首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herein we report a study of the switchable [3]rotaxane reported by Huang et al. (Appl Phys Lett 85(22):5391–5393, 1) that can be mounted to a surface to form a nanomechanical, linear, molecular motor. We demonstrate the application of semiempirical electronic structure theory to predict the average and instantaneous force generated by redox-induced ring shuttling. Detailed analysis of the geometric and electronic structure of the system reveals technical considerations essential to success of the approach. The force is found to be in the 100–200 pN range, consistent with published experimental estimates.
Graphical Abstract A single surface-mounted switchable rotaxane
  相似文献   

2.
Determination of electrophilic and nucleophilic sites of a molecule is the primary task to find the active sites of the lead molecule. In the present study, the active sites of busulfan have been predicted by molecular electrostatic potential surface and Fukui function analysis with the help of dispersion corrected density functional theory. Similarly, the identification of active binding sites of the proteins against lead compound plays a vital role in the field of drug discovery. Rigid and flexible molecular docking approaches are used for this purpose. For rigid docking, Hex 8.0.0 software employing fast Fourier transform (FFT) algorithm has been used. The partial flexible blind docking simulations have been performed with AutoDock 4.2 software; where a Lamarckian genetic algorithm is employed. The results showed that the most electrophilic atoms of busulfan bind with the targets. It is clear from the docking studies that busulfan has inhibition capability toward the targets 12CA and 1BZM.
Graphical Abstract Docking of ligand and protein
  相似文献   

3.
Polychlorinated dibenzothiophene (PCDT) and polychlorinated thianthrene (PCTA) are sulfur analogues of dioxins, such as polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/F). In this work, we present a detailed mechanistic and kinetic analysis of PCDT and PCTA formation from the combustion of 2,4,5-trichlorothiophenol. It is shown that the formation of these persistent organic pollutants is more favourable, both kinetically and thermodynamically, than their analogous dioxin counterparts. This is rationalised in terms of the different influences of the S–H and O–H moieties in the 2,4,5-trichlorothiophenol and 2,4,5-trichlorophenol precursors. Kinetic parameters also indicate that the yield of PCDT should exceed that of PCDD. Finally, we demonstrate here that the degree and pattern of chlorination on the 2,4,5-trichlorothiophenol precursor leads to subtle thermodynamic and kinetic changes to the PCDT/PCTA formation mechanisms.
Graphical abstract Formation mechanisms of persistant organic pollutants, PCDT and PCTA, from 2,4,5-trichlorothiophenol combustion, has been investigated using density functional theory
  相似文献   

4.
Magnetic shielding constants for an isolated fullerene C60, cucurbituril CB[9], and the host-guest complex C60@CB[9] were calculated as a function of separation of the monomers. Our results in the gas phase and water indicate a significant variation of the magnetic properties for all atoms of the monomers in the complex and after liberation of fullerene C60 from the interior of the CB[9] cavity. The interaction between the two monomers results in a charge transfer that collaborates with a redistribution of electron density to deshield the monomers.
Graphical Abstract NMR spectroscopy alteration on C60@CB[9] host-guest mutual interactions?
  相似文献   

5.
This paper presents a differential evolution algorithm that is adapted for the protein folding optimization on a three-dimensional AB off-lattice model. The proposed algorithm is based on a self-adaptive differential evolution that improves the algorithm efficiency and reduces the number of control parameters. A mutation strategy for the fast convergence is used inside the algorithm. A temporal locality is used in order to speed up the algorithm convergence additionally and to find amino-acid conformations with the lowest free energy values. Within this mechanism a new vector is calculated when the trial vector is better than the corresponding vector from the population. This new vector is likely better than the trial vector and this accelerates convergence speed. Because of the fast convergence the algorithm has some chance to be trapped into the local optima. To mitigate this problem the algorithm includes reinitialization. The proposed algorithm was tested on amino-acid sequences that are used frequently in literature. The obtained results show that the proposed algorithm is superior to the algorithms from the literature and the obtained amino-acid sequences have significantly lower free energy values.
Graphical Abstract Protein folding optimization on a three-dimensional AB off-lattice model using the differential evolution algorithm.
  相似文献   

6.
In this article, we explore the capacity of formed Schiff base complexes to trap metal atoms or ions, using their aromatic ends. The intrinsic geometry of each complex defines the process of substitution. Two cases were studied; one involving a trans Schiff base complex and the other considering how a salen ligand, with nickel systems traps chromium. We also assessed the nature of the new bonds and the frontier molecular orbitals.
Graphical abstract Two salen nickel compounds are joint by a Cr(0) atom forming an organometallic interaction.
  相似文献   

7.
Bond critical points (BCPs) in the quantum theory of atoms in molecules (QTAIM) are shown to be a consequence of the molecular topology, symmetry, and the Poincaré-Hopf relationship, which defines the numbers of critical points of different types in a scalar field. BCPs can be induced by a polarizing field or by addition of a single non-bonded atom to a molecule. BCPs and their associated bond paths are therefore suggested not to be a suitable means of identifying chemical bonds, or even attractive intermolecular interactions.
Graphical abstract Bond-critical points in QTAIM and weak interactions?
  相似文献   

8.
9.
The methylxanthines have attracted interest due to the changes on their biological activities and physicochemical properties in terms of the number and position of the methyl groups present in the xanthine moiety. We report a theoretical study of the influence of the methyl substituent in the basicity and reactivity of xanthine and its methylated derivatives. Our results provide that when the xanthine increases the number of methyl substituents, the gas phase basicity increases (reactivity to proton increases), and the global hardness decreases. The result is in agreement with the maximum hardness principle (MHP) that states, “at equilibrium, chemical systems are as hard as possible” (Pearson, R.G., J. Chem. Educ., 1987, 64, 561–567, and Parr R.G., Chattaraj P.K., J. Am. Chem. Soc. 1991, 113, 1854–1855).
Graphical abstract Xanthine and its methyl derivatives
  相似文献   

10.
In this work, through a docking analysis of compounds from the ZINC chemical library on human β-tubulin using high performance computer cluster, we report new polycyclic aromatic compounds that bind with high energy on the colchicine binding site of β-tubulin, suggesting three new key amino acids. However, molecular dynamic analysis showed low stability in the interaction between ligand and receptor. Results were confirmed experimentally in in vitro and in vivo models that suggest that molecular dynamics simulation is the best option to find new potential β-tubulin inhibitors.
Graphical abstract Bennett’s acceptance ratio (BAR) method
  相似文献   

11.
A perfectly planar Al13+ cluster (CI) and a quasi-planar Al13+ cluster (CII) have been found for the first time. Both clusters have a triangular core surrounded by a set of ten Al atoms in the form of a ring. These cationic clusters have substantial aromatic character. The planar CI cluster has local antiaromatic patches within global aromatic sea. It is doubly aromatic having both σ and π aromatic character. The quasi-planar CII cluster is also aromatic but it has more σ-delocalization.
Graphical abstract Planar and quasi-planar Al13+ clusters with triangular core surrounded by a ring of ten atoms.
  相似文献   

12.
13.
Density functional theory (DFT) was utilized to elucidate the reaction mechanisms of and the key factors that influence the Ni(0)-catalyzed cross-dimerization and -trimerization of trimethylsilylacetylene (R1) and diphenylacetylene (R2). Calculated results revealed that the electron-donating ability of the ligand plays a crucial role in determining the regionselectivity of this tandem reaction. The use of strongly electron-donating ligands favors the formation of cross-dimer intermediates, whereas cross-trimer products can easily be synthesized using weakly electron-donating ligands. A simple method of estimating the electron-donating abilities of different ligands based on the Mulliken charge distribution of the ligand–ligand pair was employed. The present theoretical results allow us to elucidate the reaction mechanisms for and to identify the factors that exert the greatest influence on the ligand-controlled cross-dimerization and -trimerization of trimethylsilylacetylene and diphenylacetylene. Guidelines for the design of novel ligand systems with Ni(0) catalysts are also proposed.
Graphical Abstract The electron-donating abilities of two different ligands
  相似文献   

14.
The adsorption processes of elemental lead on carbonaceous surfaces which adsorbed CO/CO2/NO flue gases were investigated to understand the effects of CO/CO2/NO on elemental lead adsorption on carbonaceous surfaces with density functional theory. All calculations including optimizations, energies, and frequencies were conducted at B3PW91 density functional theory level, utilizing SDD basis set for lead and 6-31G(d) Pople basis set for other atoms. The results indicate that CO, CO2, and NO can promote the adsorption of elemental lead on the carbonaceous surface, but probably compete for adsorption sites with elemental lead. The promotion effects on adsorption can be attributed to active sites on the carbonaceous surface rather than flue gas adsorption on the carbonaceous surface. In addition, the adsorption order of three kinds of flue gas on the carbonaceous surface is CO2?>?NO?>?CO?>?Pb on average. Furthermore, the enhancement order of three kinds of flue gas on the elemental lead adsorption on carbonaceous surfaces is CO-CS?>?CO2-CS?>?NO-CS?>?CS in general. In particular, atomic charge and adsorption energy have good linear relationship in the process of elemental lead adsorption.
Graphical Abstract Competitive adsorption between flue gas and elemental lead on carbonaceous surfaces.
  相似文献   

15.
ROS1 fusion kinase—highly expressed in a variety of human cancers—has emerged as an important and attractive target for anticancer drug design. Crizotinib, a well-known drug approved by the FDA as an ALK inhibitor to treat advanced NSCLC, also shows potent inhibitoy activity against ROS1. However, the development of serious resistance due to secondary mutations has been observed in clinical studies. To provide insight into the mechanisms of this drug resistance, molecular dynamics simulations and free-energy calculations were carried out for complexes of crizotinib with wild-type (WT) ROS1 as well as the mutated L2026M and G2032R forms. MD simulations indicated that the L2026M and G2032R systems are slightly less flexible than the WT system. Binding free energy calculations showed that the L2026M and G2032R mutations significantly reduce the binding affinity of crizotinib for ROS1, and that the resistance to crizotinib caused by the L2026M and G2032R mutations arises mostly from increases in entropic terms. Furthermore, calculations of per-residue binding free energies highlighted increased and decreased contributions of some residues in the L2026M and G2032R systems relative to those in the WT system. The present study therefore yielded detailed insight into the mechanisms of resistance to crizotinib caused by the L2026M and G2032R mutations, which should provide the basis for rational drug design to combat crizotinib resistance.
Graphical Abstract Superposition of the average structures obtained from the last 10 ns of the molecular dynamics simulation trajectoriy for WT (green) and mutated ROS1 (cyan)
  相似文献   

16.
The aldol reaction in the presence of L-proline acting as an organocatalyst is a well-known example of asymmetric synthesis. Many theoretical and experimental studies have been carried out to probe the mechanism of this reaction. In this work, two levels of density functional theory in the gas phase and DMSO were used to elucidate the best pathways for this reaction, with the enamine and enol considered intermediates and L-proline considered either a reactant or a facilitator. The calculations indicated that both intermediates are formed simultaneously in the reaction medium. Interestingly, the formation of the enamine intermediate predominates in DMSO at room temperature, whereas the enol becomes the predominant intermediate upon the addition of water.
Graphical Abstract The dual role of L-proline leads to single stereoisomeric aldol product via two completely different pathways.
  相似文献   

17.
Pan D  Sun H  Bai C  Shen Y  Jin N  Liu H  Yao X 《Journal of molecular modeling》2011,17(10):2465-2473
As one of the most important antiviral drugs against 2009 influenza A (H1N1), will zanamivir be effective for the possible drug resistant mutants? To answer this question, we combined multiple molecular dynamics simulations and molecular mechanics generalized Born surface area (MM-GBSA) calculations to study the efficiency of zanamivir over the most frequent drug-resistant strains of neuraminidase including R293K, R152K, E119A/D and H275Y mutants. The calculated results indicate that the modeled mutants of the 2009-H1N1 strains except H275Y will be significantly resistant to zanamivir. The resistance to zanamivir is mainly caused by the loss of polar interactions. The identified potential resistance sites in this study will be useful for the development of new effective anti-influenza drugs and to avoid the occurrence of the state without effective drugs to new mutant influenza strains.
Figure The studied mutations of neuraminidase and their influence to zanamivir binding
  相似文献   

18.
Coarse-grained force field (CGFF) methods were applied to study the self-assembly of sodium dodecyl sulfate with fragrance additives. The CGFF parameters were parameterized and validated using experimental and all-atom simulation data. Direct molecular dynamics simulations were carried out to characterize the initial aggregation, partitioning of fragrances, and chemical potentials of the surfactant and fragrance molecules in aggregates of different sizes. The equilibrium critical micelle concentrations (CMCs) and micelle size distributions, which could not be obtained by direct simulation, were predicted using the calculated chemical potentials in combination with a thermodynamic model. The predicted partitioning of fragrances, CMCs, micelle sizes, and micelle structures agree well with previously reported experimental data.
Graphical abstract Enhancement of micelle size distribution using thermodynamic model
  相似文献   

19.
RET (rearranged during transfection) tyrosine kinase is a promising target for several human cancers. Abt-348, Birb-796, Motesanib and Sorafenib are DFG-out multi-kinase inhibitors that have been reported to inhibit RET activity with good IC50 values. Although the DFG-out conformation has attracted great interest in the design of type II inhibitors, the structural requirements for binding to the RET DFG-out conformation remains unclear. Herein, the DFG-out conformation of RET was determined by homology modelling, the four inhibitors were docked, and the binding modes investigated by molecular dynamics simulation. Binding free energies were calculated using the molecular mechanics/Poisson-Bolzmann surface area (MM/PBSA) method. The trends in predicted binding free affinities correlated well with experimental data and were used to explain the activity difference of the studied inhibitors. Per-residue energy decomposition analyses provided further information on specific interaction properties. Finally, we also conducted a detailed e-pharmacophore modelling of the different RET-inhibitor complexes, explaining the common and specific pharmacophore features of the different complexes. The results reported herein will be useful in future rational design of novel DFG-out RET inhibitors.
Graphical Abstract Left Ribbon representation of DFG-out RET tyrosine kinase structure showing key residues of RET interacting with inhibitors. Right e-Pharmacophore hypothesis for RET-Abt-348 generated from the complex structure
  相似文献   

20.
In this study, the doped defects in nitromethane crystals were investigated using first-principles calculations for the first time. We introduce dopant atoms in the interstitial sites of the nitromethane lattice, aiming to study the effects of element-doping on the structural properties, electronic properties, and sensitivity characteristics. The obtained results show that doped defects obviously affect the neighboring nitromethane molecules. The modification of electronic properties shows that the band gaps are significantly influenced by doped defects. Partial density of states and population analysis further reveal the mechanism for sensitivity control of nitromethane. It is shown that the new electronic states were introduced in the forbidden bands and the doped defects resulted in charge redistributions in the systems.
Graphical abstract The valence and conduction band edge positions as well as defect levels of pure and X-doped NM
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号