首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Over the last two centuries, there has been a significant increase in average lifespan expectancy in the developed world. One unambiguous clinical implication of getting older is the risk of experiencing age-related diseases including various cancers, dementia, type-2 diabetes, cataracts and osteoporosis. Historically, the ageing process and its consequences were thought to be intractable. However, over the last two decades or so, a wealth of empirical data has been generated which demonstrates that longevity in model organisms can be extended through the manipulation of individual genes. In particular, many pathological conditions associated with the ageing process in model organisms, and importantly conserved from nematodes to humans, are attenuated in long-lived genetic mutants. For example, several long-lived genetic mouse models show attenuation in age-related cognitive decline, adiposity, cancer and glucose intolerance. Therefore, these long-lived mice enjoy a longer period without suffering the various sequelae of ageing. The greatest challenge in the biology of ageing is to now identify the mechanisms underlying increased healthy lifespan in these model organisms. Given that the elderly are making up an increasingly greater proportion of society, this focused approach in model organisms should help identify tractable interventions that can ultimately be translated to humans.  相似文献   

2.
Phytoremediation is the use of plants to remove xenobiotic compounds from the environment. Plants have the inherent ability to detoxify xenobiotic pollutants, but they are generally poor at degrading them. The introduction of genes involved in xenobiotic degradation is aimed at enhancing plants' potential further. Rice (Oryza sativa) is a good candidate for this purpose and has been transformed with genes encoding cytochrome P450 monooxygenases CYP1A1, CYP2B6, and CYP2C19. The transgenic plants were more tolerant to various herbicides than nontransgenic Nipponbare rice plants, owing to enhanced metabolism by the introduced P450 enzymes. Transgenic plants were able to remove atrazine and metolachlor from soil. Field testing and risk assessment are very important for developing transgenic plants for phytoremediation. Transgenic rice plants should become useful as herbicide-tolerant crops and for phytoremediation of xenobiotic pollutants in future.  相似文献   

3.
Hepatic proteins involved in xenobiotic pathways (Phases I, II and III) are responsible for the metabolism and disposition of endogenous and exogenous compounds including dietary phytochemicals. To test the hypothesis that elevated alpha-tocopherol intakes alter gene expression of hepatic xenobiotic pathways, mice were fed diets supplemented with either 1000 IU (+E) or 35 IU (E) all-rac-alpha-tocopheryl acetate for 4 months; liver RNA was isolated, and gene expression was determined using both whole genome microarray and real-time quantitative polymerase chain reaction analyses. Hepatic alpha-tocopherol (173+/-18 vs. 21+/-1 nmol/g, mean+/-S.E.) and its metabolite (2,5,7,8-tetramethyl-2-(2'-carboxyethyl)-6-hydroxychroman, 0.232+/-0.046 vs. 0.031+/-0.019 nmol/g) concentrations were approximately eightfold higher following the +E dietary treatment. In +E relative to E mice, gene expression of Phase I enzymes, P450 oxidoreductase and cytochrome P450 3a11 increased 1.6- and 4.0-fold, respectively; two Phase II genes, sulfotransferase 2a and glutathione S-transferase mu 3, increased 10.8- and 1.9-fold respectively, and a Phase III biliary transporter, Abcb1a, doubled. Thus, consumption of high-level dietary alpha-tocopherol simultaneously coordinated Phase I, II and III gene expression. These data demonstrate that increased hepatic alpha-tocopherol modulates its own concentrations through increasing xenobiotic metabolism, a process that may alter metabolism of other foreign compounds, such as therapeutic drugs and phytochemicals, in humans.  相似文献   

4.
Genetic polymorphism of xenobiotic metabolizing enzymes responsible for individual susceptibility to different environmental factors was examined in a cohort of petrochemical workers occupationally exposed to adverse action of chemical compounds. Molecular genetic analysis of the 1462V mutation in exon 17 of the CYP1A gene demonstrated close similarity between the genotype and allele frequency distribution patterns in the industrial and control groups. No association between the CYP1A polymorphic alleles and genotypes and the duration of service and concomitant diseases was observed. The odds ratio of the disease development in the workers carrying heterozygous CYP1A1 mutant allele was 2.2. Analysis of the STM1 gene polymorphism demonstrated a decrease in the frequency of the homozygous deletion carriers in the workers compared to the control group. There were no substantial differences between the industrial and control groups with respect to the frequencies of rapid and slow acetylator genotypes revealed at the analysis of the NAT2 gene polymorphism. However, considering the concomitant diseases, in the corresponding industrial subgroup a clear trend towards lower frequency of rapid acetylators was demonstrated. In addition, the odds ratio of the disease development for the workers with slow acetylator phenotype was 1.7.  相似文献   

5.
6.
7.
Activation of mouse genes in transformed cells   总被引:45,自引:0,他引:45  
M R Scott  K H Westphal  P W Rigby 《Cell》1983,34(2):557-567
  相似文献   

8.
9.
10.
11.
12.
Biotransformation enzymes involved in the metabolism of exogenous and endogenous compounds efficiently protect the organism from harmful environmental factors. Decreased activity or insufficient synthesis of biotransformation enzymes due to genetic polymorphism is a risk factor for various complex diseases, including atopy. Allele-specific hybridization on a biochip was used to evaluate the frequencies of xenobiotic metabolism gene polymorphisms in children with bronchial asthma and/or allergic rhinitis and in healthy donors, all residents of the Republic of Bashkortostan of Russian descent. Polymorphisms of CYP1A1, GSTT1, GSTM1, NAT2, MTHFR, CYP2C9, and CYP2C19 were not associated with atopic diseases in children. The genotype CYP2D6*1934G/G and the allele CYP2D6*1934G were associated with an increased risk of allergic rhinitis in boys.  相似文献   

13.
14.
15.
Homeostasis of brassinosteroids (BRs) is essential for normal growth and development in higher plants. We examined responsiveness of 11 BR metabolic gene expressions to the decrease or increase of endogenous BR contents in Arabidopsis (Arabidopsis thaliana) to expand our knowledge of molecular mechanisms underlying BR homeostasis. Five BR-specific biosynthesis genes (DET2, DWF4, CPD, BR6ox1, and ROT3) and two sterol biosynthesis genes (FK and DWF5) were up-regulated in BR-depleted wild-type plants grown under brassinazole, a BR biosynthesis inhibitor. On the other hand, in BR-excessive wild-type plants that were fed with brassinolide, four BR-specific synthesis genes (DWF4, CPD, BR6ox1, and ROT3) and a sterol synthesis gene (DWF7) were down-regulated and a BR inactivation gene (BAS1) was up-regulated. However, their response to fluctuation of BR levels was highly reduced (DWF4) or nullified (the other eight genes) in a bri1 mutant. Taken together, our results imply that BR homeostasis is maintained through feedback expressions of multiple genes, each of which is involved not only in BR-specific biosynthesis and inactivation, but also in sterol biosynthesis. Our results also indicate that their feedback expressions are under the control of a BRI1-mediated signaling pathway. Moreover, a weak response in the mutant suggests that DWF4 alone is likely to be regulated in other way(s) in addition to BRI1 mediation.  相似文献   

16.
Tobacco cells (Nicotiana tabacum L.) accumulate harmful naphthols in the form of malonylated glucosides ( Taguchi et al., 2005 ). Here, we showed that the malonylation of glucosides is a system to metabolize xenobiotics and is common to higher plants. Moreover, some plantlets including Arabidopsis thaliana excreted some of the incorporated naphthols into the culture media as their glucosides. In order to analyze the function of malonylation in the metabolism of these xenobiotics, we identified a malonyltransferase gene (At5g39050) responsible for the malonylation of these compounds in A. thaliana. The recombinant enzyme had malonyltransferase activity toward several phenolic glucosides including naphthol glucosides. A knockout mutant of At5g39050 (pmat1) exposed to naphthols accumulated only a few malonylglucosides in the cell, and released larger amounts of simple glucosides into the culture medium. In contrast, forced expression of At5g39050 in the pmat1 mutant resulted in increased malonylglucoside accumulation and decreased glucoside excretion to the media. The results provided clear evidence of whether the release of glucosides or the storage of malonylglucosides was determined by the At5g39050 expression level. A similar event in naphthol metabolism was observed in the tobacco mutant with a suppressed malonyltransferase gene (NtMaT1). These results suggested that malonylation could be a key reaction to separate the way of xenobiotics disposition, that is, release from cell surface or storage in vacuoles.  相似文献   

17.
The ownership signature in mouse scent marks is involatile   总被引:7,自引:0,他引:7  
Male house mice advertise their territory ownership through urinary scent marks and use individual-specific patterns of major urinary proteins (MUPs) to discriminate between their own scent and that of other males. It is not clear whether recognition occurs through discrimination of the non-volatile proteins or protein-ligand complexes (direct model), or by the detection of volatile ligands that are released from MUPs (indirect model). To examine the mechanism underlying individual scent mark signatures, we compared investigatory and countermarking responses of male laboratory mice presented with male scent marks from a strain with a different MUP pattern, when they could contact the scent or when contact was prevented by a porous nitrocellulose sheet to which proteins bind. Mice investigated scent marks from other males whether these were covered or not, and biochemical analysis confirmed that the porous cover did not prevent the release of volatiles from scent marks. Having gained information through investigation, mice increased their own scent marking only if they had direct contact with another male's urine, failing to do this when contact was prevented. Individual signatures in scent marks thus appear to be carried by non-volatile proteins or by non-volatile protein-ligand complexes, rather than by volatiles emanating from the scent.  相似文献   

18.
Primary hyperoxaluria type 1 (PH1) and type 2 (PH2) are rare genetic diseases that result from deficiencies in glyoxylate metabolism. The increased oxalate synthesis that occurs can lead to kidney stone formation, deposition of calcium oxalate in the kidney and other tissues, and renal failure. Hydroxyproline (Hyp) catabolism, which occurs mainly in the liver and kidney, is a prominent source of glyoxylate and could account for a significant portion of the oxalate produced in PH. To determine the sensitivity of mouse models of PH1 and PH2 to Hyp-derived oxalate, animals were fed diets containing 1% Hyp. Urinary excretions of glycolate and oxalate were used to monitor Hyp catabolism and the kidneys were examined to assess pathological changes. Both strains of knockout (KO) mice excreted more oxalate than wild-type (WT) animals with Hyp feeding. After 4 wk of Hyp feeding, all mice deficient in glyoxylate reductase/hydroxypyruvate reductase (GRHPR KO) developed severe nephrocalcinosis in contrast to animals deficient in alanine-glyoxylate aminotransferase (AGXT KO) where nephrocalcinosis was milder and with a lower frequency. Plasma cystatin C measurements over 4-wk Hyp feeding indicated no significant loss of renal function in WT and AGXT KO animals, and significant and severe loss of renal function in GRHPR KO animals after 2 and 4 wk, respectively. These data suggest that GRHPR activity may be vital in the kidney for limiting the conversion of Hyp-derived glyoxylate to oxalate. As Hyp catabolism may make a major contribution to the oxalate produced in PH patients, Hyp feeding in these mouse models should be useful in understanding the mechanisms associated with calcium oxalate deposition in the kidney.  相似文献   

19.
Summary Different clones carrying a chromosomal DNA fragment able to transform Bacillus subtilis mutants dnaA13, dnaB19, dnaG5, recG40 and polA42 to a wild-type phenotype were isolated from a library constructed in plasmid pJH101. A recombinant clone carrying a chromosomal fragment able to transform dnaC mutants was obtained from a Charon 4A library. A restriction map of the cloned DNA fragments was constructed. The 11.3 kb cloned DNA fragment of plasmid pMP60-13 containing the wild-type sequence of dnaG5 was shown to transform a recF33 mutant as well.  相似文献   

20.
Sphingomonads involved in the biodegradation of xenobiotic polymers   总被引:2,自引:0,他引:2  
Sphingomonads involved in the microbial degradation of xenobiotic polymers are introduced. The metabolism of polyethylene glycol was the primary focus of the study. Several others, including polyvinyl alcohol, polyethylene and polyaspartate were also studied. It is suggested that these xenobiotic polymers are metabolized by intracellular enzymes located in the periplasmic space or bound to membranes, indicating that transport of these polymers through outer membranes is requisite for their metabolism. Involvement of specific membrane structures of sphingomonads such as unusual sphingolipids is suggested for membrane transport of xenobiotic compounds, especially hydrophobic materials. Received 01 May 1999/ Accepted in revised form 17 July 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号