共查询到20条相似文献,搜索用时 12 毫秒
1.
Christian Seeger Xenia Gorny Pasham Parameshwar Reddy Constanze Seidenbecher U. Helena Danielson 《Journal of molecular recognition : JMR》2012,25(10):495-503
The kinetic and mechanistic details of the interaction between caldendrin, calmodulin and the B‐domain of AKAP79 were determined using a biosensor‐based approach. Caldendrin was found to compete with calmodulin for binding at AKAP79, indicating overlapping binding sites. Although the AKAP79 affinities were similar for caldendrin (KD = 20 n m ) and calmodulin (KD = 30 n m ), their interaction characteristics were different. The calmodulin interaction was well described by a reversible one‐step model, but was only detected in the presence of Ca2+. Caldendrin interacted with a higher level of complexity, deduced to be an induced fit mechanism with a slow relaxation back to the initial encounter complex. It interacted with AKAP79 also in the absence of Ca2+, but with different kinetic rate constants. The data are consistent with a similar initial Ca2+‐dependent binding step for the two proteins. For caldendrin, a second Ca2+‐independent rearrangement step follows, resulting in a stable complex. The study shows the importance of establishing the mechanism and kinetics of protein–protein interactions and that minor differences in the interaction of two homologous proteins can have major implications in their functional characteristics. These results are important for the further elucidation of the roles of caldendrin and calmodulin in synaptic function. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
2.
The ability of vertebrates to detect and avoid damaging extremes of temperature depends on activation of ion channels belonging to the thermo-TRP family. Injury or inflammation causes the release of inflammatory mediators which lower the threshold for detection of painful levels of heat, a process known as heat hyperalgesia. These inflammatory mediators act by at least three distinct intracellular signaling pathways. Here, we show that modulation of the sensitivity of the heat-activated ion channel TRPV1 by the protein kinases PKA and PKC and by the phosphatase calcineurin depends on the formation of a signaling complex between these enzymes, the scaffolding protein AKAP79/150 and TRPV1. We identify a critical region in the TRPV1 C-terminal which mediates binding of AKAP79/150. If binding is prevented, then sensitization by both bradykinin and PGE(2) is abrogated. AKAP79/150 is therefore a final common element in heat hyperalgesia, on which the effects of multiple proinflammatory mediators converge. 相似文献
3.
Jivko V. Stoyanov Stefano Mancini Zen Huat Lu Frédéric Mourlane Kristian R. Poulsen Reinhard Wimmer & Marc Solioz 《FEMS microbiology letters》2010,302(1):69-75
Intracellular copper routing in Enterococcus hirae is accomplished by the CopZ copper chaperone. Under copper stress, CopZ donates Cu+ to the CopY repressor, thereby releasing its bound zinc and abolishing repressor–DNA interaction. This in turn induces the expression of the cop operon, which encodes CopY and CopZ, in addition to two copper ATPases, CopA and CopB. To gain further insight into the function of CopZ, the yeast two-hybrid system was used to screen for proteins interacting with the copper chaperone. This led to the identification of Gls24, a member of a family of stress response proteins. Gls24 is part of an operon containing eight genes. The operon was induced by a range of stress conditions, but most notably by copper. Gls24 was overexpressed and purified, and was shown by surface plasmon resonance analysis to also interact with CopZ in vitro . Circular dichroism measurements revealed that Gls24 is partially unstructured. The current findings establish a novel link between Gls24 and copper homeostasis. 相似文献
4.
《Journal of molecular recognition : JMR》2017,30(8)
Calmodulin (CaM) functions depend on interactions with CaM‐binding proteins, regulated by . Induced structural changes influence the affinity, kinetics, and specificities of the interactions. The dynamics of CaM interactions with neurogranin (Ng) and the CaM‐binding region of /calmodulin‐dependent kinase II (CaMKII290−309) have been studied using biophysical methods. These proteins have opposite dependencies for CaM binding. Surface plasmon resonance biosensor analysis confirmed that and CaM interact very rapidly, and with moderate affinity ( ). Calmodulin‐CaMKII290−309 interactions were only detected in the presence of , exhibiting fast kinetics and nanomolar affinity ( ). The CaM–Ng interaction had higher affinity under ‐depleted ( and k −1 = 1.6 × 10−1s−1) than ‐saturated conditions ( ). The IQ motif of Ng (Ng27−50) had similar affinity for CaM as Ng under ‐saturated conditions ( ), but no interaction was seen under ‐depleted conditions. Microscale thermophoresis using fluorescently labeled CaM confirmed the surface plasmon resonance results qualitatively, but estimated lower affinities for the Ng ( ) and CaMKII290−309( ) interactions. Although CaMKII290−309 showed expected interaction characteristics, they may be different for full‐length CaMKII. The data for full‐length Ng, but not Ng27−50, agree with the current model on Ng regulation of /CaM signaling. 相似文献
5.
Wang X Tian QB Okano A Sakagami H Moon IS Kondo H Endo S Suzuki T 《Journal of neurochemistry》2005,92(3):647-659
We cloned a rat BAALC 1-6-8 isoform cDNA (GenBank Accession No. AB073318) that encoded a 22-kDa protein, and identified endogenous BAALC 1-6-8 protein in the brain. The gene was expressed widely in the frontal part of the brain, and the protein was localized to the synaptic sites and was increased in parallel with synaptogenesis. The protein interacted with the alpha, but not beta, subunit of Ca(2+)/calmodulin-dependent protein kinase II (CaMKIIalpha). The interaction occurred between the N-terminal 35-amino-acid region of BAALC 1-6-8 protein and the C-terminal end of the regulatory domain of CaMKIIalpha, which contains alpha isoform-specific sequence. Thus, the interaction may be CaMKIIalpha-specific. We also found that BAALC 1-6-8 protein, as well as CaMKIIalpha, was localized to lipid rafts and that both myristoylation and palmitoylation of BAALC 1-6-8 N-terminal portion were required for targeting of the protein into lipid rafts. These findings suggest that BAALC 1-6-8 protein play a synaptic role at the postsynaptic lipid raft possibly through interaction with CaMKIIalpha. 相似文献
6.
目的:建立检测苏云金芽孢杆菌(Bt)crylF蛋白的表面等离子共振(SPR)传感器方法。方法:采用SPR检测技术,利用生物分子相互作用分析原理,在金表面修饰特异性单克隆抗体,对crylF蛋白的检测进行研究。结果:该方法可以较好地检测到crylF蛋白,最低检测限可达10ng/mL,并且具有很好的特异性。结论:SPR检测方法的重复性较好,灵敏度高,目前可用于crylF蛋白的定性检测,为crylF蛋白及其他Bt蛋白的检测提供了新方法,在检测转Bt基因植物方面具有广阔的应用前景。 相似文献
7.
A myristoylated calcium-binding protein that preferentially interacts with the Alzheimer's disease presenilin 2 protein. 总被引:8,自引:0,他引:8
S M Stabler L L Ostrowski S M Janicki M J Monteiro 《The Journal of cell biology》1999,145(6):1277-1292
It is well established that mutations in the presenilin 1 and 2 genes cause the majority of early onset Alzheimer's disease (AD). However, our understanding of the cellular functions of the proteins they encode remains rudimentary. Knowledge of proteins with which the presenilins interact should lead to a better understanding of presenilin function in normal and disease states. We report here the identification of a calcium-binding protein, calmyrin, that interacts preferentially with presenilin 2 (PS2). Calmyrin is myristoylated, membrane-associated, and colocalizes with PS2 when the two proteins are overexpressed in HeLa cells. Yeast two-hybrid liquid assays, affinity chromatography, and coimmunoprecipitation experiments confirm binding between PS2 and calmyrin. Functionally, calmyrin and PS2 increase cell death when cotransfected into HeLa cells. These results allude to several provocative possibilities for a dynamic role of calmyrin in signaling, cell death, and AD. 相似文献
8.
Chimeric calcium/calmodulin-dependent protein kinase in tobacco: differential regulation by calmodulin isoforms 总被引:4,自引:0,他引:4
cDNA clones of chimeric Ca2+/calmodulin-dependent protein kinase (CCaMK) from tobacco (TCCaMK-1 and TCCaMK-2) were isolated and characterized. The polypeptides encoded by TCCaMK-1 and TCCaMK-2 have 15 different amino acid substitutions, yet they both contain a total of 517 amino acids. Northern analysis revealed that CCaMK is expressed in a stage-specific manner during anther development. Messenger RNA was detected when tobacco bud sizes were between 0.5 cm and 1.0 cm. The appearance of mRNA coincided with meiosis and became undetectable at later stages of anther development. The reverse polymerase chain reaction (RT-PCR) amplification assay using isoform-specific primers showed that both of the CCaMK mRNAs were expressed in anther with similar expression patterns. The CCaMK protein expressed in Escherichia coli showed Ca2+-dependent autophosphorylation and Ca2+/calmodulin-dependent substrate phosphorylation. Calmodulin isoforms (PCM1 and PCM6) had differential effects on the regulation of autophosphorylation and substrate phosphorylation of tobacco CCaMK, but not lily CCaMK. The evolutionary tree of plant serine/threonine protein kinases revealed that calmodulin-dependent kinases form one subgroup that is distinctly different from Ca2+-dependent protein kinases (CDPKs) and other serine/threonine kinases in plants. 相似文献
9.
输入性疟疾已是我国疟疾防控的主要危险因素,如何对入境人员进行疟疾快速筛查是急需解决的难题。蛋白质芯片已被广泛应用于高通量筛选和诊断,本研究尝试构建了表面等离子共振技术 (Surface plasmon resonance,SPR) 蛋白芯片用于恶性疟疾的快速检测。采用聚乙二醇高分子处理的特异性吸附表面,以恶性疟疾特异性抗原富组氨酸蛋白Ⅱ (Histidine-rich protein Ⅱ,HRP2) 作为捕获探针,建立疟疾的微阵列芯片,并对芯片的最佳抗原固定浓度,检测的灵敏性和特异性,以及抗干扰能力进行了分析。该芯片可成功应用于恶性疟疾的筛查,具有无标记、即时快速的特点,与荧光定量PCR法相比,两种方法在敏感度和特异性方面无统计学差异。研究结果为一步研制疟疾分型鉴定蛋白质芯片奠定了基础,有利于对入境人员进行疟疾快速筛查。 相似文献
10.
The effect of Ca2+-binding protein regucalcin on protein kinase activity in the nuclei of normal and regenerating rat livers was investigated. Protein kinase activity in the nuclei isolated from normal rat liver was significantly increased by addition of Ca2+ (500 μM) and calmodulin (10 μg/ml) in the enzyme reaction mixture. Nuclear protein kinase activity was significantly decreased in the presence of EGTA (1.0 mM), trifluoperazine (TFP; 20 μM), dibucaine (10−4 M), or staurosporine (10−7 M), indicating that Ca2+-dependent protein kinases are present in the nuclei. Protein kinase activity was significantly elevated in the liver nuclei obtained at 6 to 48 h after a partial hepatectomy. Hepatectomy-increased nuclear protein kinase activity was significantly decreased in the presence of EGTA (1.0 mM), TFP (20 μM), or staurosporine (10−7 M) in the enzyme reaction mixture. The presence of regucalcin (0.1–0.5 μM) caused a significant decrease in protein kinase activity in the nuclei obtained from normal and regenerating rat livers. Meanwhile, the nuclear protein kinase activity from normal and regenerating livers was significantly elevated in the presence of anti-regucalcin monoclonal antibody (50–200 ng/ml). The present study suggests that regucalcin plays a role in the regulation of protein kinase activity in the nuclei of proliferative liver cells. J. Cell. Biochem. 71:569–576, 1998. © 1998 Wiley-Liss, Inc. 相似文献
11.
A novel kinesin-like protein with a calmodulin-binding domain 总被引:4,自引:0,他引:4
W. Wang D. Takezawa S. B. Narasimhulu A. S. N. Reddy B. W. Poovaiah 《Plant molecular biology》1996,31(1):87-100
Calcium regulates diverse developmental processes in plants through the action of calmodulin. A cDNA expression library from developing anthers of tobacco was screened with 35S-labeled calmodulin to isolate cDNAs encoding calmodulin-binding proteins. Among several clones isolated, a kinesin-like gene (TCK1) that encodes a calmodulin-binding kinesin-like protein was obtained. The TCK1 cDNA encodes a protein with 1265 amino acid residues. Its structural features are very similar to those of known kinesin heavy chains and kinesin-like proteins from plants and animals, with one distinct exception. Unlike other known kinesin-like proteins, TCK1 contains a calmodulin-binding domain which distinguishes it from all other known kinesin genes. Escherichia coli-expressed TCK1 binds calmodulin in a Ca2+-dependent manner. In addition to the presence of a calmodulin-binding domain at the carboxyl terminal, it also has a leucine zipper motif in the stalk region. The amino acid sequence at the carboxyl terminal of TCK1 has striking homology with the mechanochemical motor domain of kinesins. The motor domain has ATPase activity that is stimulated by microtubules. Southern blot analysis revealed that TCK1 is coded by a single gene. Expression studies indicated that TCK1 is expressed in all of the tissues tested. Its expression is highest in the stigma and anther, especially during the early stages of anther development. Our results suggest that Ca2+/calmodulin may play an important role in the function of this microtubule-associated motor protein and may be involved in the regulation of microtubule-based intracellular transport. 相似文献
12.
Ralf Heermann Arnim Weber Bettina Mayer Melanie Ott Elisabeth Hauser Torsten Pirch Kirsten Jung 《Journal of molecular biology》2009,386(1):134-148
The sensor kinase KdpD and the response regulator KdpE control induction of the kdpFABC operon encoding the high-affinity K+-transport system KdpFABC in response to K+ limitation or salt stress. Under K+ limiting conditions the Kdp system restores the intracellular K+ concentration, while in response to salt stress K+ is accumulated far above the normal content. The kinase activity of KdpD is inhibited at high concentrations of K+, so it has been puzzling how the sensor can be activated in response to salt stress. Here, we demonstrate that the universal stress protein UspC acts as a scaffolding protein of the KdpD/KdpE signaling cascade by interacting with a Usp domain in KdpD of the UspA subfamily under salt stress. Escherichia coli encodes three single domain proteins of this subfamily, UspA, UspC, and UspD, whose expression is up-regulated under various stress conditions. Among these proteins only UspC stimulated the in vitro reconstructed signaling cascade (KdpD→KdpE→DNA) resulting in phosphorylation of KdpE at a K+ concentration that would otherwise almost prevent phosphorylation. In agreement, in a ΔuspC mutant KdpFABC production was down-regulated significantly when cells were exposed to salt stress, but unchanged under K+ limitation. Biochemical studies revealed that UspC interacts specifically with the Usp domain in the stimulus perceiving N-terminal domain of KdpD. Furthermore, UspC stabilized the KdpD/KdpE∼P/DNA complex and is therefore believed to act as a scaffolding protein. This study describes the stimulation of a bacterial two-component system under distinct stress conditions by a scaffolding protein, and highlights a new role of the universal stress proteins. 相似文献
13.
Calcium‐binding protein 1 (CaBP1), a neuron‐specific member of the calmodulin (CaM) superfamily, regulates the Ca2+‐dependent activity of inositol 1,4,5‐triphosphate receptors (InsP3Rs) and various voltage‐gated Ca2+ channels. Here, we present the NMR structure of full‐length CaBP1 with Ca2+ bound at the first, third, and fourth EF‐hands. A total of 1250 nuclear Overhauser effect distance measurements and 70 residual dipolar coupling restraints define the overall main chain structure with a root‐mean‐squared deviation of 0.54 Å (N‐domain) and 0.48 Å (C‐domain). The first 18 residues from the N‐terminus in CaBP1 (located upstream of the first EF‐hand) are structurally disordered and solvent exposed. The Ca2+‐saturated CaBP1 structure contains two independent domains separated by a flexible central linker similar to that in calmodulin and troponin C. The N‐domain structure of CaBP1 contains two EF‐hands (EF1 and EF2), both in a closed conformation [interhelical angles = 129° (EF1) and 142° (EF2)]. The C‐domain contains EF3 and EF4 in the familiar Ca2+‐bound open conformation [interhelical angles = 105° (EF3) and 91° (EF4)]. Surprisingly, the N‐domain adopts the same closed conformation in the presence or absence of Ca2+ bound at EF1. The Ca2+‐bound closed conformation of EF1 is reminiscent of Ca2+‐bound EF‐hands in a closed conformation found in cardiac troponin C and calpain. We propose that the Ca2+‐bound closed conformation of EF1 in CaBP1 might undergo an induced‐fit opening only in the presence of a specific target protein, and thus may help explain the highly specialized target binding by CaBP1. 相似文献
14.
C-Reactive protein (CRP) is composed of five identical noncovalently linked monomers and characterized as an important acute-phase protein. The CRP subunit obtained by denaturing treatments, which is termed modified CRP, has also been widely studied. In the current work, we found that there exists some degree of natural dissociation of CRP in stock solution. This dissociation is critically dependent on the absence of Ca2+. Low pH could enhance the dissociation of CRP, while ionic strength has little effect. Anilinonaphthalenesulfonate (ANS) fluorescence detections indicate that the exposure of hydrophobic surface increases during the dissociation. Acidic pH conditions also induce an increase in ANS fluorescence. This suggests that hydrophobic interactions between CRP subunits may contribute to the study of its pentameric structure. Surface plasmon resonance experiments indicate that monomeric CRP does not specifically bind to phosphatidylcholine-containing membrane as native CRP does. Electron microscopy shows that monomeric CRP binds to negatively charged lipid through electrostatic forces, and such lipid may induce the dissociation of CRP due to the acidic pH in the diffuse double layer near the membrane. 相似文献
15.
A surface plasmon resonance (SPR) imaging system was constructed and used to detect the hexahistidine-ubiquitin-tagged human
parathyroid hormone fragment (His6-Ub-hPTHF(1–34)) expressed inEscherichia coli. The hexahistidine-specific antibody was immobilized on a thin gold film coated with ProLinkerTM B, a novel calixcrown derivative with a bifunctional coupling property that permits efficient immobilization of capture proteins
on solid matrices. The soluble and insoluble fractions of anE. coli cell lysate were spotted onto the antibody-coated gold chip, which was then washed with buffer (pH 7.4) solution and dried.
SPR imaging measurements were carried out to detect the expressed His6-Ub-hPTHF (1–34). There was no discernible protein image in the uninduced cell lysate, indicating that non-specific binding
of contaminant proteins did not occur on the gold chip surface. It is expected that the approach used here to detect affinity-tagged
recombinant proteins using an SPR imaging technique could be used as a powerful tool for the analyses of a number of proteins
in a high-throughput mode. 相似文献
16.
The recent crystallization and structural analysis of the ATP(ADP)-complex of the N-terminal domain of the 90 kDa heat shock
protein (Hsp90) confirmed our earlier findings on the ATP-binding properties of Hsp90. Here we further characterize the nucleotide
binding of Hsp90 by demonstrating that surface plasmon resonance measurements also indicate a low-affinity binding of ATP
to Hsp90 and that [α-32P]ATP seems to have an equal preference for monomers, dimers and oligomers of Hsp90 on native polyacrylamide gels. Finally
we discuss some of our results which raise the possibility that Hsp90 has two nucleotide binding sites (one in its N-terminal
and another in the C-terminal domain) and that the nucleotide binding to Hsp90 dimers may display a positive cooperativity
under some special conditions. The submillimolar binding affinity of ATP to Hsp90 allows the regulation of some Hsp90-related
functions just in the range of ATP-level fluctuations during stress or during the cell cycle. 相似文献
17.
Mühlberger R Robelek R Eisenreich W Ettenhuber C Sinner EK Kessler H Bacher A Richter G 《Journal of molecular biology》2003,327(5):973-983
The regulation of ribosomal RNA biosynthesis in Escherichia coli by antitermination requires binding of NusB protein to a dodecamer sequence designated boxA on the nascent RNA. The affinity of NusB protein for boxA RNA exceeds that for the homologous DNA segment by more than three orders of magnitude as shown by surface plasmon resonance measurements. DNA RNA discrimination by NusB protein was shown to involve methyl groups (i.e. discrimination of uracil versus thymine) and 2' hydroxyl groups (i.e. discrimination of ribose versus deoxyribose side-chains) in the RNA motif. Ligand perturbation experiments monitored by 1H15N correlation NMR experiments identified amide NH groups whose chemical shifts are affected selectively by ribose/deoxyribose exchange in the 5' and the central part of the dodecameric boxA motif respectively. The impact of structural modification of the boxA motif on the affinity for NusB protein as observed by 1H15N heterocorrelation was analysed by a generic algorithm. 相似文献
18.
Debbie Willoughby Nanako Masada Sebastian Wachten Mario Pagano Michelle L. Halls Katy L. Everett Antonio Ciruela Dermot M. F. Cooper 《The Journal of biological chemistry》2010,285(26):20328-20342
Protein kinase A anchoring proteins (AKAPs) provide the backbone for targeted multimolecular signaling complexes that serve to localize the activities of cAMP. Evidence is accumulating of direct associations between AKAPs and specific adenylyl cyclase (AC) isoforms to facilitate the actions of protein kinase A on cAMP production. It happens that some of the AC isoforms (AC1 and AC5/6) that bind specific AKAPs are regulated by submicromolar shifts in intracellular Ca2+. However, whether AKAPs play a role in the control of AC activity by Ca2+ is unknown. Using a combination of co-immunoprecipitation and high resolution live cell imaging techniques, we reveal an association of the Ca2+-stimulable AC8 with AKAP79/150 that limits the sensitivity of AC8 to intracellular Ca2+ events. This functional interaction between AKAP79/150 and AC8 was observed in HEK293 cells overexpressing the two signaling molecules. Similar findings were made in pancreatic insulin-secreting cells and cultured hippocampal neurons that endogenously express AKAP79/150 and AC8, which suggests important physiological implications for this protein-protein interaction with respect to Ca2+-stimulated cAMP production. 相似文献
19.
Maja Marušič Ibrahim Halil Kavakli Burak Erman Seda Kizilel 《Journal of molecular recognition : JMR》2013,26(7):297-307
This paper reports the previously unknown interactions between eight low molecular weight commercially available drugs (130–800 Da) and DNA repair protein photolyase using computational docking simulations and surface plasmon resonance (SPR) experiments. Theoretical dissociation constants, Kd, obtained from molecular docking simulations were compared with the values found from SPR experiments. Among the eight drugs analyzed, computational and experimental values showed similar binding affinities between selected drug and protein pairs. We found no significant differences in binding interactions between pure and commercial forms of the drug lornoxicam and DNA photolyase. Among the eight drugs studied, prednisone, desloratadine, and azelastine exhibited the highest binding affinity (Kd = 1.65, 2.05, and 8.47 μM, respectively) toward DNA photolyase. Results obtained in this study are promising for use in the prediction of unknown interactions of common drugs with specific proteins such as human clock protein cryptochrome. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
20.
Surface plasmon resonance has been used to study the interaction between the subunits composing protein kinase CK2 (two catalytic, -subunits, and two regulatory, -subunits), as well as the interaction of each subunit with two types of protein substrates, casein, the phosphorylation of which is activated by the regulatory subunit, and calmodulin, which belongs to the kind of substrates on which the catalytic subunit is down regulated by the regulatory subunit. The interaction of casein with the catalytic subunit differs from the interaction with the holoenzyme. Similarly to the interaction with the regulatory subunit, the catalytic subunit interacts with the protein substrate forming a very stable, irreversible complex. The reconstituted holoenzyme, however, binds casein reversibly, displaying a binding mode similar to that displayed by the regulatory subunit. The interaction of calmodulin with the catalytic subunit gives place, like in the case of casein, to an irreversible complex. The interactions with the regulatory subunit, and with the holoenzyme were practically negligible, and the interaction with the regulatory subunit disappeared upon increasing the temperature value to close to 30°C. The presence of polylysine induced a high increase in the extent of calmodulin binding to the holoenzyme. The results obtained suggest that CK2 subunit and protein substrates share a common, or at least an overlapping site of interaction on the catalytic subunit. The interaction between both subunits would prevent substrates from binding irreversibly to subunit, and, at the same time, it would generate a new and milder site of interaction between the whole holoenzyme and the protein substrate. The main difference between casein and calmodulin would consist in the lower affinity display by the last for the new site generated upon the binding of the regulatory subunit, in the absence of polycations like polylysine. 相似文献