首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Somatomedin-like activity was measured in the plasma of growing lambs using the porcine costal cartilage disk assay. Plasma concentrations were found to be high initially at 2 days of age (mean potency 1.02 plus or minus 0.13 (SEM) units/ml, n = 4) declined significantly by 8 days of age (mean potency 0.65 plus or minus 0.04 units/ml, n = 5, P less than 0.01, analysis of variance). Thereafter somatomedin-like activity declined slowly to reach its lowest concentration at 146 days of age (mean potency 0.61 plus or minus 0.04 units/ml, n = 5) then it rose slowly until 288 days of age (mean potency 0.61 +/- 0.04 units/ml, n = 5. These changes in somatomedin-like activity were accompanied by high initial plasma concentrations of growth hormone (24.8 plus or minus 4.8 ng/ml, n = 5) which declined under 188 days of age (2.8 plus or minus 0.04 ng/ml, n- 5) and then rose slightly until 288 days of age (13.8 plus or minus 9 ng/ml, n=5). Plasma prolactin concentrations showed a different pattern being low initially (47.8 plus or minus 8.7 ng/ml, n = 5) rising until 146 days of age (203 plus or minus 16 ng/ml, n = 5) and then declining to low value for the rest of the experiment. The relationships between these factors is not clear but somatomedin-like activity shows a pattern in the lamb which is highest when growth is faster (i.e. in the young lamb).  相似文献   

2.
The steroidogenic capacity of young male rats of different ages was studied. Two days prior to sacrifice at 5, 10, 15, 20, 25 and 30 days of age, the rats in treatment groups were given intramuscularly either human chorionic gonadotropin (HCG) at 20 I.U. twice daily/rat or luteinizing hormone (LH) antiserum (AS) at 0.25 ml twice daily/rat. Either saline or normal sheep serum (NSS) was given to control rats. The serum and testicular testosterone concentrations in the control rats averaged 0.85 +/- 0.03 ng/ml and 1.35 +/- 0.06 ng/mg testicular protein, respectively. At day-15 the serum and testicular testosterone concentrations in the HCG-treated rats had significantly increased to 9.30 +/- 0.85 ng/ml and 11.92 ng/mg of testicular protein, respectively. At the same age, the HCG-induced higher levels of serum and testicular testosterone concentrations were significantly reduced to 2.80 +/- 0.70 ng/ml and 6.02 +/- 1.00 ng/mg protein by concomitant administration of LH/AS and HCG. Our results suggest that the testosterone production in response to HCG stimulation is age-related. It was also determined that neutralization of circulating gonadotropin in LH/AS-treated rats decreased the sensitivity of Leydig cells to gonadotropin stimulation. This in vivo model should provide an excellent opportunity for the investigation of the testicular function in developing young males.  相似文献   

3.
Basal concentrations of plasma prolactin in immature, Wistar-Imamichi strain rats at 25, 28 and 31 days of age were 5-12 ng/ml and no prolactin surges were observed in intact immature rats. Plasma progesterone values ranged from 5 to 9 ng/ml, while plasma oestradiol concentrations increased from 11 to 27 pg/ml between 25 and 31 days of age. When oestradiol was administered to ovariectomized 25- or 28-day-old rats by s.c. insertion of an implant, plasma prolactin concentrations at 05:00 and 12:00 h were similarly elevated 3 days after the operation. Oestradiol did not induce a nocturnal prolactin surge. The progesterone implants in ovariectomized rats at 28 days of age or on the first day of oestrus increased plasma prolactin values at 05:00 h. The magnitude of the progesterone-induced prolactin surge was greater when progesterone was given closer to the time of the first ovulation (about 34 days old). Pretreatment with oestradiol amplified the progesterone-induced prolactin surge. Mechanisms causing nocturnal prolactin surges are more sensitive to, and respond over a longer time period, to progesterone in pubertal rats than in adult animals. The results suggest that progesterone initiates the nocturnal surge of prolactin release and that oestradiol can amplify the effects of progesterone.  相似文献   

4.
14-Hydroxy-retro-retinol was previously described as an in vivo and in vitro metabolite of retinol. Furthermore, the retinoid 4-hydroxy-retinol was identified as an endogenous occurring retinoid in the amphibian organism and an in vitro metabolite of retinol. We describe in the present study that 14-hydroxy-retro-retinol and 4-hydroxy-retinol are present in normal neonatal rat serum as endogenous occurring retinoids in normal non-vitamin A supplemented mammals (rats). Both retinoids were detected in serum and liver of neonatal rats at days 3 and 11 after birth. The respective concentrations at day 11 after birth were 41.8 +/- 2.8 ng/ml (serum)/ 104 +/- 6 ng/g (liver) for 4-hydroxy-retinol and 23 +/- 4.6 ng/ml (serum)/ 285 +/- 5 ng/g (liver) for 14-hydroxy-retro-retinol. Both retinoids could not be detected in adult rat serum and liver. From our experiments important physiological functions of these retinoids during postnatal development could be postulated.  相似文献   

5.
W E Sonntag  R L Boyd 《Life sciences》1988,43(16):1325-1330
The purpose of this study was to determine whether the generalized catabolic effects of chronic ethanol may be associated with a decline in plasma levels of insulin-like growth factor-1 (IGF-1). Male Sprague-Dawley rats were fed a liquid diet containing 5% ethanol or pair-fed a diet made isocaloric with maltose-dextrin. Animals were maintained on this diet for either 12 days or 4.5 months. Another group of animals were fed control diet ad libitum for 2 weeks. After 12 days of feeding, plasma concentrations of IGF-1 in ad libitum fed rats were 771 +/- 41 ng/ml which was greater than concentrations in either pair-fed (595 +/- 23 ng/ml) or ethanol-fed (680 +/- 40 ng/ml) rats (P less than 0.05). After 4.5 months of feeding, plasma levels of IGF-1 in ad libitum and pair-fed rats were similar to the 12 day study (736 +/- 56 and 607 +/- 26 ng/ml, respectively). However, a significant decrease in plasma levels of IGF-1 was observed in ethanol-fed animals over the 4.5 month period (551 +/- 28 ng/ml, P less than 0.05). Results of a similar study in rats fed a high-fat diet for 4.5 months were similar to those found with the low-fat diet. These results indicate that 1) dietary restriction of the type routinely used in this pair-feeding regimen decreases plasma levels of IGF-1, 2) chronic ethanol feeding further decreases plasma IGF-1 levels compared to pair-fed rats, 3) the effects of ethanol on IGF-1 concentrations are not modified by dietary fat, and 4) the effects on IGF-1 are not directly dependent on elevated plasma ethanol concentrations. Our results suggest that IGF-1 secreting cells in the liver may be progressively damaged by chronic ethanol feeding.  相似文献   

6.
Serum testosterone, luteinizing hormone (LH), testicular histology and ultrastructure were examined in 91 spontaneously diabetic BB, semi-starved, and control Wistar rats. Between 80-120 days of age serum testosterone was decreased (1.67 +/- .25 vs. 2.95 +/- .48 ng/ml; P less than .05) in the BB rats compared to controls but not different from semi-starved rats. LH values were similar in control and BB rats (49.4 +/- 10.9 vs. 46.8 +/- 6.2 ng/ml). Abnormal lipid droplets were noted within Leydig cells at this period. From 121-150 days of age serum testosterone was lower in BB (1.38 +/- .23 vs. 3.42 +/- .45 vs. 2.94 +/- .81 ng/ml; P less than .05) than controls or semi-starved rats. Serum LH was not significantly higher in controls than in BB rats (63.2 +/- 7.4 vs. 36.6 +/- 12 ng/ml; P = NS). Between 151-200 days of age, there was further lipid accumulation in Leydig cells in the BB rat and occasional epithelial disorganization. After 200 days, serum testosterone decreased (P less than .05) to similar levels in both control and BB rats (1.42 +/- .87 vs. 1.22 +/- .25; P = NS) and was similar in BB rats after 250 days (1.02 +/- .2 ng/ml). After 250 days of age Leydig cell morphology appeared relatively normal but marked alterations were apparent in Sertoli cells, germ cells and morphology of the tubule wall.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Circulating concentrations of thyroxine (T4), triiodothyronine (T3) and reverse triiodothyronine (rT3) were measured in chicks before, during, and after hatching, up to 9 weeks of age. T4 decreased prior to hatching, rose after emergence, and was variable in the immature domestic fowl. T3 increased prior to emergence, decreased until 5 days after hatching, and increased again by 1 week of age, after which the levels declined. Plasma rT3 declined prior to hatching, remained low until 5 days after emergence, and then increased, again, to 0.14-0.19 ng/ml between 1-9 weeks of age.  相似文献   

8.
Changes in serum FSH concentrations in the pig during development   总被引:3,自引:0,他引:3  
Serum FSH concentrations were measured in fetal and prepubertal pigs between 40 days postcoitum and 25 weeks after birth. In addition, serum FSH was estimated in prepubertal, unilaterally cryptorchid, freemartin and castrated pigs. The average serum FSH concentrations in male and female fetuses was low (less than 2 ng/ml) until 80 days p.c. During the remaining fetal period, concentrations in females were elevated (7.9 +/- 0.4 ng/ml) and remained fairly constant after birth (16.3 +/- 0.8 ng/ml). In the male, serum FSH concentrations gradually rose to 22.5 +/- 5.5 ng/ml during the first 3 weeks after birth and declined thereafter. The changes in FSH concentrations in male pigs are reflected in gonadal-development. In contrast, in fetal and prepubertal females, ovarian development seems not to be influenced by changes in serum FSH concentrations. Unilateral cryptorchidism did not affect serum FSH concentrations. After castration, however, concentrations rose significantly. In freemartin pigs concentrations were similar to those in female pigs.  相似文献   

9.
The effect of castration and of administration of charcoal-treated porcine follicular fluid (pFF) containing inhibin-like activity on plasma concentration of gonadotropic hormones was studied in neonatal pigs. Plasma follicle-stimulating hormone (FSH) concentration averaged 25.1 +/- 1.5 ng/ml (mean +/- SEM) in 1-wk-old females and gradually declined to 20.2 +/- 0.7 ng/ml 6 wk later. Ovariectomy did not significantly influence plasma FSH concentration. In males, concentration averaged 8.0 +/- 0.7 ng/ml before castration but rose significantly within 2 days after castration. Injection of luteinizing hormone-releasing hormone (LHRH) did not influence plasma FSH concentrations in intact males, but did in females and in 7-wk-old males castrated at 1 wk. Plasma luteinizing hormone (LH) concentrations in 1-wk-old females (2.2 +/- 0.4 ng/ml) gradually declined and were not influenced by castration. Concentrations of plasma LH in 1-wk-old male piglets (2.8 +/- 0.7 ng/ml) were not significantly influenced by castration within 2 days but were significantly higher 6 wk later. LHRH induced a significant rise in plasma LH concentrations in all animals. Injection of pFF resulted in a decline of plasma FSH concentrations in intact and castrated males and in intact females, but did not influence plasma LH concentrations. These data demonstrate a sex-specific difference in the control of plasma FSH, but not in plasma LH concentration in the neonatal pig. Plasma FSH concentrations, but not plasma LH concentrations, are suppressed by testicular hormones in 1-wk-old piglets. Plasma FSH concentrations can be suppressed in both neonatal male and female pigs by injections of pFF.  相似文献   

10.
Serum collected from unilaterally clipped and unclipped rats before and after treatment with water, garlic or cilazapril and subsequent to measuring blood pressure was assayed for thromboxane-B2 and prostaglandin-E2. The unclipped rats' thromboxane-B2 and prostaglandin-E2 levels were about 23 ng/ml and 2 ng/ml, respectively, and blood pressure was 126+/-3 mmHg. These values were not affected by either water or garlic administration. The clipped rats' thromboxane-B2 and prostaglandin-E2 concentrations were close to 34 ng/ml and 4 ng/ml, respectively, and declined only in response to garlic (by 15 ng/ml and 3 ng/ml) and cilazapril (by 12 ng/ml and 1.5 ng/ml). The blood pressure of these rats was 196+/-7 mmHg and again was reduced only by garlic to 169+/-14 mmHg and cilazapril to 137+/-5 mmHg. The no-treatment and water-treatment readings were significantly higher in the clipped rats. The data suggest that prostanoid system activity in the 2-kidney 1-clip rat is enhanced and mostly toward maintaining the hypertension. Furthermore, the blood pressure lowering effects of garlic and cilazapril might have been induced partially by a greater reduction in the synthesis of vasoconstrictor prostanoids.  相似文献   

11.
Rat testes cytosol treated by Blue Sepharose was employed in a simple and sensitive method for the determination of retinoic acid in the rat serum, liver, and intestine. The method permits the detection of as little as 3 ng of retinoic acid. The mean concentrations of retinoic acid in normal male rats were 33.5 ng/ml of serum, 624.9 ng/g wet wt of liver, and 444.3 ng/g of intestine.  相似文献   

12.
Blood samples were taken once per week for 4-7 weeks from 59 buffalo calves in 14 age groups, 1-2 months apart. Hormones were quantified by validated radioimmunoassays. Values of androstenedione and testosterone were low at birth (141.3 +/- 33.5 pg/ml and 18.0 +/- 2.9 pg/ml, respectively; mean +/- s.d.). Serum androstenedione concentrations gradually increased from birth until 8 months of age and declined (P less than 0.05) thereafter, whereas mean testosterone values were low up to 8 months and then significantly (P less than 0.05) increased as age advanced. LH concentrations averaged 2.12 +/- 0.47 ng/ml at birth. Thereafter, a decline in LH values was followed by an increase between 6 and 15 months of age. We conclude that, in buffalo bull calves, the pubertal period occurs from about 8 to 15 months of age. For pubertal buffalo bulls 15-17 months of age, serum concentrations of androstenedione, testosterone and LH were 156.9 +/- 54.6 pg/ml, 208.4 +/- 93.8 pg/ml and 2.10 +/- 0.70 ng/ml, respectively.  相似文献   

13.
The development of a double antibody radioimmunoassay for a bovine pregnancy-specific protein (pregnancy-specific protein B; PSPB) is presented. By means of this assay, PSPB could be measured in serum of pregnant cows. Five dairy cows were bled throughout gestation to measure serum levels of PSPB. Serum concentrations (means +/- SE) exceeded 1 ng/ml by 30 days postbreeding and increased gradually through three months (9 +/- 0.6 ng/ml), six months (35 +/- 6 ng/ml), and nine months (150 +/- 75 ng/ml) of gestation. Maximum levels of PSPB (542 +/- 144 ng/ml) were reached two days before parturition and then steadily declined to less than 78 ng/ml by 21 days postpartum. In 21 cows bled daily from 15 through 30 days postbreeding, PSPB could be measured in a few cows before and in most cows by 24 days after breeding. In a commercial herd of 102 beef cows, the assay could detect pregnancy earlier and more accurately than the routine method of rectal palpation. This radioimmunoassay measures a unique antigen that, for the first time, provides a serological method for detecting pregnancy in cows.  相似文献   

14.
Serum measurements of chorionic gonadotropin (CG), estradiol (E-2) and progesterone (P) were used to describe patterns of hormonal change in Bolivian squirrel monkeys undergoing spontaneous abortion. During early pregnancy, serum CG levels gradually increased, reaching maximum levels at the end of the first 50 days of pregnancy (range: 200-1964 ug protein/ml). E-2 concentrations also increased to high levels (10-30 ng/ml) toward the end of pregnancy, while serum P remained fairly constant at levels above 100 ng/ml. A gradual decline in serum hormone concentrations was observed in aborting animals. CG levels declined to less than 100 ug protein/ml while E-2 and P decreased to concentrations characteristic of nonpregnant cycling animals, less than 500 pg/ml and 20 ng/ml respectively. The data suggest that two weekly measurements of CG and E-2 could be used to identify monkeys undergoing abortion and those which have already aborted.  相似文献   

15.
Simultaneous measurements were made by radioimmunoassay of testosterone, 17β-hydroxy-5 a -androstan-3-one (DHT), 5 a -androstane-3 a, 17 β -diol (3a-diol), and 5 a-androstane-3 β, 17β-diol (3β-diol) in the testicular venous plasma (TVP) and peripheral plasma (PP) of 30, 45, and 55 day old rats. At 30 days of age, the preponderant androgen in both plasmas was 3a-diol but testosterone predominated by day 55. Testosterone levels increased with age in both TVP (6.39, 15.08, and 54.93 ng/ml on days 30, 45, and 55 respectively) and PP (0.13, 0.56, and 1.02 ng/ml on days 30, 45 and 55 respectively) whereas 3a-diol concentrations decreased in TVP (48.07 ng/ml, day 30; 24.85 ng/ml, day 55) though not peripherally (range: 0.41–0.52 ng/ml). DHT was low in both TVP and PP and appeared to rise only slightly although the increase was not statistically significant. Levels of 3β-diol remained low and unchanged. These observations suggest that the total androgen content of the venous effluent from the prepubertal rat test is is quite high and that significant changes in peripheral interconversions of androgens are occurring during sexual maturation.  相似文献   

16.
Diabetes, starvation and various hormonal treatments are known to alter drastically carnitine concentrations in the body. Before the mechanisms controlling carnitine metabolism could be determined, it was necessary to establish normal carnitine concentrations in both sexes at different ages. Carnitine was assayed in plasma, liver, heart and skeletal muscle of rats from birth to weaning. The plasma carnitine increased rapidly during the first 2 days after birth. Carnitine in both heart and skeletal muscle increased, whereas liver concentrations declined during the first week of life. A carnitine-free diet containing sufficient precursors for carnitine biosynthesis was fed to weanling rats. Groups of ten male and ten female rats were killed each week for 10 consecutive weeks. Carnitine was determined in plasma, liver, heart, skeletal muscle, urine and epididymis in the male. There was no difference in carnitine concentrations between the sexes at weaning. Plasma, heart and muscle concentrations were higher in adult male rats than in adult females. However, liver carnitine and urinary carnitine concentrations were higher in adult female than in adult male rats. The epididymal carnitine concentration increased very rapidly during 50 to 70 days of age and the differences in carnitine concentrations between the sexes also became apparent during this time. Thus both the age and the sex of the human subject or experimental animal must be considered when investigating carnitine metabolism.  相似文献   

17.
Male (N = 8) and female (N = 8) pigs were assigned to receive saline or a potent GnRH antagonist ([Ac-D2Nal1,D4-Cl-Phe2,D-Trp3,D-Arg6, D-Ala10]- GnRH*HOAc; 1 mg/kg body weight) at 14 days of age. The GnRH antagonist caused LH to decline (P less than 0.01) from 1.7 ng/ml at 0 h to less than 0.5 ng/ml during 4-32 h in males and females. Concentrations of FSH in gilts declined slowly from 75 +/- 8 to 56 +/- 5 ng/ml (P less than 0.05) at 32 h. In males FSH was low (5.7 +/- 0.5 ng/ml) at 0 h and did not change significantly. To observe the effect of long-term treatment with GnRH antagonist, 10 male and 10 female pigs, 3 days of age, were treated with saline or 1 mg GnRH antagonist per kg body weight every 36 h for 21 days. Concentrations of LH were reduced (P less than 0.01) to 0.2-0.4 ng/ml throughout the experimental period in male and female piglets treated with GnRH antagonist. Plasma FSH increased in control females, but remained suppressed (P less than 0.001) in females treated with GnRH antagonist. Treatment with the GnRH antagonist suppressed FSH levels in males on Days 8 and 16 (P less than 0.05), but not on Day 24. Treatment of females with the GnRH antagonist did not influence (P greater than 0.10) oestradiol-17 beta concentrations. Administration of GnRH antagonist to males suppressed testosterone and oestradiol-17 beta values (P less than 0.01) and reduced testicular weight (P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Whisnant CS  Burns PJ 《Theriogenology》2002,58(6):1229-1235
Two trials were designed to test whether a single treatment with a microsphere formulation of progesterone (P) could simulate the luteal phase of the estrous cycle and lead to estrus and subsequent luteal development. The first experiment was to characterize the pattern of serum P concentrations and estrus in cows treated with a microsphere formulation (P + E) that contained 625 mg P and 50 mg estradiol (E). Four cows with palpable corpora lutea were treated with 25 mg prostaglandin F2 m. Each cow was given P + E (i.m.) 12 h later. Tail vein blood samples were taken on Days 1 and 2 following P + E treatment and then three times weekly for 24 days. Serum P increased from 0.8 +/- 0.1 ng/ml at P + E treatment to 4.7 +/- 0.6 ng/ml on Day 1, declined gradually to 4.1 +/- 0.3 ng/ml on Day 7 and then declined more rapidly to 0.6 +/- 0.1 ng/ml on Day 13. Treated cows showed estrus 16.25 +/- 0.7 days after P + E treatment. Thereafter, serum P increased beginning on Day 20 after P + E treatment, as expected following estrus. In Experiment 2, Angus and Simmental heifers (10.5-11.5 months of age) were administered i.m. either the vehicle (controls), E (50 mg), P (625 mg) or P + E (n = 13 per group). While treatment with E resulted in behavioral estrus (1-2 days after treatment) in each treated heifer, it did not (P > 0.5) initiate estrous cycles as indicated by subsequent increased serum P. In contrast, the P and P + E treatments increased (P < 0.05) the proportion (11/13) of heifers that showed estrus by 21 days after treatment followed by elevated serum P. We conclude that the microsphere formulation of P simulated the pattern of serum P concentrations during the luteal phase of the estrous cycle and initiated estrous cycles in peripubertal heifers with or without E.  相似文献   

19.
We have examined the effects of decreasing intratesticular testosterone concentration and of decreasing germ cell number on levels of transferrin mRNA and sulfated glycoprotein (SGP)-2 mRNA in the adult rat testis. Intact rats received implants of testosterone- and estradiol-filled capsules to suppress LH secretion from the pituitary, thereby suppressing Leydig cell testosterone production. The levels of intratesticular testosterone declined 70% to 20 ng/ml within 3 days, were reduced further to approximately 15 ng/ml by 14 days, and subsequently reached a minimum of about 10 ng/ml. In contrast, the number of elongated spermatids per testis remained unchanged through 14 days, then declined to fewer than 20% of normal between 14 and 28 days, and reached zero by 56 days postimplantation. Likewise, both pachytene spermatocytes and round spermatids declined only after 14 days postimplantation. Northern blots of testicular RNA showed that Sertoli cell transferrin mRNA per testis decreased markedly between 14 and 28 days postimplantation. However, SGP-2 mRNA per testis was unchanged over the time course of the experiment. The decrease in transferrin mRNA, concomitant with germ cell loss, suggests that this mRNA is regulated by the number of germ cells in the testis and not directly by testosterone. In contrast, the constant level of SGP-2 mRNA in the face of reduced intratesticular testosterone and the subsequent loss of germ cells suggests that this mRNA is constitutively maintained in the adult rat testis.  相似文献   

20.
Plasma FSH and LH in prepubertal Booroola ewe lambs   总被引:1,自引:0,他引:1  
Basal plasma concentrations (four 30-min samples) and GnRH-induced release of gonadotrophins were measured every 15 days between 30 and 90 days and at 110 days of age in Merino ewe lambs from the prolific Booroola ('B') flock (n = 18-23), the medium prolificacy ('T') flock (n = 14-20), and the 'O' flock (n = 4-8) of low prolificacy. At ages of 30 and 45 days B ewe lambs had mean basal plasma FSH concentrations of 145 and 122 ng/ml which were significantly higher (P less than 0.01) than those seen in T (45 and 53 ng/ml), and O (39 and 38 ng/ml) flock ewes. Between 60 and 110 days of age there were no significant differences between genotypes. The increment in FSH concentrations above basal levels induced by the subcutaneous injection of 100 micrograms synthetic GnRH was only significantly (P less than 0.05) greater in B than T and O genotype ewe lambs at 110 days of age but not at other ages. The basal plasma FSH differences between the B, T and O genotypes at 30 and 45 days of age were not consistently related to the size of litter in which lambs were born. At 30 days of age the mean plasma LH concentration of B, T, and O flock lambs were 2.6 +/- 0.5, 1.2 +/- 0.6 and 0.7 +/- 0.8 ng/ml respectively. These differences were not significant. At later ages there were also no significant differences between the genotypes with respect to basal LH, and the increase in LH induced by exogenous GnRH was always similar for the three genotypes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号