeds from southern Taiwan reached >80% at 30/20 and 25°C but not at 20/10°C. Gibberellic acid (GA3) increased germination rate but not germination percentage of seeds from both southern and northern Taiwan. Freshly matured seeds of I. maximowicziana have rudimentary embryos. During dormancy break, embryo length increased 11.5- and 8.0-fold in northern and southern seeds, respectively, before radicle emergence. Thus, seeds of Ilex maximowicziana have nondeep simple morphophysiological dormancy. This is the first detailed study of the germination requirements of a subtropical/tropical species of the large cosmopolitan genus Ilex.  相似文献   

13.
Seeds of Delphinium fissum subsp. sordidum are physiologically dormant at maturity, with underdeveloped embryos; thus they have morphophysiological dormancy (MPD). The aims of this study were to determine the requirements for embryo growth, dormancy break and germination, to characterise the type of seed dormancy and to evaluate the effects of light, seed age, pollination mechanism, and inter-annual and inter-population variability on germinative ability. After 3 months of incubation at 5°C (cold stratification) in darkness conditions, the mean embryo length increased from 5.6 to 2.07 mm, with 76% of seeds germinating. Conversely, embryos of seeds incubated during 3 months at 20/7 or 28/14°C hardly grew and no germination was recorded. Since cold stratification was the only requirement for the loss of MPD, and both dry storage in laboratory conditions and warm stratification prior to cold stratification shortened the cold stratification period required for germination, it could be concluded that D. fissum subsp. sordidum seeds have intermediate complex MPD. Cold stratification and incubation in darkness conditions promoted higher germination percentages than those in light. In addition, germinative ability increased with seed age up to 8 months (reaching 96% at 5°C in darkness), showed a pronounced inter-annual and inter-population variability, as well as a significant decrease in seeds coming from pollination by geitonogamy. High temperatures (25/10 or 28/14°C) induced seeds to secondary dormancy, so seedling emergence in the greenhouse was restricted to February–March. The requirements for dormancy break and germination reflect an adaptation to trigger germination in late winter. This study is the first one to document a gradual increase in germination percentage with seed age for plant species with intermediate complex MPD.  相似文献   

14.
Freshly matured seeds of Osmorhiza claytonii exhibit a type of morphophysiological dormancy (MPD). Under natural conditions, embryo growth begins in late September and early October and continues until mid***- to late February, with the peak in October and November. Most seeds germinate between mid-February and late March. Embryos did not grow in seeds incubated for 24 weeks at 30/15 (warm stratification) or 5 C (cold stratification). However, in seeds given 12 weeks at 30/15 and then 12 weeks at 5 C, embryo length increased 1,246% while seeds were at 5 C. Zero to 7 days of warm followed by 24 weeks of cold stratification resulted in 2%–27% germination of fresh seeds, whereas 2 to 12 weeks of warm followed by 24 weeks of cold stratification resulted in 80%–98% germination. Warm plus cold stratification was required for embryo growth and germination of seeds that remained undispersed for a year in the field. GA3 was partially effective in substituting for warm stratification. The name “nondeep complex MPD” is proposed for the type of MPD found in O. claytonii and a few other species, making a total of eight types of MPD presently known.  相似文献   

15.
Salt tolerance of halophytes corresponds with the habitat requirement of the species. It is an important factor during the germination phase and it can determine successful establishment. This paper presents the effects of alternating temperature–light regimes (4/8°C, 10/20°C, 20/32°C; 12 h dark: 12 h light) and different salinity levels (0, 200, 400, 600 mmol l21 NaCl) on seed germination of five halophytes, Halimione pedunculata, Bupleurum tenuissimum, Aster tripolium, Triglochin maritimum and Armeria maritima. The five species differ with respect to family and life‐form and spatially correspond to a decreasing salt gradient (i.e. distance from salt water, with H. pedunculata being the most tolerant and A. maritima being the least). Armeria maritima, A. tripolium and T. maritimum seeds were additionally subjected to a cold stratification experiment. The results showed that Halimione pedunculata, an annual therophyte of year‐round heavily saline habitats, was dormant under all experimental conditions. Bupleurum tenuissimum, a species typical to sites of varying salinity prone to leaching during spring and autumn rainfall, germinated best under cold and warm temperatures, but only under non‐saline conditions. Aster tripolium and T. maritimum, close neighbours in salt marshes, showed very similar germination behaviour: seeds of both species tolerated high levels of salinity and germinated best in summer temperatures during periods of highest soil salinity, and germination was significantly promoted by cold. Armeria maritima, a species usually found on the marginal fringes of saline habitats, germinated only under low salt levels and maximum germination was under cold (spring) and warm (autumn) temperatures, with no significant effect of cold stratification.  相似文献   

16.
Celery seeds (Apium graveolens L. cv. Lathom Blanching) made dormant by high temperature pretreatment (28–40°C) during imbibition in the dark, germinated at 22°C in the light after treatment with benzyladenine (BA). This BA-induced promotion of germination increased with increasing pre-treatment temperature from 32 to 38°C. whether BA was given before or after pretreatment. A mixture of gibberellins A4 and A7 (GA4/7) given before a 4 day high temperature pretreatment at 32°C partially inhibited the germination-promoting activity of GA4/7 given after. It is suggested that gibberellin induces the formation of a thermola-bile product which is necessary for germination, the precursor of which has a limited source.  相似文献   

17.
Experiments were carried out with three seed lots of Betula nana collected in 1967 from different localities in Norway. Seeds were stratified for 0-20 days in dark at +2-+3 °C on filter papers moistened with distilled water, or treated with solution of GA3 for 24 h at room temperature, and then moved into special germination boxes that were placed in different temperature conditions. All the seed lots had conditional dormancy. Quantitatively, the dormancy was different in the different seed lots (pronenances), but there were no qualitative difference in the reaction to stratification gibberellic acid and to germination temperature. Differences between seed lots may have been due to different stage of seed development. The dormancy was deepest at low temperatures(12 and 15°C) decreasing gradually with increasing temperature (to 24 °C). The dormancy was effectively broken by a short stratification (from 5 to 15 days), and by treatment with gibberellic acid. The deeper the dormancy and the lower the germination temperature the longer the stratification that was needed for maximum germination. Similarly, the concentration of GA3 needed for maximum germination increased with decreasing temperature and with increasing dormancy.  相似文献   

18.
The activity of acid lipase and the level of gibberellin A4 (GA4) were determined in apple embryos excised from seeds after different time periods of stratification and subsequently cultured in darkness at 4°C or at 25°C. Enzyme activity and GA4 content were higher at 4°C. Exogenous gibberellin stimulated lipase activity, while AMO-1618, an inhibitor of gibberellin biosynthesis, inhibited, to the same degree, both the enzyme activity and the GA4 accumulation. The involvement of GA4 and lipolytic enzymes in cold-mediated removal of embryonal dormancy has been discussed and compared with the role of these two factors in light-stimulated germination of dormant apple embryos, described earlier (Smoleńska and Lewak 1974).  相似文献   

19.
Fruits (drupes) of Symphoricarpos orbiculatus ripen in autumn and are dispersed from autumn to spring. Seeds (true seed plus fibrous endocarp) are dormant at maturity, and they have a small, linear embryo that is underdeveloped. In contrast to previous reports, the endocarp and seed coat of S. orbiculatus are permeable to water; thus, seeds do not have physical dormancy. No fresh seeds germinated during 2 wk of incubation over a 15°/6°-35°/20°C range of thermoperiods in light (14-h photoperiod); gibberellic acid and warm or cold stratification alone did not overcome dormancy. One hundred percent of the seeds incubated in a simulated summer → autumn → winter → spring sequence of temperature regimes germinated, whereas none of those subjected to a winter → spring sequence did so. That is, cold stratification is effective in breaking dormancy only after seeds first are exposed to a period of warm temperatures. Likewise, embryos grew at cold temperatures only after seeds were exposed to warm temperatures. Thus, the seeds of S. orbiculatus have nondeep complex morphophysiological dormancy. As a result of dispersal phenology and dormancy-breaking requirements, in nature most seeds that germinate do so the second spring following maturity; a low to moderate percentage of the seeds may germinate the third spring. Seeds can germinate to high percentages under Quercus leaf litter and while buried in soil; they have little or no potential to form a long-lived soil seed bank.  相似文献   

20.
Osmorhiza longistylis is an herbaceous perennial that grows in woodlands of eastern and central North America. In northcentral Kentucky seeds ripen in early to mid July, and dispersal begins in September and October. Although most of the seeds are shed during late autumn and winter, some remain on the dead shoots for up to 18 months. Seeds are dormant at maturity due to an underdeveloped embryo. Embryos grew at low (5 C) temperatures, but only after seeds were given a period of warm (30/15 C) stratification. With an increase in the length of the warm treatment, there was an increase in the number of embryos that grew to full length during a 12-wk period at 5 C and an increase in the percentage of seeds that germinated. Seeds given 12 wk of warm stratification required more than 8 wk at 5 C to overcome dormancy. Embryos in freshly-matured seeds averaged 0.60 mm long, but those in seeds given 12 wk warm plus 12 wk cold stratification averaged 8.86 mm. Lengths of embryos of seeds kept moist at 30/15 and 5 C for 24 wk averaged 0.63 and 0.89 mm, respectively. Regardless of age and dispersal time, imbibed seeds must be exposed to high (i.e., summer or autumn) and then to low (i.e., winter) temperatures before they will germinate. Consequently, germination occurs only in spring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号