首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the presented study, we have analysed effects of the environmental estrogens bisphenol A (BPA), p-tert-octylphenol (OCT), o,p'-DDT (DDT) and coumestrol (COU) on cell proliferation, apoptosis induction, progesterone receptor (PR) and androgen receptor (AR) mRNA expression and ER alpha protein expression in comparison to estradiol (E2) and the selective ER modulator (SERM) raloxifene (RAL) and the pure antiestrogen faslodex (ICI 182780) in the human breast cancer cell line MCF-7. A dose dependent analysis of the cell cycle distribution of MCF-7 cells after administration of OCT, DDT and COU revealed a significant induction of cell proliferation and reduced rate of apoptosis. Maximum induction of cell proliferation and the lowest rate of apoptosis could be observed at a dose of 10(-6)M. Interestingly, administration of BPA reduces the rate of apoptosis, but does not enhance proliferation at any dose analysed. PR mRNA expression in MCF-7 cells was up regulated after administration of COU and DDT, whereas treatment with BPA and OCT did not effect PR mRNA expression. AR mRNA expression was down regulated by COU, but not effected by BPA, DDT and OCT. The expression of ER alpha protein in the breast cancer cells was slightly down regulated by COU and DDT, but unaffected by BPA and OCT. In summary and in comparison to the effects observed after administration of E2, RAL and ICI our data indicate that none of the analysed compounds exhibit properties comparable to RAL and ICI. COU and DDT exhibit properties which are very similar to E2. Administration of BPA and OCT did not effect any of the estrogen sensitive molecular parameters analysed. Nevertheless OCT is a very potent stimulator of cell proliferation in MCF-7 cells. Surprisingly, BPA is not able to induce the proliferation of MCF-7 breast cancer cells, but turns out to be a very potent inhibitor of apoptosis. For this reason and in agreement to the effects of BPA on the molecular parameters analysed, we conclude that BPA does not act in a classical estrogen like manner in MCF-7 breast cancer cells.  相似文献   

2.
Since over 60% of breast cancers are estrogen receptor positive (ER+), many therapies have targeted the ER. The ER is activated by both estrogen binding and phosphorylation. While anti-estrogen therapies, such as tamoxifen (Tam) have been successful they do not target the growth factor promoting phosphorylation of the ER. Other proliferation pathways such as the phosphatidylinositol-3 kinase, (PI3K) and the mitogen-activated protein kinase (MAPK) pathways are activated in breast cancer cells and are associated with poor prognosis. Thus targeting multiple cellular proliferation and survival pathways at the onset of treatment is critical for the development of more effective therapies. The grapefruit flavanone naringenin (Nar) is an inhibitor of both the PI3K and MAPK pathways. Previous studies examining either Nar or Tam used charcoal-stripped serum which removed estrogen as well as other factors. We wanted to use serum containing medium in order to retain all the potential inducers of cell proliferation so as not to exclude any targets of Nar. Here we show that a Nar–Tam combination is more effective than either Tam alone or Nar alone in MCF-7 breast cancer cells. We demonstrate that a Nar–Tam combination impaired cellular proliferation and viability to a greater extent than either component alone in MCF-7 cells. Furthermore, the use of a Nar–Tam combination requires lower concentrations of both compounds to achieve the same effects on proliferation and viability. Nar may function by inhibiting both PI3K and MAPK pathways as well as localizing ERα to the cytoplasm in MCF-7 cells. Our results demonstrate that a Nar–Tam combination induces apoptosis and impairs proliferation signaling to a greater extent than either compound alone. These studies provide critical information for understanding the molecular mechanisms involved in cell proliferation and apoptosis in breast cancer cells.  相似文献   

3.
4.
Breast cancer is a leading cause of death for women. The estrogen receptors (ERs) ratio is important in the maintenance of mitochondrial redox status, and higher levels of ERβ increases mitochondrial functionality, decreasing ROS production. Our aim was to determine the interaction between the ERα/ERβ ratio and the response to cytotoxic treatments such as cisplatin (CDDP), paclitaxel (PTX) and tamoxifen (TAM). Cell viability, apoptosis, autophagy, ROS production, mitochondrial membrane potential, mitochondrial mass and mitochondrial functionality were analyzed in MCF-7 (high ERα/ERβ ratio) and T47D (low ERα/ERβ ratio) breast cancer cell lines. Cell viability decreased more in MCF-7 when treated with CDDP and PTX. Apoptosis was less activated after cytotoxic treatments in T47D than in MCF-7 cells. Nevertheless, autophagy was increased more in CDDP-treated MCF-7, but less in TAM-treated cells than in T47D. CDDP treatment produced a raise in mitochondrial mass in MCF-7, as well as the citochrome c oxidase (COX) and ATP synthase protein levels, however significantly reduced COX activity. In CDDP-treated cells, the overexpression of ERβ in MCF-7 caused a reduction in apoptosis, autophagy and ROS production, leading to higher cell survival; and the silencing of ERβ in T47D cells promoted the opposite effects. In TAM-treated cells, ERβ-overexpression led to less cell viability by an increment in autophagy; and the partial knockdown of ERβ in T47D triggered an increase in ROS production and apoptosis, leading to cell death. In conclusion, ERβ expression plays an important role in the response of cancer cells to cytotoxic agents, especially for cisplatin treatment.  相似文献   

5.
Proliferation assays based on human cell lines are the most used in vitro tests to determine estrogenic properties of compounds. Our objective was to characterise to what extent these in vitro tests provide alternatives for the in vivo Allen and Doisy test, a uterotrophic assay in immature or ovariectomised rodents with uterus weight as a crucial read-out parameter. In the present study four different human cell lines derived from three different female estrogen-sensitive tissues, i.e. breast (MCF-7/BOS and T47D), endometrial (ECC-1) and ovarian (BG-1) cells, were characterised by investigating their relative ERα and ERβ amounts, as the ERα/ERβ ratio is a dominant factor determining their estrogen-dependent proliferative responses. All four cell lines clearly expressed the ERα type and a very low but detectable amount of ERβ on both the mRNA and protein level, with the T47D cell line expressing the highest level of the ERβ type. Subsequently, a set of reference compounds representing different modes of estrogen action and estrogenic potency were used to investigate the proliferative response in the four cell lines, to determine which cell line most accurately predicts the effect observed in vivo. All four cell lines revealed a reasonable to good correlation with the in vivo uterotrophic effect, with the correlation being highest for the MCF-7/BOS cell line (R2=0.85). The main differences between the in vivo uterotrophic assay and the in vitro proliferation assays were observed for tamoxifen and testosterone. The proliferative response of the MCF-7/BOS cells to testosterone was partially caused by its conversion to estradiol by aromatase or via androstenedione to estrone. It is concluded that of the four cell lines tested, the best assay to include in an integrated testing strategy for replacement of the in vivo uterotrophic assay is the human MCF-7/BOS breast cancer cell line.  相似文献   

6.
7.
The effects of 2-chloro-2′-deoxyadenosine, β-D-arabinofuranosyl-2-fluoroadenine, and 5-aza-2′-deoxycytidine on promoter methylation of the selected tumor suppressor genes (i.e., ERα, BRCA1, E-cadherin, PTEN, and APC) were estimated using methylation-sensitive restriction analysis (MSRA) in K562 cells (human erythroleukemic cell line) and MCF-7 cells (human breast cancer cell line). In both cell lines all tested drugs completely reduced methylation of PTEN and APC promoters. The results indicate that the tested nucleoside analogues, which are known inhibitors of DNA synthesis, also are implicated in indirect (or direct in the case of 5-aza-dCyd) regulation of post-replicative DNA modifications (i.e., DNA methylation).  相似文献   

8.
The restoration of pluripotency circuits by the reactivation of endogenous stemness factors, such as SOX2, may provide a new paradigm in cancer development. The tumoral stem cell reprogramming hypothesis, i.e., the ability of stemness factors to redirect normal and differentiated tumor cells toward a less-differentiated and stem-like state, adds new layers of complexity to cancer biology, because the effects of such reprogramming may remain dormant until engaged later in response to (epi)genetic and/or (micro)environmental events. To test this hypothesis, we utilized an in vitro model of a SOX2-overexpressing cancer stem cell (CSC)-like cellular state that was recently developed in our laboratory by employing Yamanaka’s nuclear reprogramming technology in the estrogen receptor α (ERα)-positive MCF-7 breast cancer cell line. Despite the acquisition of distinct molecular features that were compatible with a breast CSC-like cellular state, such as strong aldehyde dehydrogenase activity, as detected by ALDEFLUOR, and overexpression of the SSEA-4 and CD44 breast CSC markers, the tumor growth-initiating ability of SOX2-overexpressing CSC-like MCF-7 cells solely occurred in female nude mice supplemented with estradiol when compared with MCF-7 parental cells. Ser118 phosphorylation of estrogen receptor α (ERα), which is a pivotal integrator of the genomic and nongenomic E2/ERα signaling pathways, drastically accumulated in nuclear speckles in the interphase nuclei of SOX2-driven CSC-like cell populations. Moreover, SOX2-positive CSC-like cells accumulated significantly higher numbers of actively dividing cells, and the highest levels of phospho-Ser118-ERα occurred when chromosomes lined up on a metaphase plate. The previously unrecognized link between E2/ERα signaling and SOX2-driven stem cell circuitry may significantly impact our current understanding of breast cancer initiation and progression, i.e., SOX2 can promote non-genomic E2 signaling that leads to nuclear phospho-Ser118-ERα, which ultimately exacerbates genomic ER signaling in response to E2. Because E2 stimulation has been recently shown to enhance breast tumor-initiating cell survival by downregulating miR-140, which targets SOX2, the establishment of a bidirectional cross-talk interaction between the stem cell self-renewal regulator, SOX2, and the local and systemic ability of E2 to increase breast CSC activity may have profound implications for the development of new CSC-directed strategies for breast cancer prevention and therapy.  相似文献   

9.
Breast cancer is the most frequent tumor and a major cause of death among women. Estrogens play a crucial role in breast tumor growth, which is the rationale for the use of hormonal antiestrogen therapies. Unfortunately, not all therapeutic modalities are efficacious and it is imperative to develop new effective antitumoral drugs. Oldenlandia diffusa (OD) is a well-known medicinal plant used to prevent and treat many disorders, especially cancers. The aim of this study was to investigate the effects of OD extracts on breast cancer cell proliferation. We observed that OD extracts strongly inhibited anchorage-dependent and -independent cell growth and induced apoptosis in estrogen receptor alpha (ERα)-positive breast cancer cells, whereas proliferation and apoptotic responses of MCF-10A normal breast epithelial cells were unaffected. Mechanistically, OD extracts enhance the tumor suppressor p53 expression as a result of an increased binding of ERα/Sp1 complex to the p53 promoter region. Finally, we isolated ursolic and oleanolic acids as the bioactive compounds able to upregulate p53 expression and inhibit breast cancer cell growth. These acids were greatly effective in reducing tamoxifen-resistant growth of a derivative MCF-7 breast cancer cell line resistant to the antiestrogen treatment. Our results evidence how OD, and its bioactive compounds, exert antiproliferative and apoptotic effects selectively in ERα-positive breast cancer cells, highlighting the potential use of these herbal extracts as breast cancer preventive and/or therapeutic agents.  相似文献   

10.
About two thirds of breast cancers in women are hormone-dependent and require estrogen for growth, its effects being mainly mediated through estrogen receptor α (ERα). Docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (AA, 20:4n-6) have opposite effects on carcinogenesis, with DHA suppressing and AA promoting tumor growth both in vitro and in vivo. However, the mechanism is not clear. Here, we examined whether the effect is mediated through changes in ERα distribution. MCF-7 cells, an ERα-positive human breast cancer cell line, was cultured in estrogen-free medium containing 0, 10 or 60 μM DHA or AA, then were stimulated with estradiol. DHA supplementation resulted in down-regulation of ERα expression (particularly in the extranuclear fraction), a reduction in phosphorylated MAPK, a decrease in cyclin D1 levels and an inhibition in cell viability. In contrast, AA had no such effects. The DHA-induced decrease in ERα expression resulted from proteasome-dependent degradation and not from decreased ERα mRNA expression. We propose that breast cancer cell proliferation is inhibited by DHA through proteasome-dependent degradation of ERα, reduced cyclin D1 expression and inhibition of MAPK signaling.  相似文献   

11.
Estrogen receptor alpha (ERα) has been implicated in several cell cycle regulatory events and is an important predictive marker of disease outcome in breast cancer patients. Here, we aimed to elucidate the mechanism through which ERα influences proliferation in breast cancer cells. Our results show that ERα protein is cell cycle-regulated in human breast cancer cells and that the presence of 17-β-estradiol (E2) in the culture medium shortened the cell cycle significantly (by 4.5 hours, P < 0.05) compared with unliganded conditions. The alterations in cell cycle duration were observed in the S and G2/M phases, whereas the G1 phase was indistinguishable under liganded and unliganded conditions. In addition, ERα knockdown in MCF-7 cells accelerated mitotic exit, whereas transfection of ERα-negative MDA-MB-231 cells with exogenous ERα significantly shortened the S and G2/M phases (by 9.1 hours, P < 0.05) compared with parental cells. Finally, treatment of MCF-7 cells with antiestrogens revealed that tamoxifen yields a slower cell cycle progression through the S and G2/M phases than fulvestrant does, presumably because of the destabilizing effect of fulvestrant on ERα protein. Together, these results show that ERα modulates breast cancer cell proliferation by regulating events during the S and G2/M phases of the cell cycle in a ligand-dependent fashion. These results provide the rationale for an effective treatment strategy that includes a cell cycle inhibitor in combination with a drug that lowers estrogen levels, such as an aromatase inhibitor, and an antiestrogen that does not result in the degradation of ERα, such as tamoxifen.  相似文献   

12.
Bone morphogenetic protein-6 (BMP-6) is closely correlated with tumor differentiation and skeletal metastasis. Our previous research found that BMP-6 gene expression can be activated dose-dependently by estrogen in estrogen receptor positive (ER+) breast cancer cell line MCF-7, but not in ER negative (ER) cell line MDA-MB-231. This experiment is designed to investigate the epigenetic regulatory mechanism of the BMP-6 gene expression in breast cancer cell lines MDA-MB-231, MCF-7 and T47D with regard to the methylation status in the 5′ flanking region of the human BMP-6 gene. The endogenous level of BMP-6 mRNA in ER cell line MDA-MB-231 was relatively lower than that in ER+ MCF-7 and T47D cell lines. After the treatment with 5-aza-2′-deoxycytidine (5-aza-dC, especially in the concentration of 10 μM), the BMP-6 mRNA expression in MDA-MB-231 was obviously up-regulated. However, 5-aza-dC treatment failed to regulate the expression of BMP-6 in MCF-7 and T47D cells. Using enzyme restriction PCR (MSRE-PCR), as well as bisulfite sequencing (BSG), methylation of human BMP-6 gene promoter was detected in MDA-MB-231; while in MCF-7 and T47D, BMP-6 gene promoter remained demethylated status. In 33 breast tumor specimens, promoter methylation of BMP-6 was detected by methylation-specific PCR, hypermethylation of BMP-6 was observed in ER negative cases (16 of 16 cases (100%)), while obviously lower methylation frequency were observed in ER positive cases (3 of 17 cases (18%)), indicating that BMP-6 promoter methylation status is correlated with ER status in breast cancer.  相似文献   

13.
14.
15.
Neuroglobin (NGB), an antiapoptotic protein upregulated by 17β-estradiol (E2), is part of E2/estrogen receptor α (ERα) pathway pointed to preserve cancer cell survival in presence of microenvironmental stressors including chemotherapeutic drugs. Here, the possibility that resveratrol (Res), an anticancer plant polyphenol, could increase the susceptibility of breast cancer cells to paclitaxel (Pacl) by affecting E2/ERα/NGB pathway has been evaluated. In MCF-7 and T47D (ERα-positive), but not in MDA-MB 231 (ERα-negative) nor in SK-N-BE (ERα and ERβ positive), Res decreases NGB levels interfering with E2/ERα-induced NGB upregulation and with E2-induced ERα and protein kinase B phosphorylation. Although Res treatment does not reduce cell viability by itself, this compound potentiates Pacl proapoptotic effects. Notably, the increase of NGB levels by NGB expression vector transfection prevents Pacl or Res/Pacl effects. Taken together, these findings indicate a new Res-based mechanism that acts on tumor cells impairing the E2/ERα/NGB signaling pathways and increasing cancer cell susceptibility to chemotherapeutic agent.  相似文献   

16.
Binding of urokinase-type plasminogen activator (uPA) to its receptor, uPAR, in estrogen receptor-α (ERα) expressing breast cancer cells, transiently activates ERK downstream of FAK, Src family kinases, and H-Ras. Herein, we show that when uPAR is over-expressed, in two separate ERα-positive breast cancer cell lines, ERK activation occurs autonomously of uPA and is sustained. Autonomous ERK activation by uPAR requires H-Ras and Rac1. A mutated form of uPAR, which does not bind vitronectin (uPAR-W32A), failed to induce autonomous ERK activation. Expression of human uPAR or mouse uPAR but not uPAR-W32A in MCF-7 cells provided a selection advantage when these cells were deprived of estrogen in cell culture for two weeks. Similarly, MCF-7 cells that express mouse uPAR formed xenografts in SCID mice that survived and increased in volume in the absence of estrogen supplementation, probably reflecting the pro-survival activity of phospho-ERK. Autonomous uPAR signaling to ERK was sensitive to the EGFR tyrosine kinase inhibitors, Erlotinib and Gefitinib. The transition in uPAR signaling from uPA-dependent and transient to autonomous and sustained is reminiscent of the transformation in ErbB2/HER2 signaling observed when this gene is amplified in breast cancer. uPAR over-expression may provide a pathway for escape of breast cancer cells from ERα-targeting therapeutics.  相似文献   

17.
18.
19.
20.
Estrogens, acting through estrogen receptor α (ERα), stimulate breast cancer proliferation, making ERα an attractive drug target. Since 384-well format screens for inhibitors of proliferation can be challenging for some cells, inhibition of luciferase-based reporters is often used as a surrogate end point. To identify novel small-molecule inhibitors of 17β-estradiol (E(2))-ERα-stimulated cell proliferation, we established a cell-based screen for inhibitors of E(2)-ERα induction of an estrogen response element (ERE)(3)-luciferase reporter. Seventy-five "hits" were evaluated in tiered follow-up assays to identify where hits failed to progress and evaluate their effectiveness as inhibitors of E(2)-ERα-induced proliferation of breast cancer cells. Only 8 of 75 hits from the luciferase screen inhibited estrogen-induced proliferation of ERα-positive MCF-7 and T47D cells but not control ERα-negative MDA-MB-231 cells. Although 12% of compounds inhibited E(2)-ERα-stimulated proliferation in only one of the ERα-positive cell lines, 40% of compounds were toxic and inhibited growth of all the cell lines, and ~37% exhibited little or no ability to inhibit E(2)-ERα-stimulated cell proliferation. Representative compounds were evaluated in more detail, and a lead ERα inhibitor was identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号