首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genome sequences of model organisms provide a unique opportunity to obtain insight into the complete diversity of any transposable element (TE) group. A limited number of chromoviruses, the chromodomain containing genus of Metaviridae, is known from plant, fungal and vertebrate genomes. By searching diverse eukaryotic genome databases, we have found a surprisingly large number of new, structurally intact and highly conserved chromoviral elements, greatly exceeding the number of previously known chromoviruses. In this study, we examined the diversity, origin and evolution of chromoviruses in Eukaryota. Chromoviral diversity in plants, fungi and vertebrates, as shown by phylogenetic analyses, was found to be much greater than previously expected. A novel centromere-specific chromoviral lineage was found to be widespread and highly conserved in all seed plants. The age of chromoviruses has been significantly extended by finding their representatives in the most basal plant lineages (green and red algae), in Heterokonta (oomycetes) and in Cercozoa (plasmodiophorids). The evolutionary origin of chromoviruses has been found to be no earlier than in Cercozoa, since none can be found in the basal eukaryotic lineages, despite the extensive genome data. The evolutionary dynamics of chromoviruses can be explained by a strict vertical transmission in plants and fungi, while in Metazoa it is more complex. The currently available genome data clearly show that chromoviruses are the most widespread and one of the oldest Metaviridae clade.  相似文献   

2.
Kordis D 《Gene》2005,347(2):161-173
Chromoviruses, chromodomain-containing retrotransposons, are the only Metaviridae (Ty3/gypsy group of retrotransposons) clade with a Eukaryota-wide distribution. They have a common evolutionary origin and are the most prolific and diverse Metaviridae clade. The fusion of a retrotransposon and a chromodomain, was most probably responsible for their extreme evolutionary success in Eukaryota. Analysis of the massive amount of genome sequence data for different eukaryotic lineages has provided an in depth insight into the diversity, evolution, neofunctionalization, high rate of genomic turnover and origin of chromoviruses in Eukaryota. This review attempts to summarise the unique aspects of chromoviruses from a genomic perspective.  相似文献   

3.
Powdery mildew of wheat (Triticum aestivum L.) is caused by the ascomycete fungus Blumeria graminis f.sp. tritici. Genomic approaches open new ways to study the biology of this obligate biotrophic pathogen. We started the analysis of the Bg tritici genome with the low-pass sequencing of its genome using the 454 technology and the construction of the first genomic bacterial artificial chromosome (BAC) library for this fungus. High-coverage contigs were assembled with the 454 reads. They allowed the characterization of 56 transposable elements and the establishment of the Blumeria repeat database. The BAC library contains 12,288 clones with an average insert size of 115 kb, which represents a maximum of 7.5-fold genome coverage. Sequencing of the BAC ends generated 12.6 Mb of random sequence representative of the genome. Analysis of BAC-end sequences revealed a massive invasion of transposable elements accounting for at least 85% of the genome. This explains the unusually large size of this genome which we estimate to be at least 174 Mb, based on a large-scale physical map constructed through the fingerprinting of the BAC library. Our study represents a crucial step in the perspective of the determination and study of the whole Bg tritici genome sequence.  相似文献   

4.
Improved knowledge of genome composition, especially of its repetitive component, generates important informations in both theoretical and applied research. In this study, we provide the first insight into the local organization of the sunflower genome by sequencing and annotating 349,380 bp from 3 BAC clones, each including one single-copy gene. These analyses resulted in the identification of 11 putative gene sequences, 18 full-length LTR retrotransposons, 6 incomplete LTR retrotransposons, 2 non-autonomous LTR-retroelements (LINEs), 2 putative DNA transposons fragments and one putative helitron. Among LTR-retrotransposons, non-autonomous elements (the so-called LARDs), which do not carry any protein-encoding sequence, were discovered for the first time in the sunflower. The insertion time of intact retroelements was measured, based on sister LTRs divergence. All isolated elements were inserted relatively recently, especially those belonging to the Gypsy superfamily. Retrotransposon families related to those identified in the BAC clones are present also in other species of Helianthus, both annual and perennial, and even in other Asteraceae. In one of the three BAC clones, we found five copies of a lipid transfer protein (LTP) encoding gene within less than 100,000 bp, four of which are potentially functional. Two of these are interrupted by LTR retrotransposons, in the intron and in the coding sequence, respectively. The divergence between sister LTRs of the retrotransposons inserted within the genes indicates that LTP gene duplication started earlier than 1.749 MYRS ago. On the whole, the results reported in this study confirm that the sunflower is an excellent system to study transposons dynamics and evolution.  相似文献   

5.

Background and Aims

Peanut (Arachis hypogaea) is an allotetraploid (AABB-type genome) of recent origin, with a genome of about 2·8 Gb and a high repetitive content. This study reports an analysis of the repetitive component of the peanut A genome using bacterial artificial chromosome (BAC) clones from A. duranensis, the most probable A genome donor, and the probable consequences of the activity of these elements since the divergence of the peanut A and B genomes.

Methods

The repetitive content of the A genome was analysed by using A. duranensis BAC clones as probes for fluorescence in situ hybridization (BAC-FISH), and by sequencing and characterization of 12 genomic regions. For the analysis of the evolutionary dynamics, two A genome regions are compared with their B genome homeologues.

Key Results

BAC-FISH using 27 A. duranensis BAC clones as probes gave dispersed and repetitive DNA characteristic signals, predominantly in interstitial regions of the peanut A chromosomes. The sequences of 14 BAC clones showed complete and truncated copies of ten abundant long terminal repeat (LTR) retrotransposons, characterized here. Almost all dateable transposition events occurred <3·5 million years ago, the estimated date of the divergence of A and B genomes. The most abundant retrotransposon is Feral, apparently parasitic on the retrotransposon FIDEL, followed by Pipa, also non-autonomous and probably parasitic on a retrotransposon we named Pipoka. The comparison of the A and B genome homeologous regions showed conserved segments of high sequence identity, punctuated by predominantly indel regions without significant similarity.

Conclusions

A substantial proportion of the highly repetitive component of the peanut A genome appears to be accounted for by relatively few LTR retrotransposons and their truncated copies or solo LTRs. The most abundant of the retrotransposons are non-autonomous. The activity of these retrotransposons has been a very significant driver of genome evolution since the evolutionary divergence of the A and B genomes.  相似文献   

6.
LTR retrotransposons are the most abundant transposable elements in Drosophila and are believed to have contributed significantly to genome evolution. Different reports have shown that many LTR retrotransposon families in Drosophila melanogaster emerged from recent evolutionary episodes of transpositional activity. To contribute to the knowledge of the evolutionary history of Drosophila LTR retrotransposons and the mechanisms that control their abundance, distribution and diversity, we conducted analyses of four related families of LTR retrotransposons, 297, 17.6, rover and Tom. Our results show that these elements seem to be restricted to species from the D. melanogaster group, except for 17.6, which is also present in D. virilis and D. mojavensis. Genetic divergences and phylogenetic analyses of a 1-kb fragment region of the pol gene illustrate that the evolutionary dynamics of Tom, 297, 17.6 and rover retrotransposons are similar in several aspects, such as low codon bias, the action of purifying selection and phylogenies that are incongruent with those of the host species. We found an extremely complex association among the retrotransposon sequences, indicating that different processes shaped the evolutionary history of these elements, and we detected a very high number of possible horizontal transfer events, corroborating the importance of lateral transmission in the evolution and maintenance of LTR retrotransposons.  相似文献   

7.
Horizontal (interspecific) transfer is regarded as a possible strategy for the propagation of transposable elements through evolutionary time. To date, however, conclusive evidence that transposable elements are capable of horizontal transfer from one species to another has been limited to class II or DNA-type elements. We tested the possibility of such transfer for several Drosophila melanogaster LTR retrotransposons of the gypsy group in an experiment in which D. melanogaster and D. virilis somatic cell lines were used as donor and recipient cells, respectively. This approach was chosen in light of the high levels of LTR retrotransposon amplification and expression observed in cultured D. melanogaster cells. In the course of the experiment, parallel analysis for mdg1, mdg3, 17.6, 297, 412 and B104/roo retrotransposons was performed to detect their presence in the genome of recipient cells. Only the mdg3 retrotransposon, which lacks an env gene, was found to be transmitted into recipient cells. This model, based on the use of cultured cells, is a promising system for further investigating the mechanisms of LTR retrotransposon transfer.  相似文献   

8.
9.
Comparisons of closely related species are needed to understand the fine‐scale dynamics of retrotransposon evolution in flowering plants. Towards this goal, we classified the long terminal repeat (LTR) retrotransposons from six diploid and one tetraploid species of Orobanchaceae. The study species are the autotrophic, non‐parasitic Lindenbergia philippensis (as an out‐group) and six closely related holoparasitic species of Orobanche [O. crenata, O. cumana, O. gracilis (tetraploid) and O. pancicii] and Phelipanche (P. lavandulacea and P. ramosa). All major plant LTR retrotransposon clades could be identified, and appear to be inherited from a common ancestor. Species of Orobanche, but not Phelipanche, are enriched in Ty3/Gypsy retrotransposons due to a diversification of elements, especially chromoviruses. This is particularly striking in O. gracilis, where tetraploidization seems to have contributed to the Ty3/Gypsy enrichment and led to the emergence of seven large species‐specific families of chromoviruses. The preferential insertion of chromoviruses in heterochromatin via their chromodomains might have favored their diversification and enrichment. Our phylogenetic analyses of LTR retrotransposons from Orobanchaceae also revealed that the Bianca clade of Ty1/Copia and the SMART‐related elements are much more widely distributed among angiosperms than previously known.  相似文献   

10.
11.
We estimated the genome size of Korean ginseng ( Panax ginseng C.A. Meyer), a medicinal herb, constructed a Hin dIII BAC library, and analyzed BAC-end sequences to provide an initial characterization of the library. The 1C nuclear DNA content of Korean ginseng was estimated to be 3.33 pg (3.12×103 Mb). The BAC library consists of 106,368 clones with an average size of 98.61 kb, amounting to 3.34 genome equivalents. Sequencing of 2167 BAC clones generated 2492 BAC-end sequences with an average length of 400 bp. Analysis using BLAST and motif searches revealed that 10.2%, 20.9% and 3.8% of the BAC-end sequences contained protein-coding regions, transposable elements and microsatellites, respectively. A comparison of the functional categories represented by the protein-coding regions found in BAC-end sequences with those of Arabidopsis revealed that proteins pertaining to energy metabolism, subcellular localization, cofactor requirement and transport facilitation were more highly represented in the P. ginseng sample. In addition, a sequence encoding a glucosyltransferase-like protein implicated in the ginsenoside biosynthesis pathway was also found. The majority of the transposable element sequences found belonged to the gypsy type (67.6%), followed by copia (11.7%) and LINE (8.0%) retrotransposons, whereas DNA transposons accounted for only 2.1% of the total in our sequence sample. Higher levels of transposable elements than protein-coding regions suggest that mobile elements have played an important role in the evolution of the genome of Korean ginseng, and contributed significantly to its complexity. We also identified 103 microsatellites with 3–38 repeats in their motifs. The BAC library and BAC-end sequences will serve as a useful resource for physical mapping, positional cloning and genome sequencing of P. ginseng.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by M.-A. Grandbastien  相似文献   

12.
The cryptomonads are an enigmatic group of unicellular eukaryotic algae that possess two nuclear genomes, having acquired photosynthesis by the uptake and retention of a eukaryotic algal endosymbiont. The endosymbiont nuclear genome, or nucleomorph, of the cryptomonad Guillardia theta has been completely sequenced: at only 551 kilobases (kb) and with a gene density of ∼1 gene/kb, it is a model of compaction. In contrast, very little is known about the structure and composition of the cryptomonad host nuclear genome. Here we present the results of two small-scale sequencing surveys of fosmid clone libraries from two distantly related cryptomonads, Rhodomonas salina CCMP1319 and Cryptomonas paramecium CCAP977/2A, corresponding to ∼150 and ∼235 kb of sequence, respectively. Very few of the random end sequences determined in this study show similarity to known genes in other eukaryotes, underscoring the considerable evolutionary distance between the cryptomonads and other eukaryotes whose nuclear genomes have been completely sequenced. Using a combination of fosmid clone end-sequencing, Southern hybridizations, and PCR, we demonstrate that Ty3-gypsy long-terminal repeat (LTR) retrotransposons and tandem repeat sequences are a prominent feature of the nuclear genomes of both organisms. The complete sequence of a 30.9-kb genomic fragment from R. salina was found to contain a full-length Ty3-gypsy element with near-identical LTRs and a chromodomain, a protein module suggested to mediate the site-specific integration of the retrotransposon. The discovery of chromodomain-containing retroelements in cryptomonads further expands the known distribution of the so-called chromoviruses across the tree of eukaryotes. [Reviewing Editor: Dr. Debashish Bhattacharya]  相似文献   

13.
Magnaporthe grisea(Hebert) Barr causes rice blast, one of the most devastating diseases of rice (Oryza sativa) worldwide. This fungus is an ideal organism for studying a number of aspects of plant–pathogen interactions, including infection-related morphogenesis, avirulence, and pathogen evolution. To facilitateM. griseagenome analysis, physical mapping, and positional cloning, we have constructed a bacterial artificial chromosome (BAC) library from the rice infecting strain 70-15. A new method was developed for separation of partially digested large-molecular-weight DNA fragments that facilitated library construction with large inserts. The library contains 9216 clones, with an average insert size of 130 kbp (>25 genome equivalents) stored in 384-well microtiter plates that can be double spotted robotically on to a single nylon membrane. Several unlinked single-copy DNA probes were used to screen 4608 clones in the library and an average of 13 (minimum of 6) overlapping BAC clones was found in each case. Hybridization of total genomic DNA to the library and analysis of individual clones indicated that ≈26% of the clones contain single-copy DNA. Approximately 35% of BAC clones contained the retrotransposon MAGGY. The library was used to identify BAC clones containing a adenylate cyclase gene (mac1). In addition, a 550-kbp contig composed of 6 BAC clones was constructed that encompassed two adjacent RFLP markers on chromosome 2. These data show that the BAC library is suitable for genome analysis ofM. grisea.Copies of colony hybridization membranes are available upon request.  相似文献   

14.
The availability of complete or nearly complete genome sequences from several plant species permits detailed discovery and cross‐species comparison of transposable elements (TEs) at the whole genome level. We initially investigated 510 long terminal repeat‐retrotransposon (LTR‐RT) families comprising 32 370 elements in soybean (Glycine max (L.) Merr.). Approximately 87% of these elements were located in recombination‐suppressed pericentromeric regions, where the ratio (1.26) of solo LTRs to intact elements (S/I) is significantly lower than that of chromosome arms (1.62). Further analysis revealed a significant positive correlation between S/I and LTR sizes, indicating that larger LTRs facilitate solo LTR formation. Phylogenetic analysis revealed seven Copia and five Gypsy evolutionary lineages that were present before the divergence of eudicot and monocot species, but the scales and timeframes within which they proliferated vary dramatically across families, lineages and species, and notably, a Copia lineage has been lost in soybean. Analysis of the physical association of LTR‐RTs with centromere satellite repeats identified two putative centromere retrotransposon (CR) families of soybean, which were grouped into the CR (e.g. CRR and CRM) lineage found in grasses, indicating that the ‘functional specification’ of CR pre‐dates the bifurcation of eudicots and monocots. However, a number of families of the CR lineage are not concentrated in centromeres, suggesting that their CR roles may now be defunct. Our data also suggest that the envelope‐like genes in the putative Copia retrovirus‐like family are probably derived from the Gypsy retrovirus‐like lineage, and thus we propose the hypothesis of a single ancient origin of envelope‐like genes in flowering plants.  相似文献   

15.
LTR_STRUC: a novel search and identification program for LTR retrotransposons   总被引:10,自引:0,他引:10  
MOTIVATION: Long terminal repeat (LTR) retrotransposons constitute a substantial fraction of most eukaryotic genomes and are believed to have a significant impact on genome structure and function. Conventional methods used to search for LTR retrotransposons in genome databases are labor intensive. We present an efficient, reliable and automated method to identify and analyze members of this important class of transposable elements. RESULTS: We have developed a new data-mining program, LTR_STRUC (LTR retrotransposon structure program) which identifies and automatically analyzes LTR retrotransposons in genome databases by searching for structural features characteristic of such elements. LTR_STRUC has significant advantages over conventional search methods in the case of LTR retrotransposon families having low sequence homology to known queries or families with atypical structure (e.g. non-autonomous elements lacking canonical retroviral ORFs) and is thus a discovery tool that complements established methods. LTR_STRUC finds LTR retrotransposons using an algorithm that encompasses a number of tasks that would otherwise have to be initiated individually by the user. For each LTR retrotransposon found, LTR_STRUC automatically generates an analysis of a variety of structural features of biological interest. AVAILABILITY: The LTR_STRUC program is currently available as a console application free of charge to academic users from the authors.  相似文献   

16.
转座子是真核生物基因组的重要组成成分。为了研究家蚕Bombyx mori长末端重复序列 (long terminal repeat, LTR)逆转录转座子的分类及进化, 本研究采用de novo预测和同源性搜索相结合的方法, 在家蚕基因组中共鉴定出了38个LTR逆转录转座子家族, 序列长度占整个基因组的0.64%, 远小于先前预测的11.8%, 其中有6个家族为本研究的新发现。38个家族中, 26个家族有表达序列标签 (expression sequence tag, EST)证据, 表明这些家族具有潜在的活性。对有EST证据的6个家族和没有EST证据的5个家族用RT-PCR进行了组织表达谱实验, 结果表明这11个家族在一些组织中有表达, 这进一步证实了这些家族具有转录活性, 基于此我们推测家蚕中大部分的LTR逆转录转座子家族很可能具有潜在活性。对转座子的插入时间进行估计, 结果表明绝大部分元件都是最近1百万年内插入到家蚕基因组中的。我们还比较了黑腹果蝇Drosophila melanogaster、 冈比亚按蚊Anopheles gambiae和家蚕B. mori中Ty3/Gypsy超家族分支的差异, 结果表明不同枝在不同昆虫中有着不同的扩张。家蚕中LTR逆转录转座子的鉴定和系统分析有助于我们理解逆转录转座子在昆虫进化中的作用。  相似文献   

17.
Thirty-three percent (228/682) of all long terminal repeat (LTR) retrotransposon sequences (LRSs) present in the sequenced Drosophila melanogaster genome were found to be located in or within 1000 bp of a gene. Recently inserted LTR retrotransposons are significantly more likely to be located in or within genes than are older, fragmented LTR retrotransposon sequences, indicating that most LRS-gene associations are selected against over evolutionary time. LRSs associated with conserved genes (homologenes) are especially prone to negative selection. In contrast, fragmented LRSs that have persisted in the genome over long spans of evolutionary time are preferentially associated with genes involved in signal transduction and other newly evolved functions. Reviewing Editor: Dr. Juergen Brosius  相似文献   

18.
Complementary BAC and BIBAC libraries were constructed from nuclear DNA of sunflower cultivar HA 89. The BAC library, constructed with BamHI in the pECBAC1 vector, contains 107,136 clones and has an average insert size of 140 kb. The BIBAC library was constructed with HindIII in the plant-transformation-competent binary vector pCLD04541 and contains 84,864 clones, with an average insert size of 137 kb. The two libraries combined contain 192,000 clones and are equivalent to approximately 8.9 haploid genomes of sunflower (3,000 Mb/1C), and provide a greater than 99% probability of obtaining a clone of interest. The frequencies of BAC and BIBAC clones carrying chloroplast or mitochondrial DNA sequences were estimated to be 2.35 and 0.04%, respectively, and insert-empty clones were less than 0.5%. To facilitate chromosome engineering and anchor the sunflower genetic map to its chromosomes, one to three single- or low-copy RFLP markers from each linkage group of sunflower were used to design pairs of overlapping oligonucleotides (overgos). Thirty-six overgos were designed and pooled as probes to screen a subset (5.1×) of the BAC and BIBAC libraries. Of the 36 overgos, 33 (92%) gave at least one positive clone and 3 (8%) failed to hit any clone. As a result, 195 BAC and BIBAC clones representing 19 linkage groups were identified, including 76 BAC clones and 119 BIBAC clones, further verifying the genome coverage and utility of the libraries. These BAC and BIBAC libraries and linkage group-specific clones provide resources essential for comprehensive research of the sunflower genome.  相似文献   

19.
20.

Background  

Long terminal repeat (LTR) retrotransposons are a class of mobile genetic element capable of autonomous transposition via an RNA intermediate. Their large size and proliferative ability make them important contributors to genome size evolution, especially in plants, where they can reach exceptionally high copy numbers and contribute substantially to variation in genome size even among closely related taxa. Using a phylogenetic approach, we characterize dynamics of proliferation events of Ty3/gypsy-like LTR retrotransposons that led to massive genomic expansion in three Helianthus (sunflower) species of ancient hybrid origin. The three hybrid species are independently derived from the same two parental species, offering a unique opportunity to explore patterns of retrotransposon proliferation in light of reticulate evolutionary events in this species group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号