首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
3,7-Diarylsubstituted imidazopyridines were designed and developed as a new class of KDR kinase inhibitors. A variety of imidazopyridines were synthesized and potent inhibitors of KDR kinase activity were identified with good aqueous solubility.  相似文献   

2.
Pyrrolotriazine dual EGFR/HER2 kinase inhibitors with a 5-((4-aminopiperidin-1-yl)methyl) solubilizing group were found to be superior to analogs with previously reported C-5 solubilizing groups. New synthetic methodology was developed for the parallel synthesis of C-4 analogs with the new solubilizing group. Interesting new leads were evaluated in tumor xenograft models and the C-4 aminofluorobenzylindazole, 1c, was found to exhibit the best antitumor activity. It is hypothesized that this solubilizing group extends into the ribose-phosphate portion of the ATP binding pocket and enhances the binding affinity of the inhibitor.  相似文献   

3.
As part of our investigation into pyrazolo[1,5-a]pyridines as novel p110α selective PI3 kinase inhibitors, we report a range of analogues with improved aqueous solubility by the addition of a basic amine. The compounds demonstrated comparable p110α potency and selectivity to earlier compounds but with up to 1000× greater aqueous solubility, as the hydrochloride salts. The compounds also displayed good activity in a cellular assay of PI3 kinase activity.  相似文献   

4.
《Translational oncology》2020,13(2):221-232
Simultaneous inhibition of multiple molecular targets is an established strategy to improve the continuance of clinical response to therapy. Here, we screened 49 molecules with dual nanomolar inhibitory activity against BRD4 and PLK1, best classified as dual kinase-bromodomain inhibitors, in pediatric tumor cell lines for their antitumor activity. We identified two candidate dual kinase-bromodomain inhibitors with strong and tumor-specific activity against neuroblastoma, medulloblastoma, and rhabdomyosarcoma tumor cells. Dual PLK1 and BRD4 inhibitor treatment suppressed proliferation and induced apoptosis in pediatric tumor cell lines at low nanomolar concentrations. This was associated with reduced MYCN-driven gene expression as assessed by RNA sequencing. Treatment of patient-derived xenografts with dual inhibitor UMB103 led to significant tumor regression. We demonstrate that concurrent inhibition of two central regulators of MYC protein family of protooncogenes, BRD4, and PLK1, with single small molecules has strong and specific antitumor effects in preclinical pediatric cancer models.  相似文献   

5.
This letter describes the development of potent, allosteric dual Akt1 and Akt2 inhibitors with improved aqueous solubility (approximately 18 mg/mL) that translates into enhanced cell activity and caspase-3 induction.  相似文献   

6.
This Letter describes the discovery and key structure–activity relationship (SAR) of a series of 2-aminobenzimidazoles as potent Aurora kinase inhibitors. 2-Aminobenzimidazole serves as a bioisostere of the biaryl urea residue of SNS-314 (1c), which is a potent Aurora kinase inhibitor and entered clinical testing in patients with solid tumors. Compared to SNS-314, this series of compounds offers better aqueous solubility while retaining comparable in vitro potency in biochemical and cell-based assays; in particular, 6m has also demonstrated a comparable mouse iv PK profile to SNS-314.  相似文献   

7.
The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway is related to cellular activities. Abnormalities of this signaling pathway were discovered in various cancers, including hepatocellular carcinoma (HCC). The PI3K/mTOR dual inhibitors were proposed to have enhanced antitumor efficacies by targeting multiple points of the signaling pathway. We synthesized a series of propynyl-substituted benzenesulfonamide derivatives as PI3K/mTOR dual inhibitors. Compound 7k (NSC781406) was identified as a highly potent dual inhibitor, which exhibited potent tumor growth inhibition in the hepatocellular carcinoma BEL-7404 xenograft model. Compound 7k may be a potential therapeutic drug candidate for HCC.  相似文献   

8.
Structure–activity relationship studies of diaryl amine-type KSP inhibitors were carried out. Diaryl amine derivatives with a pyridine ring or urea group were less active when compared with the parent carboline and carbazole derivatives. Optimization studies of a lactam-fused diphenylamine-type KSP inhibitor revealed that the aniline NH group and 3-CF3 phenyl group were indispensable for potent KSP inhibition. Modification with a seven-membered lactam-fused phenyl group and a 4-(trifluoromethyl)pyridin-2-yl group improved aqueous solubility while maintaining potent KSP inhibitory activity. From these studies, we identified novel diaryl amine-type KSP inhibitors with a favorable balance of potency and solubility.  相似文献   

9.
Solubilizing groups have been frequently appended to kinase inhibitor drug molecules when solubility is insufficient for pharmaceutical development. Such groups are usually located at substitution sites that have minimal impact on target activity. In this report we describe the incorporation of solubilizing groups in a class of Rho kinase (ROCK) inhibitors that not only confer improved solubility, but also enhance target potency and selectivity against a closely related kinase, PKA.  相似文献   

10.
Four series of dihydropyrazolo[3,4-b]pyridines and benzo[4,5]imidazo[1,2-a]pyrimidines were designed and synthesized as dual KSP and Aurora-A kinase inhibitors for anti-cancer agents by introducing some fragments of Aurora-A kinase inhibitors into our KSP inhibitor CPUYL064. A total of 19 target compounds were evaluated by two related enzyme inhibition assays and a cytotoxicity assay in vitro. The results showed that some target compounds could inhibit both enzymes, and several of them showed significant inhibition activity against HCT116 cell line. Despite showing moderate KSP and Aurora-A kinase inhibition, the lead compounds 6a and 6e displayed significant cytotoxic activity in the micromolar range, especially against the HCT116 cell line and HepG2 cell line. The results may be useful for developing a new class of inhibitors having a dual function, KSP inhibition and Aurora-A kinase inhibition, for the treatment of cancer.  相似文献   

11.
A single crystal was obtained of a lead B-Raf(V600E) inhibitor with low aqueous solubility. The X-ray crystal structure revealed hydrogen-bonded head-to-tail dimers formed by the pyrazolopyridine and sulfonamide groups of a pair of molecules. This observation suggested a medicinal chemistry strategy to disrupt crystal packing and reduce the high crystal lattice energy of alternative inhibitors. Both a bulkier group at the interface of the dimer and an out-of-plane substituent were required to decrease the compound's melting point and increase aqueous solubility. These substituents were selected based on previously developed structure-activity relationships so as to concurrently maintain good enzymatic and cellular activity against B-Raf(V600E).  相似文献   

12.
A series of novel 6-methylene-bridged uracil derivatives have been prepared as inhibitors of human thymidine phosphorylase (TP). To enhance the in vivo antitumor activity of fluorinated pyrimidine 2'-deoxyribonucleosides such as 2'-deoxy-5-(trifluoromethyl)uridine (F(3)dThd), a potent TP inhibitor preventing their degradation to an inactive compound, has become a target of medicinal chemistry. We present here the synthesis and evaluation of novel human TP inhibitors. Introduction of an N-substituted aminomethyl side chain at the 6-position of 5-chlorouracil has improved water solubility and enhanced inhibitory activity compared with the known TP inhibitor, 6-amino-5-chlorouracil. Compound 42 was reasonably well absorbed in mice after oral administration. When combined with F(3)dThd, compound 42 exerted its TP inhibitory potency by increasing the maximum plasma concentrations of the former as evidenced in experiments with monkeys. Positive changes in pharmacokinetic profile were accompanied by the enhanced in vivo antitumor activity of this combination when compared to F(3)dThd alone, in mice bearing human tumor xenografts. Both biochemical and pharmacological effects appeared to fit the concept as anticipated.  相似文献   

13.
A series of new unsymmetrical C-substituted ethylenediamines was prepared. The substituents included branched chain alkyl, cycloalkyl, and phenyl groups. Twenty-eight new platinum compounds were prepared from these diamines and were tested for activity against leukemia L1210. The cycloalkyl substituted ethylenediamines produced especially active compounds. The phenyl-substituted analogs were generally low in activity. The activity of the complexes was compared to aqueous solubility, organic solubility, and amphipathic character. There was good indication that antitumor activity increased as aqueous solubility and hydrophilic character of the molecules increased.  相似文献   

14.
Rudrabhatla P  Rajasekharan R 《Biochemistry》2004,43(38):12123-12132
Serine/threonine/tyrosine (STY) protein kinase from peanut is developmentally regulated and is induced by abiotic stresses. In addition, STY protein kinase activity is regulated by tyrosine phosphorylation. Kinetic mechanism of plant dual specificity protein kinases is not studied so far. Recombinant STY protein kinase occurs as a monomer in solution as shown by gel filtration chromatography. The relative phosphorylation rate of kinase against increasing enzyme concentrations follows a first-order kinetics indicating an intramolecular phosphorylation mechanism. Moreover, the active recombinant STY protein kinase could not transphosphorylate a kinase-deficient mutant of STY protein kinase. Molecular docking studies revealed that the tyrosine kinase inhibitors bind the protein kinase at the same region as ATP. STY protein kinase activity was inhibited by the tyrosine kinase inhibitors, and the inhibitor potency series against the recombinant STY protein kinase was tyrphostin > genistein > staurosporine. The inhibition constant (K(i)), and the IC(50) value of STY protein kinase for tyrosine kinase inhibitors with ATP and histone are discussed. All the inhibitors competed with ATP. Genistein was an uncompetitive inhibitor with histone, whereas staurosporine and tyrphostin were linear mixed type noncompetitive inhibitors with histone. Molecular docking and kinetic analysis revealed that Y148F mutant of the "ATP-binding loop" and Y297F mutant of the "activation loop" showed a dramatic increase in K(i) values for genistein and tyrphostin with respect to wild-type STY protein kinase. Data presented here provide the direct evidence on the mechanism of inhibition of plant protein kinases by tyrosine kinase inhibitors. This study also suggests that tyrosine kinase inhibitors may be useful in unraveling the plant tyrosine phosphorylation signaling cascades.  相似文献   

15.
Protein kinase inhibitors have been developed and applied as antitumor drugs. The majority of these inhibitors are derived from ATP analogs with limited specificity towards the kinase target. Here we present our proof-of-principle study on peptide inhibitors for kinases. Two peptides were selected by phage display against double-stranded RNA-dependent protein kinase (PKR). In vitro assay revealed that these peptides exhibit an inhibitory effect on PKR-catalyzed phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2α). The peptides also interrupt PKR activity in cells infected by viruses, as PKR activation is one of the hallmarks of host response to viral infection. Kinetic study revealed that one of the peptides, named P1, is a competitive inhibitor for PKR, while the other, named P2, exhibits a more complicated pattern of inhibition on PKR activity. Fragment-based docking of the PKR-peptide complex suggests that P1 occupies the substrate pocket of PKR and thus inhibits the binding between PKR and eIF2α, whereas P2 sits near the substrate pocket. The computational model of PKR-peptide complex agrees with their kinetic behavior. We surmise that peptide inhibitors for kinases have higher specificity than ATP analogs, and that they provide promising leads for the optimization of kinase inhibitors.  相似文献   

16.
《MABS-AUSTIN》2013,5(1):192-198
Targeted therapies of malignancies currently consist of therapeutic monoclonal antibodies and small molecule kinase inhibitors. The combination of these novel agents raises the issue of potential antagonisms. We evaluated the potential effect of 4 kinase inhibitors, including the Bruton tyrosine kinase inhibitor ibrutinib, and 3 PI3K inhibitors idelalisib, NVP-BEZ235 and LY294002, on the effects of the 3 monoclonal antibodies, rituximab and obinutuzumab (directed against CD20) and trastuzumab (directed against HER2). We found that ibrutinib potently inhibits antibody-dependent cell-mediated cytotoxicity exerted by all antibodies, with a 50% inhibitory concentration of 0.2 microM for trastuzumab, 0.5 microM for rituximab and 2 microM for obinutuzumab, suggesting a lesser effect in combination with obinutuzumab than with rituximab. The 4 kinase inhibitors were found to inhibit phagocytosis by fresh human neutrophils, as well as antibody-dependent cellular phagocytosis induced by the 3 antibodies. Conversely co-administration of ibrutinib with rituximab, obinutuzumab or trastuzumab did not demonstrate any inhibitory effect of ibrutinib in vivo in murine xenograft models. In conclusion, some kinase inhibitors, in particular, ibrutinib, are likely to exert inhibitory effects on innate immune cells. However, these effects do not compromise the antitumor activity of monoclonal antibodies in vivo in the models that were evaluated.  相似文献   

17.
Mitogen/extracellular signal-regulated kinase (MEK) and phosphoinositide 3-kinase (PI3Kα) are considered to be promising targets for the development of anticancer therapeutics. We report the first example of the successful application of structure-based virtual screening to identify novel inhibitors of MEK with IC(50) values ranging from 1 to 25 μM. One of the four newly identified MEK inhibitors was found to be also a potent inhibitor of PI3Kα with submicromolar inhibitory activity (IC(50)=0.3 μM). Because this dual inhibitor was screened for having desirable physicochemical properties as a drug candidate as well as the high inhibitory activities against MEK and PI3Kα, it warrants further development through structure-activity relationship (SAR) studies to optimize the inhibitory and anticancer activities. Structural features relevant to the stabilization of the dual inhibitor in the ATP-binding sites of MEK1 and PI3Kα are addressed in detail.  相似文献   

18.
A series of 2-hydroxyarylidene-4-cyclopentene-1,3-diones were designed, synthesized, and evaluated with respect to protein tyrosine kinase (PTK) inhibition, mitochondrial toxicity, and antitumor activity. Our results show that the cyclopentenedione-derived TX-1123 is a more potent antitumor tyrphostin and also shows lower mitochondrial toxicity than the malononitrile-derived AG17, a potent antitumor tyrphostin. The O-methylation product of TX-1123 (TX-1925) retained its tyrphostin-like properties, including mitochondrial toxicity and antitumor activities. However, the methylation product of AG17 (TX-1927) retained its tyrphostin-like antitumor activities, but lost its mitochondrial toxicity. Our comprehensive evaluation of these agents with respect to protein tyrosine kinase inhibition, mitochondrial inhibition, antitumor activity, and hepatotoxicity demonstrates that PTK inhibitors TX-1123 and TX-1925 are more promising candidates for antitumor agents than tyrphostin AG17.  相似文献   

19.
A novel, potent and selective quinazolinone series of inhibitors of p38α MAP kinase has been identified. Modifications designed to address the issues of poor aqueous solubility and high plasma protein binding as well as embedded aniline functionalities resulted in the identification of a clinical candidate N-cyclopropyl-4-methyl-3-[6-(4-methylpiperazin-1-yl)-4-oxoquinazolin-3(4H)-yl]benzamide (AZD6703). Optimisation was guided by understanding of the binding modes from X-ray crystallographic studies which showed a switch from DFG 'out' to DFG 'in' as the inhibitor size was reduced to improve overall properties.  相似文献   

20.
We review in this report our strategy and tactics for the design of 2-hydroxyarylidene-4-cyclopentene-1,3-diones as protein tyrosine kinase (PTK) inhibitors having low mitochondrial toxicities and/or hypoxia-targeting function. We based our synthetic design on an innovative pharmacophore, 2-methylene-4-cyclopentene-1,3-dione. We first showed the effectiveness of this pharmacophore in the development of 2-methylene-4-cyclopentene-1,3-dione as PTK inhibitor that have lower mitochondrial toxicity than the potent PTK inhibitor tyrphostin AG17. Our results show that the cyclopentenedione-derived TX-1123 is a more potent antitumor tyrphostin and also shows lower mitochondrial toxicity than the malononitrile-derived AG17. The O-methylation product of TX-1123 (TX-1925) retained its tyrphostin-like properties, including mitochondrial toxicity and antitumor activities. However, the methylation product of AG17 (TX-1927) retained its tyrphostin-like antitumor activities, but lost its mitochondrial toxicity. Our comprehensive evaluation of these agents with respect to PTK inhibition, mitochondrial inhibition, antitumor activity, and hepatotoxicity demonstrates that PTK inhibitors TX-1123 and TX-1925 are more promising candidates for antitumor agents than tyrphostin AG17. Secondly, as a further investigation of the promising power of this 4-cyclopentene-1,3-dione as an innovative pharmacophore, we discuss our strategy of development of hypoxia-targeting PTK inhibitor TX-1123 analogues, 2-nitroimidazole-aminomethylenecyclopentenediones, such as TX-2036, for cancer treatment, especially for pancreatic cancers, which have a high level of hypoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号