首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Development of interspecies cloned embryos in yak and dog   总被引:4,自引:0,他引:4  
Interspecies nuclear transfer (NT) could be an alternative to replicate animals when supply of recipient oocytes is limited or in vitro embryo production systems are incomplete. In the present study, embryonic development was assessed following interspecies NT of donor cumulus cells derived from yak and dog into the recipient ooplasm of domestic cow. The percentages of fusion and subsequent embryo development to the eight-cell stage of interspecies NT embryos were comparable to those of intraspecies NT embryos (cow-cow NT embryos). The percentage of development to blastocysts was significantly lower (p < 0.05) in yak-cow NT embryos than that in cow-cow NT embryos (10.9% vs. 39.8%). In dog-cow NT embryos, only one embryo (0.4%) developed to the blastocyst stage. These results indicate that interspecies NT embryos possess equally developmental competence to the eight-cell stage as intraspecies NT embryos, but the development to blastocysts is very low when dog somatic cells are used as the donor nuclei.  相似文献   

2.
3.
4.
5.
We have developed a technique to sample the preimplantation embryo, which may, in the future, be applied to prenatal diagnosis of genetic disease. Using micromanipulation, we aspirated a single blastomere from 4-cell mouse embryos. This procedure had no effect on in vitro development; 98% of control and 94% of biopsied embryos reached the blastocyst stage after 48 h in culture. Furthermore, after transfer to pseudopregnant recipient mice, the rate of fetal development of biopsied embryos was not significantly different from control embryos, although implantation rate was significantly reduced (mean +/- SD: biopsied 53.1 +/- 4.0, control 81.8 +/- 8.4, p less than 0.001). For the first time we have produced monolayer cell cultures derived from single preimplantation blastomeres. Individual biopsied blastomeres were cultured in vitro on different extracellular matrix components. Significantly greater cell proliferation was obtained in wells coated with fibronectin (FN), laminin (LN), and a complex of laminin and nidogen (LNC) than in a less specific matrix of swine skin gelatin (SSG). Mean (+/- SE) cell nuclei number per well after 6 days in culture was 6.4 +/- 2.1, 11.9 +/- 1.5, 19.8 +/- 2.9, and 20.9 +/- 2.6 in wells coated with SSG, LN, FN, and LNC respectively.  相似文献   

6.
《Cell》2022,185(16):2988-3007.e20
  1. Download : Download high-res image (182KB)
  2. Download : Download full-size image
  相似文献   

7.
Interspecies implantation and mitochondria fate of panda-rabbit cloned embryos   总被引:16,自引:0,他引:16  
Somatic cell nuclei of giant pandas can dedifferentiate in enucleated rabbit ooplasm, and the reconstructed eggs can develop to blastocysts. In order to observe whether these interspecies cloned embryos can implant in the uterus of an animal other than the panda, we transferred approximately 2300 panda-rabbit cloned embryos into 100 synchronized rabbit recipients, and none became pregnant. In another approach, we cotransferred both panda-rabbit and cat-rabbit interspecies cloned embryos into the oviducts of 21 cat recipients. Fourteen recipients exhibited estrus within 35 days; five recipients exhibited estrus 43-48 days after embryo transfer; and the other two recipients died of pneumonia, one of which was found to be pregnant with six early fetuses when an autopsy was performed. Microsatellite DNA analysis of these early fetuses confirmed that two were from giant panda-rabbit cloned embryos. The results demonstrated that panda-rabbit cloned embryos can implant in the uterus of a third species, the domestic cat. By using mitochondrial-specific probes of panda and rabbit, we found that mitochondria from both panda somatic cells and rabbit ooplasm coexisted in early blastocysts, but mitochondria from rabbit ooplasm decreased, and those from panda donor cells dominated in early fetuses after implantation. Our results reveal that mitochondria from donor cells may substitute those from recipient oocytes in postimplanted, interspecies cloned embryos.  相似文献   

8.
9.
During differentiation, somatic nuclei acquire highly specialized DNA and chromatin modifications, which are thought to result in cellular memory of the differentiated state. Upon somatic nuclear transfer into oocytes, the donor nucleus may have to undergo reprogramming of these epigenetic marks in order to achieve totipotency. This may involve changes in epigenetic features similar to those that occur in normal embryos during early development. However, there is accumulating evidence that epigenetic reprogramming is severely deficient in cloned embryos. Several reports reveal inefficient demethylation and inappropriate reestablishment of DNA methylation in quantitative and qualitative patterns on somatic nuclear transfer. Here we examine histone H3 lysine 9 (H3-K9) methylation and acetylation in normal embryos and in those created by somatic nuclear transfer. We find that H3-K9 methylation is reprogrammed in parallel with DNA methylation in normal embryos. However, the majority of cloned embryos exhibit H3-K9 hypermethylation associated with DNA hypermethylation, suggesting a genome-wide failure of reprogramming. Strikingly, the precise epigenotype in cloned embryos depends on the donor cell type, and the proportion of embryos with normal epigenotypes correlates closely with the proportion developing to the blastocyst stage. These results suggest a mechanistic link between DNA and histone methylation in the mammalian embryo and reveal an association between epigenetic marks and developmental potential of cloned embryos.  相似文献   

10.
11.
12.
Active demethylation of the paternal genome but not of the maternal genome occurs in fertilized mouse, rat, pig, and bovine zygotes. To study whether this early demethylation wave is important for embryonic development, we have analyzed the global methylation patterns of both in vivo-fertilized and cloned rabbit embryos. Anti-5-methylcytosine immunofluorescence of in vivo-fertilized rabbit embryos revealed that the equally high methylation levels of the paternal and maternal genomes are largely maintained from the zygote up to the 16-cell stage. The lack of detectable methylation changes in rabbit preimplantation embryos suggests that genome-wide demethylation is not an obligatory requirement for epigenetic reprogramming. The methylation patterns of embryos derived from fibroblast and cumulus cell nuclear transfer were similar to those of in vivo-fertilized rabbit embryos. Fluorescence in situ hybridization with chromosome-specific BACs demonstrated significantly increased chromosomal aneuploidy rates in cumulus cell nuclear transfer rabbit embryos and embryos derived from nuclear transfer of rabbit fibroblasts into bovine oocytes compared with in vivo-fertilized rabbit embryos. The incidence of chromosomal abnormalities was correlated with subsequent developmental failure. We propose that postzygotic mitotic errors are one important explanation of why mammalian cloning often fails.  相似文献   

13.
The timing and mechanisms of mitochondrial DNA (mtDNA) segregation and transmission in mammals are poorly understood. Genetic bottleneck in female germ cells has been proposed as the main phenomenon responsible for rapid intergenerational segregation of heteroplasmic mtDNA. We demonstrate here that mtDNA segregation occurs during primate preimplantation embryogenesis resulting in partitioning of mtDNA variants between daughter blastomeres. A substantial shift toward homoplasmy occurred in fetuses and embryonic stem cells (ESCs) derived from these heteroplasmic embryos. We also observed a wide range of heteroplasmic mtDNA variants distributed in individual oocytes recovered from these fetuses. Thus, we present here evidence for a previously unknown mtDNA segregation and bottleneck during preimplantation embryo development, suggesting that return to the homoplasmic condition can occur during development of an individual organism from the zygote to birth, without a passage through the germline.  相似文献   

14.
15.
Development retardation in cultured preimplantation rabbit embryos   总被引:2,自引:0,他引:2  
Day 3 to Day 5 preimplantation rabbit embryos were cultured for 24 h in chemically defined media which are widely used in early embryo culture (BSM II and Ham's F-10) supplemented with BSA or homologous serum. For the next 24 h, the embryos were left in the same culture medium, placed in freshly made medium, or cultured in medium which was supplemented with uterine flushings. In addition, 24-h cultured embryos were transferred into uteri of synchronous recipients for 1 day. After culture or transfer, development was assessed by cell proliferation evaluated by incorporation of tritiated thymidine. In comparison to non-cultured controls, thymidine incorporation demonstrated a considerably impaired cell proliferation after culture in defined media irrespective of medium, supplement, or replenishment with fresh medium. For Day 3 embryos, there was a developmental retardation amounting to about 1 day after 2 days in culture. Compared to Day 3 embryos, delay was clearly more pronounced in Day 4 and Day 5 blastocysts, i.e. in stages which had been retrieved from the uterus before culture. Supplementation with uterine flushings markedly promoted blastocyst cell proliferation (P less than 0.001). Incorporation data examined after transfer showed that impairment of cell proliferation caused by 1 day in culture had been compensated for to a large extent within 1 day in utero.  相似文献   

16.
Glycogen synthase kinase-3 (GSK-3) is a highly conserved serine/threonine protein kinase implicated in diverse cellular processes. Activity of GSK-3 is essential for meiotic chromatin segregation in oocytes, yet expression and/or function of GSK-3 have not been reported in mammalian preimplantation embryos. Objectives of this study were to characterize GSK-3 protein expression/phosphorylation in mouse preimplantation embryos, to assess the effect of GSK-3 activity inhibition on early mitotic events, and to differentiate nuclear and cytoplasmic anomalies in GSK-3 inhibited embryos. Both GSK-3 isoforms were expressed during embryo development, with a differential expression of alpha versus beta. Phosphorylation of GSK-3alpha/beta at residues Y279/Y216 indicated constitutive activation throughout preimplantation development. Phosphorylation at N-terminal residues S21/S9 indicated inhibition of GSK-3alpha/beta activity that was differentially regulated during early development; both alpha and beta isoforms were phosphorylated during early divisions, whereas at the blastocyst stage, only beta was phosphorylated. Cytoplasmic microinjection of zygotes with anti-GSK-3alpha/beta antibody significantly compromised embryonic development past the two-cell stage compared to controls. Reversibility of developmental block was tested via pharmacological inhibitors of GSK-3, lithium chloride (LiCl) and alsterpaullone. Similar to immunoneutralization, significantly fewer zygotes cultured with either LiCl or alsterpaullone developed past the two-cell stage compared to controls and this mitotic block was not reversible. Inhibition of GSK-3 activity significantly compromised timing of pronuclear membrane breakdown and mitosis initiation, nuclear development, and cytokinesis. Inhibition of GSK-3 also resulted in abnormal chromatin segregation, evidenced by incomplete karyokinesis and micronuclei formation. These results suggest that GSK-3 activity is critical for early preimplantation embryonic development.  相似文献   

17.
Interspecies nuclear transfer is an invaluable tool for studying nucleus-cytoplasm interactions; and at the same time, it provides a possible alternative to clone animals whose oocytes are difficult to obtain. In the present study, we investigated the possibility of cloning cat embryos using rabbit oocytes, and compared the developmental capacity; the timing of embryogenesis of the cat-rabbit cloned embryos with that of the cat-cat or the rabbit-rabbit cloned embryos. When cultured in M199, the rate of blastocyst formation of the cat-rabbit embryos was 6.9%, which was not significantly different than that of the cat-cat embryos (10.5%). However, the rate of blastocyst formation of rabbit-rabbit embryos (22.9%) was significantly greater than that of both the cat-rabbit and the cat-cat embryos (P < 0.05). The timing of the first three cleavages for the cat-rabbit embryos was similar to that of the rabbit-rabbit embryos, but significantly faster than that of the cat-cat embryos (P < 0.05), while the time to form blastocysts was similar to that of cat-cat embryos, but significantly slower than that of the rabbit-rabbit embryos (P < 0.05). Both M199 and SOF medium were evaluated for culturing cat-rabbit embryos; the rate of blastocyst formation in SOF (14.5%) was significantly greater than that in M199 (6.9%) (P < 0.05). These results demonstrate that: (1) the cat-rabbit embryos possess equal developmental capacity as cat-cat embryos; (2) the timing of the first three cleavages for the cat-rabbit embryos is recipient-specific, while the time to form blastocysts is donor nucleus-specific; and (3) SOF medium may be beneficial to overcome the morula-to-blastocyst block for cat-rabbit cloned embryos.  相似文献   

18.
A method is described for making chromosome preparation from mammalian oocytes or preimplantation embryo, with or without the zona pellucida, or from isolated blastomeres. It is more robust and requires less skill and experience than previous techniques, yet chromosome structure is well preserved and very high quality preparations can be made. The method, which involves use of cold hypotonic solution and very cold fixative, reduces turbulence and allows even single blastomeres to be located and handled with relative case, while the duration of hypotonic treatment becomes noncritical. The softening solution recommended contains no lactic acid and hence does not harm the chromosomes.  相似文献   

19.
20.
Development of preimplantation rabbit embryos in vivo and in vitro   总被引:3,自引:0,他引:3  
Qualitative patterns of protein synthesis in preimplantation rabbit embryos grown in vivo and in vitro were examined by SDS polyacrylamide gel electrophoresis followed by autoradiography. The results demonstrate that (1) most qualitative changes in the pattern of protein synthesis occur during cleavage, (2) the blastocyst period of development is characterized by a remarkably uniform and constant pattern of protein synthesis, and (3) the qualitative pattern of protein synthesis in embryos cultured in vitro from the 1-cell to the blastocyst stage is essentially identical to the pattern of protein synthesis in embryos grown to a comparable stage in vivo.These results indicate that no “special” maternal factors, such as uterine proteins, are required in vitro either for the qualitative changes in the pattern of protein synthesis during cleavage, or for the initial expression of a pattern of protein synthesis characteristic of the entire blastocyst period. From these studies we conclude that, once fertilized, the rabbit egg proceeds through cleavage and blastocyst formation on its own endogenous developmental program.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号