首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The newly synthesized benzimidazole compounds were suggested to be inhibitors of Plasmodium falciparum plasmepsin II and human cathepsin D by virtual screening of an internal library of synthetic compounds. This was confirmed by enzyme inhibition studies that gave IC(50) values in the low micromolar range (2-48μM). Ligand docking studies with plasmepsin II predicted binding of benzimidazole compounds at the center of the extended substrate-binding cleft. According to the plausible mode of binding, the pyridine ring of benzimidazole compounds interacted with S1' subsite residues whereas the acetophenone moiety was in contact with S1-S3 subsites of plasmepsin II active center. The benzimidazole derivatives were evaluated for capacity to inhibit the growth of intraerythrocytic P. falciparum in culture. Four benzimidazole compounds inhibited parasite growth at ?3μM. The most active compound 10, 1-(4-phenylphenyl)-2[2-(pyridinyl-2-yl)-1,3-benzdiazol-1-yl]ethanone showed an IC(50) of 160nM. The substitution of a phenyl group and a chlorine atom at the para position of the acetophenone moiety were shown to be crucial for antiplasmodial activity.  相似文献   

2.
Citral ( 1a ), a bioactive component of Cymbopogon citratus (lemongrass) could be isolated and semi-synthetic analogs synthesized with improved therapeutic properties. Herein we first report describes citral ( 1a ) as a primary material for the synthesis of benzimidazole derivatives between various o-phenylenediamines ( 2a – l ) in the presence of Diisopropylethylamine (DIPEA) as a commercially available environmentally benign base, ethanol as a green solvent and the yield of all benzimidazole derivatives ( 3a – l ) was between 68–76 %; The semi-synthetically prepared benzimidazole derivatives ( 3a – l ) were assessed for their anti-bacterial and anti-fungal properties. The benzimidazole compounds ( 3a – b , and 3g – j ) exhibit good anti-microbial activity. In addition, in silico study was carried out to determine the specific binding affinity of the diamine halogen substituted benzimidazole derivatives to the specific target proteins. In silico analysis revealed a high correlation between docking results and experimental results. Finally, benzimidazole demonstrated significant antibacterial and antifungal activity. Zebrafish embryos were subjected to In vivo toxicological test found that all of the benzimidazole compounds ( 3a – l ) were non-toxic and had low embryotoxicity after 96 h, with an LC50 of 36.425 μg, which could facilitate the design of novel antimicrobial agents using a cost-effective method.  相似文献   

3.
Glycosidases play an important role in a wide range of physiological and pathological conditions, and have become potential targets for the discovery and development of agents useful for the treatment of diseases such as diabetes, cancer, influenza, and even AIDS. In this study, several benzimidazole derivatives were prepared from o-phenylenediamine and aromatic and heteroaromatic carboxaldehydes in very good yields, using PdCl2(CH3CN)2 as the most efficient catalyst. Synthesized compounds were assayed for their activity on yeast and rat intestinal α-glucosidase inhibition and cytotoxic activity against colon carcinoma cell line HT-29. Compound 3e exhibited 95.6% and 75.3% inhibition of yeast and rat intestinal α-glucosidase enzyme, while showing 74.8% cytotoxic activity against the HT-29 cell line at primary screening concentrations of 2.1?mM for yeast and rat intestinal α-glucosidase enzyme and 0.2?mM for cytotoxic activity against the HT-29 cell line, respectively. Compound 3c displayed 76% and 34.4% inhibition of yeast and rat intestinal α-glucosidase enzyme, and 80.4% cytotoxic activity against the HT-29 cell line at similar primary screening concentrations. The IC50 value for the most potent intestinal α-glucosidase inhibitor compound 3e was found to be 99.4?μM. The IC50 values for the most active cytotoxic compounds 3c and 3e were 82?μM and 98.8?μM, respectively. Both compounds displayed significant antihyperglycemic activity in starch-induced postprandial hyperglycemia in rats. This is the first report assigning yeast and rat intestinal α-glucosidase enzyme inhibition, cytotoxic activity against the HT-29 cell line, and antihyperglycemic activity to benzimidazole compounds 3c and 3e.  相似文献   

4.
Dipeptidyl peptidase III (DPP III), also known as enkephalinase B, is a zinc-hydrolase with an indicated role in the mammalian pain modulatory system. In order to find a potent antagonist of this enzyme, we synthesized and screened the effect of a small set of benzimidazole derivatives on its activity. To improve the inhibitory potential, a cyclobutane ring was introduced as rigid conformation support to the diamidino substituted dibenzimidazoles. Two such compounds (1' and 4') from the group of cyclobutane derivatives containing amidino-substituted benzimidazole moieties, obtained by photochemical cyclization in water and by respecting rules of the "green chemistry" approach, were found to be strong DPP III inhibitors, with IC(50) value below 5 microM. Compound 1' displayed time-dependent inhibition towards human DPP III, characterized by the second-order rate constant of 6924+/-549 M(-1)min(-1) (K(i)=0.20 microM). The peptide substrate valorphin protected the enzyme from inactivation by 1'.  相似文献   

5.
A series of new N‐substituted benzimidazole derivatives was synthesized and their antifungal activity against Candida albicans was evaluated. The chemical step included synthesis of appropriate ketones containing benzimidazole ring, reduction of ketones to the racemic alcohols, and acetylation of alcohols to the esters. All benzimidazole derivatives were obtained with satisfactory yields and in relatively short times. All synthesized compounds exhibit significant antifungal activity against Candida albicans 900028 ATCC (% cell inhibition at 0.25 μg concentration > 98%). Additionally, racemic mixtures of alcohols were separated by lipase‐catalyzed kinetic resolution. In the enzymatic step a transesterification reaction was applied and the influence of a lipase type and solvent on the enantioselectivity of the reaction was studied. The most selective enzymes were Novozyme SP 435 and lipase Amano AK from Pseudomonas fluorescens (E > 100). Chirality 28:347–354, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
A series of novel benzimidazole derivatives were designed, synthesized, and evaluated for their activities against four kinds of enteroviruses, that is, Coxsackie virus A16, B3, B6 and Enterovirus 71 in VERO cells. Strong activities against enterovirus replication and low cytotoxicities were observed in these benzimidazoles generally. The most promising compound was (l)-2-(pyridin-2-yl)-N-(2-(4-nitrophenyl)pentan-3-yl)-1H-benzimidazole-4-carboxamide (16), with a high antiviral potency (IC(50)=1.76 μg/mL) and a remarkable selectivity index (328). These compounds were selected for further evaluation as novel enterovirus inhibitors.  相似文献   

7.
Nine cyclic diarylheptanoids, 1-9, including two new compounds, i.e., 9-oxoacerogenin A (8) and 9-O-β-D-glucopyranosylacerogenin K (9), along with three acyclic diarylheptanoids, 10-12, and four phenolic compounds, 13-16, were isolated from a MeOH extract of the bark of Acer nikoense (Aceraceae). Acid hydrolysis of 9 yielded acerogenin K (17) and D-glucose. Two of the cyclic diarylheptanoids, acerogenin A (1) and (R)-acerogenin B (5), were converted to their ether and ester derivatives, 18-24 and 27-33, respectively, and to the dehydrated derivatives, 25, 26, 34, and 35. Upon evaluation of compounds 1-16 and 18-35 for their inhibitory activities against melanogenesis in B16 melanoma cells, induced with α-melanocyte-stimulating hormone (α-MSH), eight natural glycosides, i.e., six diarylheptanoid glycosides, 2-4, 6, 9, and 12, and two phenolic glycosides, 15 and 16, exhibited inhibitory activities with 24-61% reduction of melanin content at 100?μM concentration with no or almost no toxicity to the cells (88-106% of cell viability at 100?μM). In addition, when compounds 1-16 and 18-35 were evaluated for cytotoxic activity against human cancer cell lines, two natural acyclic diarylheptanoids, 10 and 11, ten ether and ester derivatives, 18-22 and 27-31, and two dehydrated derivatives, 34 and 35, exhibited potent cytotoxicities against HL60 human leukemia cell line (IC(50) 8.1-19.3?μM), and five compounds, 10, 11, 20, 29, and 30, against CRL1579 human melanoma cell line (IC(50) 10.1-18.4?μM).  相似文献   

8.
Semisynthetic analogues of insulin were prepared from derivatives of desoctapeptide-(B23-30)-insulin (DOI). A1, B1-(Boc)2-DOI (di-Boc-DOI) was converted to A1, B1-(Boc)2-DOI-B22-phenylhydrazide (di-Boc-DOI-NHNH-C6H5) by the trypsin-catalyzed addition of phenylhydrazine in aqueous organic solvents at pH 6.5 [Canova-Davis, E., & Carpenter, F. H. (1981) Biochemistry 20, 7053-7058]. Treatment of di-Boc-DOI-NHNH-C6H5 with BNPS-skatole produced the phenyldiimide. The latter was coupled with a variety of protected peptides that, after removal of protecting groups, yielded the following compounds whose biological activities were compared to that of insulin in binding, in stimulation of hexose transport (), and in the stimulation of lipogenesis [)), in terms of percent of insulin activity, all in the isolated epididymal fat cell: di-Boc-DOI 0.2, (0.1), [0.2]; di-Boc-DOI-NHNH-C6H5 0.5, (0.2), [0.5]; DOI 0.2, (0.2), [0.1]; DOI-(Gly)B23 0.2, (0.2), [0.1]; DOI-(Gly-Phe)B23-24 6.3, (6.3), [8.0]; DOI-(Gly-Phe-Phe)B23-25 17.0, (25.6), [24.7]; DOI-(Gly-Phe-Phe-Tyr)B23-26 59.0, (50.0), [69.0]. The semisynthetic derivatives represent a stepwise readdition of the aromatic residues near the C terminus of the B chain. A given analogue demonstrated comparable activity in all three biological assays. The results indicate that the stepwise addition of aromatic residues to the B-chain C terminus of DOI produces an increase in insulin-like activity. The biological activity of DOI-(Gly-Phe-Phe-Tyr)B23-26, the derivative in which the aromatic region has been completely reassembled, is the same order of magnitude as that of insulin.  相似文献   

9.
Some fused heterocyclic compounds as eukaryotic topoisomerase II inhibitors   总被引:2,自引:0,他引:2  
Our previously synthesized 37 compounds, which are 2,5,6-substituted benzoxazole, benzimidazole, benzothiazole, and oxazolo(4,5-b)pyridine derivatives, were tested for their eukaryotic DNA topoisomerase II inhibitory activity in cell free system and 28 were found to inhibit the topoisomerase II at an initial concentration of 100 microg/ml. After further testing at a lower range of concentrations, 12 derivatives, which were considered as positive topoisomerase inhibitors, exhibited IC50 values between 11.4 and 46.8 microM. Etoposide was used as the standard reference drug to compare the inhibitor activity. Among these compounds, 2-phenoxymethylbenzothiazole (3f), 6-nitro-2-(2-methoxyphenyl)benzoxazole (1a), 5-methylcarboxylate-2-phenylthiomethylbenzimidazole (3c), and 6-methyl-2-(2-nitrophenyl)benzoxazole (1c) were found to be more active than the reference drug etoposide. Present results point out that, besides the very well-known bi- and ter-benzimidazoles, compounds with single bicycle fused ring systems in their structure such as benzimidazole, benzoxazole, benzothiazole, and/or oxazolopyridine derivatives also exhibit significant topoisomerase II inhibitory activity.  相似文献   

10.
Numerous bioactive compounds are present in licorice (Glycyrrhizae Radix), including flavonoids and triterpenoids. In this study, a reversed-phase high-performance liquid chromatography (HPLC) method for simultaneous quantification of three flavonoids (liquiritin, liquiritigenin and isoliquiritigenin) and four triterpenoids (glycyrrhizin, 18alpha-glycyrrhetinic acid, 18beta-glycyrrhetinic acid and 18beta-glycyrrhetinic acid methyl ester) from licorice was developed, and further, to quantify these 7 compounds from 20 different licorice samples. Specifically, the reverse-phase HPLC was performed with a gradient mobile phase composed of 25 mM phosphate buffer (pH 2.5)-acetonitrile featuring gradient elution steps as follows: 0 min, 100:0; 10 min, 80:20; 50 min, 70:30; 73 min, 50:50; 110 min, 50:50; 125 min, 20:80; 140 min, 20:80, and peaks were detected at 254 nm. By using our technique, a rather good specificity was obtained regarding to the separation of these seven compounds. The regression coefficient for the linear equations for the seven compounds lay between 0.9978 and 0.9992. The limits of detection and quantification lay in the range of 0.044-0.084 and 0.13-0.25 microg/ml, respectively. The relative recovery rates for the seven compounds lay between 96.63+/-2.43 and 103.55+/-2.77%. Coefficient variation for intra-day and inter-day precisions lay in the range of 0.20-1.84 and 0.28-1.86%, respectively. Based upon our validation results, this analytical technique is a convenient method to simultaneous quantify numerous bioactive compounds derived from licorice, featuring good quantification parameters, accuracy and precision.  相似文献   

11.
Benzothiazole benzimidazole (S)-isothiazolidinone ((S)-IZD) derivatives 5 were discovered through a peptidomimetic modification of the tripeptide (S)-IZD protein tyrosine phosphatase 1B (PTP1B) inhibitor 1. These derivatives are potent, competitive, and reversible inhibitors of PTP1B with improved caco-2 permeability. An X-ray co-crystal structure of inhibitor 5/PTP1B at 2.2A resolution demonstrated that the benzothiazole benzimidazole forms bi-dentate H-bonds to Asp48, and the benzothiazole interacts with the surface of the protein in a solvent exposed region towards the C-site. The design, synthesis, and SAR of this novel series of benzothiazole benzimidazole containing (S)-IZD inhibitors of PTP1B are presented herein.  相似文献   

12.
13.
Multi-target EGFR, VEGFR-2 and PDGFR inhibitors are highly useful anticancer agents with improved therapeutic efficacies. In this work, we used two virtual screening methods, support vector machines (SVM) and molecular docking, to identify a novel series of benzimidazole derivatives, 2-aryl benzimidazole compounds, as multi-target EGFR, VEGFR-2 and PDGFR inhibitors. 2-Aryl benzimidazole compounds were synthesized and their biological activities against a tumor cell line HepG-2 and specific kinases were evaluated. Among these compounds, compounds 5a and 5e exhibited high cytotoxicity against HepG-2 cells with IC?? values at ~2 μM. Further kinase assay study showed that compound 5a have good EGFR inhibitory activity and moderate VEGFR-2 and PDGFR inhibitory activities, while 5e have moderate EGFR inhibitory activity and slightly weaker VEGFR-2 and PDGFR inhibitory activities. Molecular docking analysis suggested that compound 5a more tightly interacts with EGFR and PDGFR than compound 5e. Our study discovered a novel series of benzimidazole derivatives as multi-target EGFR, VEGFR-2 and PDGFR kinases inhibitors.  相似文献   

14.
A new series of N-sec/tert-butyl 2-arylbenzimidazole derivatives was synthesised in 85–96% yields within 2–3.5?min by condensing ethyl 3-amino-4-butylamino benzoate with various substituted metabisulfite adducts of benzaldehyde under focused microwave irradiation. The benzimidazole analogues were characterised using 1H NMR, 13C NMR, high resolution MS and melting points. Evaluation of antiproliferative activity of the benzimidazole analogues against MCF-7 and MDA-MB-231 revealed several compounds with unexpected selective inhibitions of MDA-MB-231 in micromolar range. All analogues were found inactive towards MCF-7. The most potent inhibition against MDA-MB-231 human breast cancer cell line came from the unsubstituted 2-phenylbenzimidazole 10a.  相似文献   

15.
16.
N-acetyl-1-(p-chlorophenyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline derivative (PS3Ac) has been determined in brain tissues by high performance liquid chromatography (HPLC) coupled with a diode array detection. In a previous paper we presented a validation method for detecting PS3Ac and its metabolites in plasma samples after intraperitoneal administration to Wistar rats. In the present paper, we report the results of the determination of PS3Ac and its N-deacetyl (PS3) and O-demethyl (PS3OH) metabolites, in the brain after extraction based on a polymeric matrix with a high hydrophilic-lipophilic balance, using Oasis cartridges. The chromatographic separation was performed in an octadecylsilica stationary phase at 25 degrees C using a mixture of 10 mM potassium dihydrogen orthophosphate (pH 2.24) and acetonitrile in ratio of 30:70 (v/v) as mobile phase, with a flow rate of 0.8 ml/min. The method exhibited a large linear range from 0.05 to 2 microg/ml for all studied compounds (n=6). In the within-day assay (n=4), the accuracy ranged from 87.5% determined with 0.05 microg/ml of PS3 to 110.1% determined with 0.2 microg/ml of PS3OH. In the between-day assay the coefficient of variation ranged from 2.4 determined with 0.05 microg/ml of PS3 to 9.7 determined with 0.2 microg/ml of PS3OH. The extraction efficiency ranged from 77.8% for PS3OH at 0.2 microg/ml to 94.3 for PS3Ac at 0.5 microg/ml. The limit of detection for all the tetrahydroisoquinoline derivatives ranged around 50 ng/ml. The method proved to be highly sensitive and specific to determinate PS3Ac and its metabolites and has been successfully applied to value their concentrations in brain matrix over the time.  相似文献   

17.
An HPLC method employing CHIRAL-I (150 mm x 3 mm), 5 microm column from Chrom. Tech., immobilized with human serum albumin (HSA), was used to determine in vitro protein binding of several compounds. Experimentally obtained plasma protein data exhibited good correlation with the reported values. The method was compared with the conventional ultra filtration technique and both yielded similar results. Proprietary compounds that could not be analyzed by ultra filtration due to high non-specific binding to filter membrane were successfully analyzed by HSA-HPLC method. On the other hand, two proprietary compounds did not elute from HSA column due to strong binding, but were successfully analyzed by ultra filtration. This proves that both the techniques have their own merits and demerits and should be exploited judiciously as per the requirement. The plasma protein binding studies conducted on four gyrase inhibitors in rat and human plasma exhibited no interspecies difference via ultra filtration method. Further, it was also observed that the protein binding obtained for the four gyrase inhibitors by HSA-HPLC method was not only similar to that obtained by ultra filtration in human plasma but was also in accordance with ex vivo and in vitro protein binding obtained for rat plasma after ultra filtration because these compounds predominantly bind to HSA The binding of several compounds to alpha1-acid glycoprotein (AGP), another important plasma protein, was also examined using AGP immobilized column. However, the data could not be relied upon since some anti-bacterials and non-steroidal anti-inflammatory drugs (NSAIDS), which are known to predominantly bind to HSA, were also found to bind to AGP.  相似文献   

18.
Novel pyrazole–benzimidazole derivatives have been designed and synthesized. The entire target compounds were determined against cancer cell lines U937, K562, A549, LoVo and HT29 and were screened for Aurora A/B kinase inhibitory activity in vitro. The compounds 7a, 7b, 7i, 7k and 7l demonstrated significant cancer cell lines and Aurora A/B kinase inhibitory activities. Molecular modeling studies suggested the derivatives have bound in the active site of Aurora A kinase through the formation of four hydrogen bonds. Quantum chemical studies were carried out on these compounds to understand the structural features essential for activity. The cellular activity of 7k was also tested by immunofluorescence.  相似文献   

19.
Five derivatives of benzimidazole, compounds with delocalized charge in cationic group, are studied and turned out to be reversible inhibitors of hydrolysis of acetylthiocholine under action of acetylcholinesterase from human erythrocytes, butyrylcholinesterase from horse blood serum, and cholinesterases from brain of the brown frog Rana temporaria and from optical ganglion of the Pacific squid Todarodes pacificus. It was only for acetylcholinesterase from erythrocyte as well as (with propyonylthiocholine as substrate) from squid that sensitivity to the studied benzimidazole derivatives correlated with degree of localization of the charge in the cationic group; this confirms the current concepts of functioning of the enzyme active center. A comparative study of 9 ammonium inhibitors with localized cation in their molecules, including the complete sterical analogue of the benzimidazole derivatives, benzimidazolinium iodide, has revealed both quantitative and qualitative differences.  相似文献   

20.
Arachidonic acid is metabolized by both the cyclooxygenase and lipoxygenase pathways by rabbit aorta. We investigated the metabolism of 12-hydroperoxyeicosatetraenoic acid by aortic homogenates and microsomes. Rabbit aortic homogenates were incubated in the presence of (14)C-arachidonic acid plus 12-lipoxygenase and analyzed by reversed-phase high-pressure liquid chromatography (HPLC). Under these experimental conditions, there was a (14)C-metabolite that migrated at 17.6 min. This (14)C-metabolite was not observed when aortic homogenates were incubated in the absence of 12-lipoxygenase. Similar results were obtained with aortic microsomes. Further analysis using a different HPLC solvent system resolved the (14)C-metabolite into a number of products. Gas chromatography/mass spectrometric (GC-MS) analysis of the major product (labeled peak 3) after conversion to the methyl ester-trimethylsilyl derivative showed two major compounds (compounds A and B) eluting at 13.99 and 14.14 min. The two compounds differed in the intensities of the 213 and 243 m/z ions with 243 being greater than 213 in compound A and the opposite in compound B (relative abundance 213 vs. 243; 100% vs. 43% for compound A and 5% vs. 100% for compound B). Based on the mass spectra, peak 3 contained two metabolites identified as the methyl ester-trimethylsilyl ether derivatives of 8,11,12-trihydroxyeicosatrienoic acid (trioxilin A(3)) and 8,9,12-trihydroxyeicosatrienoic acid (trioxilin C(3)). Biological activity of the mixture of two trioxilins isolated from aortic homogenates was tested in phenylephrine-precontracted aortas and found to produce concentration-dependent relaxations (maximal relaxation: 20.1+/-7.6%). Further testing with authentic trioxilin A(3) and C(3) revealed that trioxilin C(3) was the active metabolite (maximal relaxation: 16.6+/-1.3%). In conclusion, trioxilin C(3) acid was isolated and identified as a novel biologically active arachidonic acid metabolite formed by rabbit aorta when 12-lipoxygenase is supplied exogenously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号