首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A group of Escherichia coli mutants which are ampicillin resistant at 32 C and which either are unable to grow or lyse at 42 C has been selected. These mutants have been classified by a number of characteristics: total peptidoglycan synthesis measured by [(14)C]diaminopimelic acid incorporation, extent of cross-linking of the peptidoglycan which is synthesized, growth characteristics at the two temperatures, and morphology. Two especially interesting groups of mutants have been described. In one of these, a hypo-cross-linked peptidoglycan was synthesized at the nonpermissive temperature. Most of these organisms lysed at 42 C. In another group, the peptidoglycan synthesized at 42 C was hyper-cross-linked. Many of these organisms were spherical. Studies of revertants indicated that ampicillin resistance, temperature sensitivity, cross-linking, growth characteristics, and morphological changes may be related to a single mutational event in both of these groups.  相似文献   

2.
The Mg2+ requirement of a morphological mutant of Bacillus subtlis, rodB strain 104 was highly temperature sensitive in the presence of halide or nitrate anions. Likewise the morphological change from rod shapes to spheres was dependent upon temperature, the same anions, and the Mg2+ concentration. The three factors interacted. Other rodB mutants behaved similarly. If the rodB strain 104 in its rod form was treated at high temperatures in the absence of either protein or peptidoglycan synthesis and restored to lower temperatures with the syntheses restarted, a partial temporary change toward cocci occurred. In the absence of halides or in the presence of Cl- but not Br-, the cells increased in volume when they changed from rods to cocci.  相似文献   

3.
Control of cell shape and elongation by the rodA gene in Bacillus subtilis   总被引:2,自引:1,他引:1  
The Escherichia coli rodA and ftsW genes and the spoVE gene of Bacillus subtilis encode membrane proteins that control peptidoglycan synthesis during cellular elongation, division and sporulation respectively. While rodA and ftsW are essential genes in E. coli , the B. subtilis spoVE gene is dispensable for growth and is only required for the synthesis of the spore cortex peptidoglycan. In this work, we report on the characterization of a B. subtilis gene, designated rodA , encoding a homologue of E. coli RodA. We found that the growth of a B. subtilis strain carrying a fusion of rodA to the IPTG-inducible Pspac promoter is inducer dependent. Limiting concentrations of inducer caused the formation of spherical cells, which eventually lysed. An increase in the level of IPTG induced a sphere-to-short rod transition that re-established viability. Higher levels of inducer restored normal cell length. Staining of the septal or polar cap peptidoglycan by a fluorescent lectin was unaffected during growth of the mutant under restrictive conditions. Our results suggest that rodA functions in maintaining the rod shape of the cell and that this function is essential for viability. In addition, RodA has an irreplaceable role in the extension of the lateral walls of the cell. Electron microscopy observations support these conclusions. The ultrastructural analysis further suggests that the growth arrest that accompanies loss of the rod shape is caused by the cell's inability to construct a division septum capable of spanning the enlarged cell. RodA is similar over its entire length to members of a large protein family (SEDS, for shape, elongation, division and sporulation). Members of the SEDS family are probably present in all eubacteria that synthesize peptidoglycan as part of their cell envelope.  相似文献   

4.
Cell wall peptidoglycan synthesis in Escherichia coli is under stringent control. During amino acid deprivation, peptidoglycan synthesis is inhibited in re1A+ bacteria but not in re1A mutants. The relaxed synthesis of peptidoglycan by amino acid deprived re1A bacteria was inhibited by several beta-lactam antibiotics at concentrations which inhibited cell elongation in growing cultures suggesting that the transpeptidase activity of penicillin-binding protein (PBP-1B) was involved in this process. Structural studies on the peptidoglycan also indicated the involvement of transpeptidation in relaxed peptidoglycan synthesis. The peptidoglycan synthesized during amino acid deprivation was cross-linked to the existing cell wall peptidoglycan, and the degree of cross-linkage was the same as that of peptidoglycan synthesized by growing control cells. The relaxed synthesis of peptidoglycan was also inhibited by moenomycin, an inhibitor of the in vitro transglycosylase activities of PBPs, but the interpretation of this result depends on whether the transglycosylases are the sole targets of moenomycin in vivo. Most of the peptidoglycan lipoprotein synthesized by histidine-deprived re1A+ bacteria was in the free form as previously reported, possibly because of the restriction in peptidoglycan synthesis. In support of this proposal, most of the lipoprotein synthesized during histidine deprivation of re1A mutants was found to be covalently linked to peptidoglycan. Nevertheless, the peptidoglycan synthesized by amino acid deprived re1A bacteria was apparently deficient in bound lipoprotein as compared with peptidoglycan synthesized by normal growing control bacteria suggesting that the rate of lipoprotein synthesis during amino acid deprivation may be limiting.  相似文献   

5.
The peptidoglycan compositions of three isogenic morphological mutants of Escherichia coli were determined by high-pressure liquid chromatography analysis. The muropeptide compositions of the peptidoglycan of these mutants were the same, indicating that the shape of E. coli is not (solely) determined by the chemical composition of the peptidoglycan. Furthermore, it appeared that the muropeptide composition of the peptidoglycan was not affected by growth temperature.  相似文献   

6.
An in vitro peptidoglycan synthesis reaction was employed to further characterize the role of the tolM product in colicin M-induced inhibition of peptidoglycan synthesis. It was found that the tolM product is not the colicin M target and that this gene product does not play a role in the interaction of the colicin with its target. Colicin M remained associated with envelopes prepared from colicin-treated tolM mutants. These findings suggested that the tolM product most likely is involved with the internalization of colicin M.  相似文献   

7.
A collection of 655 thermosensitive mutants of Bacillus subtilis 168, obtained by indirect selection, was screened for those lysing at the non-permissive temperature. Thirty-three mutations thus identified were distributed by transformation into eight linkage groups designated lssA to lssH. The distribution was non-random. With the exception of group A, all groups were small, suggesting that mutations identified in each of them may map in one gene only. Linkage groups identified here were mapped in four different regions of the B. subtilis chromosome and their positions relative to reference markers were the following: (i) aroI-lssA-dal-purB; (ii) metC-lssB-lssC-furA-pyrE-cysC-lssD; (iii) lssF-gtaA-lssG-hisA-lssH-cysB; and (iv) cysA-lssE-dnaC-purA. Kinetics of N-acetyl-D-[1-14C]glucosamine incorporation revealed that groups A, B, C, D and F are deficient in peptidoglycan synthesis at the restrictive temperature. In group G, anomalies at the cell wall level were suggested by incorporation and growth curves. It appears that in almost all known cases, thermosensitive lysis mutations in B. subtilis either affect genes involved in peptidoglycan synthesis or lead, more or less directly, to induction of prophages.  相似文献   

8.
Double mutants which carry mutations in genes (rodA, pbpA) required for cell elongation (i.e., maintenance of rod shape) in combination with mutations in genes (ftsA, ftsI, ftsQ, or ftsZ) required for septation were constructed. Such mutants were able to grow for about two mass doublings at a normal rate at the restrictive temperature (42 degrees C). The morphology of the cells formed under these conditions was interpreted by assuming the existence of a generalized system for peptidoglycan growth together with two additional systems which modify the shape of the growing peptidoglycan layer. The results also showed that different fts genes probably control different stages in septation. ftsZ (sulB or sfiB) appears to be required for the earliest step in septation, ftsQ and ftsI (pbpB or sep) are required for a later step or steps, and ftsA is required only for the latest stages in septation.  相似文献   

9.
The actinomycete Corynebacterium glutamicum grows as rod-shaped cells by zonal peptidoglycan synthesis at the cell poles. In this bacterium, experimental depletion of the polar DivIVA protein (DivIVA(Cg)) resulted in the inhibition of polar growth; consequently, these cells exhibited a coccoid morphology. This result demonstrated that DivIVA is required for cell elongation and the acquisition of a rod shape. DivIVA from Streptomyces or Mycobacterium localized to the cell poles of DivIVA(Cg)-depleted C. glutamicum and restored polar peptidoglycan synthesis, in contrast to DivIVA proteins from Bacillus subtilis or Streptococcus pneumoniae, which localized at the septum of C. glutamicum. This confirmed that DivIVAs from actinomycetes are involved in polarized cell growth. DivIVA(Cg) localized at the septum after cell wall synthesis had started and the nucleoids had already segregated, suggesting that in C. glutamicum DivIVA is not involved in cell division or chromosome segregation.  相似文献   

10.
Macrofibers in steady-state growth at one temperature were subjected to pulses of various durations at a temperature at which the opposite helix hand would form and then returned to the initial temperature. In an upshift pulse (20 to 48 degrees C), at least 3 min of incubation was required to induce a transient inversion that occurred later after return to 20 degrees C. Longer pulses resulted in shorter delays in onset of the transient inversion. This "memory" of a brief high-temperature pulse suggests that even a small amount of material can influence the twist of the entire macrofiber. Similar results were found for temperature downshift pulses corresponding to the opposite inversion. Adding chloramphenicol during the temperature pulse blocked the establishment of memory associated with the right-to-left inversion but not that associated with left-to-right inversion. In contrast, inhibiting peptidoglycan synthesis with D-cycloserine during the temperature pulse did not prevent establishment of memory. Inhibiting protein synthesis in mutants fixed as left-handed structures over the entire temperature range induced conversion to right-handedness but did not affect mutants fixed as right-handed structures. Adding protease to either live or formaldehyde-killed macrofibers always induced rotations of right-handed orientation. Steady-state growth in the presence of protease was found to shift the initial macrofiber twist towards the right-hand end of the twist spectrum. The phenomenon was observed in several mutants with different initial twists.  相似文献   

11.
The synthesis of peptidoglycan by cell-free membrane and membrane+wall preparations from an autolysin-deficient, beta-lactamase-negative mutant of Bacillus licheniformis N.C.T.C. 6346 was studied. The membrane preparation synthesized un-cross-linked polymer, the formation of which was not inhibited by beta-lactam antibiotics. Release of d-alanine by the action of d-alanine carboxypeptidase was inhibited variably according to the antibiotic. This inhibition was reversed by neutral hydroxylamine but not by the action of beta-lactamases or by washing. Bacitracin inhibited peptidoglycan synthesis, but not the d-alanine carboxypeptidase. Examination of peptidoglycan synthesized in the presence of excess of bacitracin showed that synthesis was not restricted to the addition of one disaccharide-pentapeptide unit at each synthetic site, an average of 2-3 disaccharide-pentapeptide units being added. Peptidoglycan synthesis was three- to four-fold more sensitive to vancomycin than was the release of d-alanine by the action of the carboxypeptidase. Incorporation of newly synthesized peptidoglycan into pre-existing cell wall was studied in membrane+wall preparations. This incorporation was catalysed by a benzylpenicillin- and cephaloridine-sensitive transpeptidase. The concentrations of these antibiotics giving 50% inhibition of incorporation were almost identical with those required to inhibit growth of the bacillus. Inhibition of the transpeptidase was reversed by treatment with beta-lactamase or by washing.  相似文献   

12.
Because the rod structure of the flagellar basal body crosses the inner membrane, the periplasmic space, and the outer membrane, its formation must involve hydrolysis of the peptidoglycan layer. So far, more than 10 genes have been shown to be required for rod formation in Salmonella typhimurium. Some of them encode the component proteins of the rod structure, and most of the remaining genes are believed to encode proteins involved in the export process of the component proteins. Although FlgJ has also been known to be involved in rod formation, its exact role has not been understood. Recently, it was suggested that the C-terminal half of the FlgJ protein has homology to the active center of some muramidase enzymes from gram-positive bacteria. In this study, we showed that the purified FlgJ protein from S. typhimurium has a peptidoglycan-hydrolyzing activity and that this activity is localized in its C-terminal half. Through oligonucleotide-directed mutagenesis, we constructed flgJ mutants with amino acid substitutions in the putative active center of the muramidase. The resulting mutants produced FlgJ proteins with reduced enzymatic activity and showed poor motility. These results indicate that the muramidase activity of FlgJ is essential for flagellar formation. Immunoblotting analysis with the fractionated cell extracts revealed that FlgJ is exported to the periplasmic space, where the peptidoglycan layer is localized. On the basis of these results, we conclude that FlgJ is the flagellum-specific muramidase which hydrolyzes the peptidoglycan layer to assemble the rod structure in the periplasmic space.  相似文献   

13.
The C-terminal half of the Salmonella flagellar protein FlgJ has peptidoglycan hydrolyzing activity and it has been suggested that it is a flagellum-specific muramidase which locally digests the peptidoglycan layer to permit assembly of the rod structure to proceed through the periplasmic space. It was also suggested that FlgJ might be involved in rod formation itself, although there was no direct evidence for this. We purified basal body structures from SJW1437(flgJ) transformed with plasmids encoding various mutant FlgJ proteins and found that these basal bodies possessed the periplasmic P ring but lacked the outer membrane L ring; they also lacked a hook at their distal end. All of these mutant FlgJ proteins had an altered or missing C-terminal domain but had at least the first 151 amino acid residues of the N-terminal domain. Immunoblotting analysis of fractionated cell extracts revealed that a rod/hook export class protein, FlgD, was exported to the periplasm but not to the culture supernatant in these mutants. FlgJ was shown to physically interact with several proteins, and especially FliE and FlgB, which are believed to reside at the cell-proximal end of the rod. On the basis of these results, we conclude that the N-terminal 151 amino acid residues of FlgJ are directly involved in rod formation and that the muramidase activity of FlgJ, though needed for formation of the L ring and subsequent events such as hook formation, is not essential for rod or P ring formation. In contrast, muramidase activity alone does not support rod assembly.  相似文献   

14.
Bacillus subtilis mutants with altered penicillin-binding proteins (PBPs), or altered expression of PBPs, were isolated by screening for changes in susceptibility to beta-lactam antibiotics. Mutations affecting only PBPs 2a, 2b and 3 were isolated. Cell shape and peptidoglycan metabolism were examined in representative mutants. Cells of a PBP 2a mutant (UB8521) were usually twisted whereas PBP 2b (UB8524) and 3 (UB8525) mutants produced helices, particularly after growth at 41 degrees C. The PBP 2a mutant (UB8521) had a higher peptidoglycan synthetic activity than its parent strain whereas the opposite applied to the PBP 2b mutant UB8524. The PBP 3 mutant (UB8525) had a similar peptidoglycan synthetic activity to that of the parent strain when grown at 37 degrees C, but 40% higher activity after growth at 41 degrees C. The PBP 2a mutant (UB8521) exhibited the same wall thickening activity as the parent, but the PBP 2b and 3 mutants (UB8524 and UB8525) were partially defective in this respect. The changes in the susceptibility of PBP 2a, 2b and 3 mutants to beta-lactam antibiotics imply that these PBPs are killing targets, consistent with the fact that these PBPs are also important for shape determination and peptidoglycan synthesis.  相似文献   

15.
16.
Temperature-sensitive (ts) mutants of Staphylococcus aureus with defective cell wall biosynthesis have been differentiated from other ts mutants by their ability to grow at the restrictive temperature (43 C) in the presence of 1 m NaCl. Under all conditions they possess normal colonial and cellular morphology at the level of resolution of the light microscope and are, therefore, not protoplasts. However, differences between mutant and wild-type cells can be seen by scanning electron microscopy. Many of the mutants contained concentrations of nucleotide precursors of peptidoglycan synthesis in excess of those present in wild-type cells, at both 30 and 43 C. The types of peptidoglycan precursors accumulated by six of the mutants have been determined, and specific enzymatic defects in three of these have been identified.  相似文献   

17.
A temperature-sensitive mutant of Escherichia coli defective in peptidoglycan synthesis was characterized. The incorporation of radiolabeled meso-diaminopimelate into peptidoglycan by the mutant was inhibited at the restrictive growth temperature, resulting in autolysis. The defective step appeared to be part of the terminal stage in peptidoglycan synthesis involving the incorporation of disaccharide peptide units into the wall peptidoglycan. The mutation was assigned to a new locus, designated murH, at 99.2 min on the E. coli linkage map.  相似文献   

18.
Thermosensitive mutants of Bacillus subtilis deficient in peptidoglycan synthesis were screened for mutations in the meso-diaminopimelate (LD-A2pm) metabolic pathway. Mutations in two out of five relevant linkage groups, lssB and lssD, were shown to induce, at the restrictive temperature, a deficiency in LD-A2pm synthesis and accumulation of UDP-MurNAc-dipeptide. Group lssB is heterogeneous; it encompasses mutations that confer deficiency in the deacylation of N-acetyl-LL-A2pm and accumulation of this precursor. Accordingly, these mutations are assigned to the previously identified locus dapE. Mutations in linkage group lssD entail a thermosensitive aspartokinase 1. Therefore, they are most likely to affect the structural gene of this enzyme, which we propose to designate dapG. Mutation pyc-1476, previously reported to affect the pyruvate carboxylase, was shown to confer a deficiency in aspartokinase 1, not in the carboxylase, and to belong to the dapG locus, dapG is closely linked to spoVF, the putative gene of dipicolinate synthase. In conclusion, mutations affecting only two out of eight steps known to be involved in LD-A2pm synthesis were uncovered in a large collection of thermosensitive mutants obtained by indirect selection. We propose that this surprisingly restricted distribution of the thermosensitive dap mutations isolated so far is due to the existence, in each step of the pathway, of isoenzymes encoded by separate genes. The biological role of different aspartokinases was investigated with mutants deficient in dapE and dapG genes. Growth characteristics of these mutants in the presence of various combinations of aspartate family amino acids allow a reassessment of a metabolic channel hypothesis, i.e. the proposed existence of multienzyme complexes, each specific for a given end product.  相似文献   

19.
Cultures of Bacillus subtilis were treated during sporulation with antibiotics (bacitracin and vancomycin) that affect peptidoglycan synthesis. The cells were resistant to the effects of the antibiotics only when the drugs were added about 2 h after the beginning of sporulation. This was about 1 h later than the escape time of a temperature-sensitive sporulation mutant that is unable to complete prespore septation. Similar experiments were done with a mutant temperature sensitive for peptidoglycan synthesis. This showed an escape curve similar to that shown by the antibiotics. When sporulating cells were treated with antibiotics, they produced alkaline phosphatase earlier than normal. Enzyme production was unaffected by inhibition of deoxyribonucleic acid synthesis but was inhibited by chloramphenicol. Sporulation mutants that are unable to make alkaline phosphatase under normal conditions were able to make it in the presence of bacitracin. The alkaline phosphatase made under these conditions was under "sporulation-type" control since its synthesis was repressible by casein hydrolysate and unaffected by inorganic phosphate. When cells were treated with bacitracin in the growth medium as well as in the sporulation medium, alkaline phosphatase synthesis was at the same level as in an untreated control. A number of other antibiotics and surfactants were tested for the ability to cause premature production of the phosphatase of those tested, only taurodeoxycholate whowed this behavior. Moreover, incubation of cells with taurodeoxycholate in the growth medium as well as in the sporulation medium prevented premature enzyme production.  相似文献   

20.
Insertional mutagenesis was used to isolate clones from Streptococcus thermophilus CNRZ368 that were modified in their abilities to tolerate oxidative stress. During this process, two menadione-sensitive clones (6G4 and 18C3) were found to display abnormal cell morphologies and distorted chain topologies and were further studied. Molecular characterization of both 6G4 and 18C3 mutants indicated that they were disrupted in open reading frames homologous to rodA and pbp2b, respectively. Both genes encoded proteins in Escherichia coli that were described as being implicated in peptidoglycan synthesis during the process of cell elongation and to function in determining the rod shape of the cell. This work reports a possible connection between peptidoglycan biosynthesis and oxidative stress defense in S. thermophilus CNRZ368.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号