首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The bZIP proteins, GBF1, HY5 and HYH, play important regulatory roles in Arabidopsis seedling development. Whereas GBF1 plays a dual regulatory role, HY5 and HYH act as positive regulators of photomorphogenesis. The molecular and functional relations of GBF1 with HY5 and HYH in photomorphogenesis have recently been demonstrated. However, the possible interaction of bZIP domain of each of these proteins remains to be investigated. In this study, our results suggest that bZIP domains of HY5 and HYH are able to interact with the bZIP domain of GBF1. Taken together with the earlier study,9 these results suggest that the N-terminal domain of GBF1 has an inhibitory effect on its interaction with HY5 and HYH.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
In Arabidopsis, stamen elongation, which ensures male fertility, is controlled by the auxin response factor ARF8, which regulates the expression of the auxin repressor IAA19. Here, we uncover a role for light in controlling stamen elongation. By an extensive genetic and molecular analysis we show that the repressor of light signaling COP1, through its targets HY5 and HYH, controls stamen elongation, and that HY5 – oppositely to ARF8 – directly represses the expression of IAA19 in stamens. In addition, we show that in closed flower buds, when light is shielded by sepals and petals, the blue light receptors CRY1/CRY2 repress stamen elongation. Coherently, at flower disclosure and in subsequent stages, stamen elongation is repressed by the red and far‐red light receptors PHYA/PHYB. In conclusion, different light qualities – sequentially perceived by specific photoreceptors – and the downstream COP1–HY5/HYH module finely tune auxin‐induced stamen elongation and thus male fertility.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
Yoon MK  Shin J  Choi G  Choi BS 《Proteins》2006,65(4):856-866
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号