首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
VEGF (vascular endothelial growth factor) is a potent proangiogenic cytokine, and vascular change is one of the characteristic features of airway remodelling. Since the glucocorticoids have shown antifibrosis properties, we sought to investigate whether budesonide, a widely used glucocorticoid in clinical practice, could attenuate TGF‐β1 (transforming growth factor‐β1)‐induced VEGF production by HFL‐1 (human lung fibroblasts). HFL‐1 fibroblasts were treated with various concentrations of budesonide (10?11 M, 10?9 M and 10?7 M) in the absence or presence of TGF‐β1. Postculture media were collected for ELISA of VEGF at the indicated times. The cell lysates were subjected to Western blotting analysis to test TGF‐β1/Smad and MAP (mitogen‐activated protein) kinase signalling activation, respectively. The results suggested that budesonide pretreatment reduced the significant increase of VEGF release induced by TGF‐β1 in HFL‐1 fibroblasts in a dose‐dependent manner, and suppressed the increase of phospho‐Smad3 and phosphor‐ERK (extracellular signal‐regulated kinase) protein levels. In conclusion, budesonide may reduce TGF‐β1‐induced VEGF production in the lung, probably through the Smad/ERK signalling pathway and, thus, may provide new sight into the molecular mechanism underlying glucocorticoid therapy for airway inflammatory diseases.  相似文献   

2.
3.
4.
Rho‐associated kinase (ROCK) plays a critical role in pressure overload‐induced left ventricular remodelling. However, the underlying mechanism remains unclear. Here, we reported that TGF‐β1‐induced ROCK elevation suppressed BMP‐2 level and strengthened fibrotic response. Exogenous BMP‐2 supply effectively attenuated TGF‐β1 signalling pathway through Smad6‐Smurf‐1 complex activation. In vitro cultured cardiomyocytes, mechanical stretch up‐regulated cardiac TGF‐β1, TGF‐β1‐dependent ROCK and down‐regulated BMP‐2, but BMP‐2 level could be reversed through blocking TGF‐β1 receptor by SB‐431542 or inhibition of ROCK by Y‐27632. TGF‐β1 could also activate ROCK and suppress endogenous BMP‐2 level in a dose‐dependent manner. Knock‐down BMP‐2 enhanced TGF‐β1‐mediated PKC‐δ and Smad3 signalling cascades. In contrast, treatment with Y‐27632 or SB‐431542, respectively suppressed ROCK‐dependent PKC‐δ and Smad3 activation, but BMP‐2 was only up‐regulated by Y‐27632. In addition, BMP‐2 silencing abolished the effect of Y‐27632, but not SB‐431542 on suppression of TGF‐β1 pathway. Further experiments showed that Smad6 Smurf1 interaction were required for BMP‐2‐evoked antagonizing effects. Smad6 overexpression attenuated TGF‐β1‐induced activation of PKC‐δ and Smad3, promoted TGF‐β RI degradation in BMP‐2 knock‐down cardiomyocytes, and could be abolished after knocking‐down Smurf‐1, in which Smad6/Smurf1 complex formation was critically involved. In vivo data showed that pressure overload‐induced collagen deposition was attenuated, cardiac function was improved and TGF‐β1‐dependent activation of PKC‐δ and Smad3 was reduced after 2 weeks treatment with rhBMP‐2(0.5 mg/kg) or Y‐27632 (10 mg/kg) in mice that underwent surgical transverse aortic constriction. In conclusion, we propose that BMP‐2, as a novel fibrosis antagonizing cytokine, may have potential beneficial effect in attenuating pressure overload‐induced cardiac fibrosis.  相似文献   

5.
This study aimed to determine the cellular aging of osteophyte‐derived mesenchymal cells (oMSCs) in comparison to patient‐matched bone marrow stromal cells (bMSCs). Extensive expansion of the cell cultures was performed and early and late passage cells (passages 4 and 9, respectively) were used to study signs of cellular aging, telomere length, telomerase activity, and cell‐cycle‐related gene expression. Our results showed that cellular aging was more prominent in bMSCs than in oMSCs, and that oMSCs had longer telomere length in late passages compared with bMSCs, although there was no significant difference in telomere lengths in the early passages in either cell type. Telomerase activity was detectable only in early passage oMSCs and not in bMSCs. In osteophyte tissues telomerase‐positive cells were found to be located perivascularly and were Stro‐1 positive. Fifteen cell‐cycle regulator genes were investigated and only three genes (APC, CCND2, and BMP2) were differentially expressed between bMSC and oMSC. Our results indicate that oMSCs retain a level of telomerase activity in vitro, which may account for the relatively greater longevity of these cells, compared with bMSCs, by preventing replicative senescence. J. Cell. Biochem. 108: 839–850, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
The role of B cells in the generation of cancer‐immune tolerance is unclear. This study aims to investigate the role of cancer‐derived microvesicles (Mvcs) in the generation of transforming growth factor (TGF)‐β+ B cells. In this study, esophageal cancer (Eca) cells were isolated from surgically removed cancer tissue. Mvcs were purified from the culture supernatant and characterized by Western blotting. The immune suppression assay was carried out with a cell culture model and flow cytometry. The results showed that Eca‐derived Mvcs were LAMP1 positive and carried MMP9. Exposure to the Mvcs induces naive B cells to differentiate into TGF‐β‐producing regulatory B cells; the latter show immune suppressor functions on CD8+ T‐cell proliferation. In conclusion, Eca‐derived Mvc can induce TGF‐β+ B cells; the latter suppress CD8+ T‐cell activities. The MMP9‐laden Mvcs may be a new therapeutic target in the treatment of Eca. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.

Objectives

Previous research has established population variation in anti‐inflammatory immunological biomarkers in human milk. This immunity is potentially ecology‐dependent and may alter the life history trade‐off between growth and maintenance in infants. The current study has two aims: (1) to assess the ecological differences in milk immunity in two populations, one from the urban U.S. and one from rural Kenya; and (2) to test the hypothesis that milk immunity can affect infant growth indicators.

Materials and Methods

Kenyan Ariaal (n = 233) and U.S. (n = 75) breastfeeding mother‐infant pairs participated in a cross‐sectional study at two separate field sites. Laboratory analysis was performed on milk for the anti‐inflammatory biomarkers TGF‐β2, sTNF‐αRI, sTNF‐αRII, and IL‐1ra using ELISA. Multiple imputation was used to extrapolate data below the limit of detection before multivariate analysis.

Results

There were significant differences between U.S. and Kenyan mothers on all four milk biomarkers, with Kenyan mothers having significantly higher sTNF‐αRI and sTNF‐αRII and lower TGF‐β2 and IL‐1ra than U.S. mothers. U.S. mothers with higher milk TGF‐β2 and IL‐1ra have infants that are significantly longer and heavier for their age, while Kenyan mothers with higher sTNF‐αRI have significantly longer and heavier infants for their age, and those with higher TGF‐β2 have marginally significantly longer infants.

Discussion

There were significant differences in ecological milk immunity between U.S. and Kenyan mothers. These differences potentially play a role in the growth of their infants. Further research in milk immunity should consider the possibility of shared maternal–infant life histories.
  相似文献   

8.
Krüppel‐like factor 4 (KLF4) was closely associated with epithelial‐mesenchymal transition and stemness in colorectal cancer stem cells (CSCs)‐enriched spheroid cells. Nonetheless, the underlying molecular mechanism is unclear. This study showed that KLF4 overexpression was accompanied with stemness and mesenchymal features in Lgr5+CD44+EpCAM+ colorectal CSCs. KLF4 knockdown suppressed stemness, mesenchymal features and activation of the TGF‐β1 pathway, whereas enforced KLF4 overexpression activated TGF‐β1, phosphorylation of Smad 2/3 and Snail expression, and restored stemness and mesenchymal phenotypes. Furthermore, TGF‐β1 pathway inhibition invalidated KLF4‐facilitated stemness and mesenchymal features without affecting KLF4 expression. The data from the current study are the first to demonstrate that KLF4 maintains stemness and mesenchymal properties through the TGF‐β1/Smad/Snail pathway in Lgr5+CD44+EpCAM+ colorectal CSCs.  相似文献   

9.
The elucidation of factors that support human mesenchymal stem cells (hMSCs) growth has remained unresolved partly because of the reliance of many researchers on ill‐defined, proprietary medium formulation. Thus, we investigated the effects of high glucose (D ‐glucose, 25 mM) on hMSCs proliferation. High glucose significantly increased [3H]‐thymidine incorporation and cell‐cycle regulatory protein expression levels compared with 5 mM D ‐glucose or 25 mM L ‐glucose. In addition, high glucose increased transforming growth factor‐β1 (TGF‐β1) mRNA and protein expression levels. High glucose‐induced cell‐cycle regulatory protein expression levels and [3H]‐thymidine incorporation, which were inhibited by TGF‐β1 siRNA transfection and TGF‐β1 neutralizing antibody treatment. High glucose‐induced phosphorylation of protein kinase C (PKC), p44/42 mitogen‐activated protein kinases (MAPKs), p38 MAPK, Akt, and mammalian target of rapamycin (mTOR) in a time‐dependent manner. Pretreatment of PKC inhibitors (staurosporine, 10?6 M; bisindolylmaleimide I, 10?6 M), LY 294002 (PI3 kinase inhibitor, 10?6 M), Akt inhibitor (10?5 M), PD 98059 (p44/42 MAPKs inhibitor, 10?5 M), SB 203580 (p38 MAPK inhibitor, 10?6 M), and rapamycin (mTOR inhibitor, 10?8 M) blocked the high glucose‐induced cellular proliferation and TGF‐β1 protein expression. In conclusion, high glucose stimulated hMSCs proliferation through TGF‐β1 expression via Ca2+/PKC/MAPKs as well as PI3K/Akt/mTOR signal pathways. J. Cell. Physiol. 224:59–70, 2010 © 2010 Wiley‐Liss, Inc.  相似文献   

10.

Introduction

The Venus p?valve (MedTech, Shanghai, China) is a self-expanding percutaneous heart valve designed to be implanted in a native patched right ventricle outflow tract. The worldwide clinical experience with this valve is just beginning and the results have so far been encouraging. We present our initial early experience implanting the Venus p?valve in the native right ventricle outflow tract of patients with Tetralogy of Fallot repaired with a transannular patch.

Methods

In 10 selected patients a procedure for percutaneous pulmonary valve implantation was performed using the Venus p?valve. The patients mean age was 32 years (13–57), mean weight 59.6?kg (40–80). All patients had Tetralogy of Fallot with moderate to severe pulmonary regurgitation and an indication for pulmonary valve replacement.

Results

The implantation procedure was successful in all the patients resulting in an immediately functional valve. No procedure-related complications were observed. Follow-up after 12 months (4–21) resulted in an improvement in NYHA class. There was a reduction of the mean right ventricle diastolic volume from 139?ml/m2 (105–179) to 78?ml/m2 (65–100) and improvement in the regurgitation fraction from 42% (29–58) to 1% (0–5), as seen on routine cardiac magnetic resonance 6 months after the implantation. No stent fractures have been observed so far.

Conclusion

Percutaneous pulmonary valve implantation with the Venus p?valve resulted in a safe and effective procedure. The valve has predictable and sustained functional competence, resulting in clinical improvement in the patients.
  相似文献   

11.
Fish keratocytes are used as a model system for the study of the mechanics of cell motility because of their characteristic rapid, smooth gliding motion, but little work has been done on the regulation of fish keratocyte movement. As TGFβ (transforming growth factor β) plays multiple roles in primary human keratinocyte cell migration, we investigated the possible involvement of TGFβ in fish keratocyte migration. Studying the involvement of TGFβ1 in 24 h keratocyte explant allows the examination of the cells before alterations in cellular physiology occur due to extended culture times. During this initial period, TGFβ levels increase 6.2‐fold in SFM (serum‐free medium) and 2.4‐fold in SFM+2% FBS (fetal bovine serum), while TGFβ1 and TGFβRII (TGFβ receptor II) mRNA levels increase ~3‐ and ~5‐fold respectively in each culture condition. Two measures of motility, cell sheet area and migration distance, vary with the amount of exogenous TGFβ1 and culture media. The addition of 100 ng/ml exogenous TGFβ1 in SFM increases both measures [3.3‐fold (P=4.5 × 10?5) and 26% (P=2.1 × 10?2) respectively]. In contrast, 100 ng/ml of exogenous TGFβ1 in medium containing 2% FBS decreases migration distance by 2.1‐fold (P=1.7 × 10?7), but does not affect sheet area. TGFβ1 (10 ng/ml) has little effect on cell sheet area in SFM cultures, but leads to a 1.8‐fold increase (P=1.5 × 10?2) with 2% FBS. The variable response to TGFβ1 may be, at least in part, explained by the effect of 2% FBS on cell morphology, mode of motility and expression of endogenous TGFβ1 and TGFβRII. Together, these results suggest that expression of TGFβ and its receptor are up‐regulated during zebrafish keratocyte explant culture and that TGFβ promotes fish keratocyte migration.  相似文献   

12.
In spite of showing high sequence similarity and forming structurally similar ternary complex in vitro, the in vivo role of TGF‐β1 and TGF‐β3 ligands suggests against their functional redundancy and necessitates the importance for the study of the specificity of these ligands. A comparative computational analysis of binary and ternary complexes of these two ligands shows that anchor residues of ligand and receptor at TGF‐β:TβR2 interface are similar in both complexes. However, the potential anchor residues of TGF‐β at TGF‐β:TβR1 interface are different, Tyr50 and Lys51 in TGF‐β3 complex and Lys60 and Tyr6 in TGF‐β1 complex. Pro55 and Asp57 of TβRI may act as anchor residues in complexes of both ligands along with Ile54 for TGF‐β3 complex and Val61 for TGF‐β1 complex. Arg58 of TβR1 acts as a potential hot residue for TGF‐β3 ternary complex but not for TGF‐β1 ternary complex formation whereas Pro55 and Phe60 may act as hot residues for both complexes. The Delphi analysis of the pH dependence of the binding energy indicates that pH has a remarkable effect on the binding energy of TβR2 to the open form of TGF‐β3. Lowering of pH from 7 to 4 favors binding of the open form of TGF‐β3 to TβR2. Now, apart from the residues at pH 7, residues Arg25, Lys31 and Arg94 of TGF‐β3 and Asp118 and Glu119 of TβR2 also contribute significantly to the binding energy. Contrary to the binding energy of TβR2 to TGF‐β3/TGF‐β1, TβR1 shows appreciable pH dependence for its binding in ternary complex of TGF‐β3/TGF‐β1. In TGF‐β3 ternary complex, the TβR1 electrostatic interaction energy disfavors complex formation at pH 7 while it is favored at pH 4. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Galectin‐3 (Gal‐3) plays a critical role in vascular inflammation and fibrosis. The role of TGF‐β1 in mediating pulmonary vascular fibrosis is well documented; thus, we suspected that Gal‐3 could be an important factor in TGF‐β1‐induced fibrosis in pulmonary adventitial fibroblasts (PAFs). We treated rats with monocrotaline (MCT) and cultured PAFs with TGF‐β1 to stimulate fibrosis. We found that MCT injection induced vessel thickening and extracellular matrix deposition in vivo. TGF‐β1 stimulated the production of collagen and fibronectin (Fn) protein in vitro. TGF‐β1 promoted the expression of Gal‐3 and its translocation, while silencing Gal‐3 reduced Col‐1a deposition. Blockage of STAT3 decreased the expression of Gal‐3 induced by TGF‐β1. Gal‐3 increased Col‐1a accumulation and downregulated matrix metallopeptidase 9 (MMP‐9) expression in PAFs, but it did not affect Fn expression. These findings demonstrate that Gal‐3 is required for TGF‐β1‐stimulated vascular fibrosis via a STAT3 signaling cascade and that MMP‐9 is also involved in TGF‐β1/Gal‐3‐induced vascular fibrosis.  相似文献   

14.

Background

The aim of this study was to investigate gene transfer to human umbilical cord blood (CB) CD34+/CD38low and NOD/SCID repopulating cells using oncoretroviral vectors and to compare the transduction efficiency using three different viral envelopes.

Methods

CB cells were transduced on Retronectin using an MSCV‐based vector with the gene for GFP (MGIN), which was packaged into three different cell lines giving different envelopes: PG13‐MGIN (GALV), 293GPG‐MGIN (VSV‐G) or AM12‐MGIN (amphotropic).

Results

Sorted CD34+/CD38low cells were efficiently transduced after 3 days of cytokine stimulation and the percentage of GFP‐positive cells was 61.8±6.6% (PG13‐MGIN), 26.9±3.5% (293GPG‐MGIN), and 39.3±4.8% (AM12‐MGIN). For transplantation experiments, CD34+ cells were pre‐stimulated for 2 days before transduction on Retronectin preloaded with vector and with the addition of 1/10th volume of viral supernatant on day 3. On day 4, the expanded equivalent of 2.5×105 cells was injected into irradiated NOD/SCID mice. All three pseudotypes transduced NOD/SCID repopulating cells (SRCs) equally well in the presence of serum, but engraftment was reduced when compared with freshly thawed cells. Simultaneous transduction with all three vector pseudotypes increased the gene transfer efficiency to SRCs but engraftment was significantly impaired. There were difficulties in producing amphotropic vectors at high titers in serum‐free medium and transduction of CD34+ cells using VSV‐G‐pseudotyped vectors under serum‐free conditions was very inefficient. In contrast, transduction with PG13‐MGIN under serum‐free conditions resulted in the maintenance of SRCs during transduction, high levels of engraftment (29.3±6.6%), and efficient gene transfer to SRCs (46.2±4.8%).

Conclusions

The best conditions for transduction and engraftment of CB SRCs were obtained with GALV‐pseudotyped vectors using serum‐free conditions. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

15.
Common in vitro protocols for chondrogenesis of mesenchymal stem cells (MSCs) induce an inadequate, hypertrophic differentiation cascade reminiscent of endochondral bone formation. We aimed to modify chondrogenic protocols in order to identify potent inducers, promotors, and inhibitors to achieve better chondrogenesis. Nine factors suspected to stimulate or inhibit chondrogenesis were used for chondrogenic in vitro induction of MSC. Differentiation was assessed by immunohistochemistry, alcian‐blue staining, qRT‐PCR, and quantification of alkaline phosphatase (ALP) activity. Pre‐differentiated pellets were transplanted subcutaneously into SCID mice to investigate stable cartilage formation. Transforming growth factor (TGF)‐β was always required for chondrogenic differentiation and deposition of a collagen‐type‐II‐positive extracellular matrix, while bone morphogenetic protein (BMP)‐2, ‐4, ‐6, ‐7, aFGF, and IGF‐I (10 ng/ml) were alone not sufficiently inductive. Each of these factors allowed differentiation in combination with TGF‐β, however, without preventing collagen type X expression. bFGF or parathyroid hormone‐like peptide (PTHrP) inhibited the TGF‐β‐responsive COL2A1 and COL10A1 expression and ALP induction when added from day 0 or 21. In line with a reversible ALP inhibition, in vivo calcification of pellets was not prevented. Late up‐regulation of PTH1R mRNA suggests that early PTHrP effects may be mediated by a receptor‐independent pathway. While TGF‐β was a full inducer, bFGF and PTHrP were potent inhibitors for early and late chondrogenesis, seemed to induce a shift from matrix anabolism to catabolism, but did not selectively suppress COL10A1 expression. Within a developmental window of collagen type II+/collagen type X? cells, bFGF and PTHrP may allow inhibition of further differentiation toward hypertrophy to obtain stable chondrocytes for transplantation purposes. J. Cell. Physiol. 223: 84–93, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
Telocytes (TCs) with exceptionally long cellular processes of telopodes have been described in human epicardium to act as structural supporting cells in the heart. We examined myocardial chamber‐specific TCs identified in atrial and ventricular fibroblast culture using immunocytochemistry and studied their electrophysiological property by whole‐cell patch clamp. Atrial and ventricular TCs with extended telopodes and alternating podoms and podomers that expressed CD34, c‐Kit and PDGFR‐β were identified. These cells expressed large conductance Ca2+‐activated K+ current (BKCa) and inwardly rectifying K+ current (IKir), but not transient outward K+ current (Ito) and ATP‐sensitive potassium current (KATP). The active channels were functionally competent with demonstrated modulatory response to H2S and transforming growth factor (TGF)‐β1 whereby H2S significantly inhibited the stimulatory effect of TGF‐β1 on current density of both BKCa and IKir. Furthermore, H2S attenuated TGF‐β1‐stimulated KCa1.1/Kv1.1 (encode BKCa) and Kir2.1 (encode IKir) expression in TCs. Our results show that functionally competent K+ channels are present in human atrial and ventricular TCs and their modulation may have significant implications in myocardial physiopathology.  相似文献   

17.
A defective expression or activity of neurotrophic factors, such as brain‐ and glial‐derived neurotrophic factors, contributes to neuronal damage in Huntington’s disease (HD). Here, we focused on transforming growth factor‐β (TGF‐β1), a pleiotropic cytokine with an established role in mechanisms of neuroprotection. Asymptomatic HD patients showed a reduction in TGF‐β1 levels in the peripheral blood, which was related to trinucleotide mutation length and glucose hypometabolism in the caudate nucleus. Immunohistochemical analysis in post‐mortem brain tissues showed that TGF‐β1 was reduced in cortical neurons of asymptomatic and symptomatic HD patients. Both YAC128 and R6/2 HD mutant mice showed a reduced expression of TGF‐β1 in the cerebral cortex, localized in neurons, but not in astrocytes. We examined the pharmacological regulation of TGF‐β1 formation in asymptomatic R6/2 mice, where blood TGF‐β1 levels were also reduced. In these R6/2 mice, both the mGlu2/3 metabotropic glutamate receptor agonist, LY379268, and riluzole failed to increase TGF‐β1 formation in the cerebral cortex and corpus striatum, suggesting that a defect in the regulation of TGF‐β1 production is associated with HD. Accordingly, reduced TGF‐β1 mRNA and protein levels were found in cultured astrocytes transfected with mutated exon 1 of the human huntingtin gene, and in striatal knock‐in cell lines expressing full‐length huntingtin with an expanded glutamine repeat. Taken together, our data suggest that serum TGF‐β1 levels are potential biomarkers of HD development during the asymptomatic phase of the disease, and raise the possibility that strategies aimed at rescuing TGF‐β1 levels in the brain may influence the progression of HD.  相似文献   

18.
19.
This study assesses the effects of ambient light conditions, under a thermoneutral environment, on selected immunological parameters of 7 healthy young women (aged 19 to 22 yrs). Subjects entered the bioclimatic chamber at 11∶00 h, controlled at 26°C and 60% relative humidity, a “neutral climate”. They lead a well‐regulated life in the climatic chamber (pre‐condition) while exposed to dim (200 lux) or, on the next day, bright (5000 lux) light between 06∶00 to 12∶00 h. Just before the end of each period of light exposure, a blood sample was taken for later immunological assay of white blood cell count (WBC), phagocytosis, interferon‐γ (IFN‐γ), interleukin‐4 (IL‐4), CD69 T cells (CD69), CD4+CD25+ T cells (CD4+CD25+), and transforming growth factor‐β 1 (TGF‐β1). The results, when compared with the pre‐condition, were as follows: 1) CD69 and IFN‐γ increased during normal conditions without thermal stress under dim light; 2) WBC increased and IL‐4 decreased under bright light; 3) as shown by the highly significant decrease of TGF‐β1, the immune system was activated under bright light; 4) phagocytosis tended to increase under bright light exposure; 5) CD69 and IFN‐γ were significantly higher, and CD4+CD25+ tended to decrease under bright light; 6) phagocytosis tended to be lower and TGF‐β1 significantly higher under dim light, indicating a decline of immune system function. Taken together, this preliminary single time‐point sampling study infers that some parameters are activated (CD69) while others are attenuated (phagocytosis, TGF‐β1) according to the environmental light intensity, dim vs. bright, in women adhering to a standardized routine in the absence of thermal stress. These findings are discussed in terms of inhibition of the sympathetic and excitation of the parasympathetic nervous system under the influence of life‐style regularity and daytime bright light exposure.  相似文献   

20.

Background

Uncontrolled hyperglycemia is the main risk factor in the development of diabetic vascular complications. The endothelial cells are the first cells targeted by hyperglycemia. The mechanism of endothelial injury by high glucose is still poorly understood. Heparanase production, induced by hyperglycemia, and subsequent degradation of heparan sulfate may contribute to endothelial injury. Little is known about endothelial injury by heparanase and possible means of preventing this injury.

Objectives

To determine if high glucose as well as heparanase cause endothelial cell injury and if insulin, heparin and bFGF protect cells from this injury.

Methods

Cultured porcine aortic endothelial cells were treated with high glucose (30 mM) and/or insulin (1 U/ml) and/or heparin (0.5 μg/ml) and /or basic fibroblast growth factor (bFGF) (1 ng/ml) for seven days. Cells were also treated with heparinase I (0.3 U/ml, the in vitro surrogate heparanase), plus insulin, heparin and bFGF for two days in serum free medium. Endothelial cell injury was evaluated by determining the number of live cells per culture and lactate dehydrogenase (LDH) release into medium expressed as percentage of control.

Results

A significant decrease in live cell number and increase in LDH release was found in endothelial cells treated with high glucose or heparinase I. Insulin and/or heparin and/or bFGF prevented these changes and thus protected cells from injury by high glucose or heparinase I. The protective ability of heparin and bFGF alone or in combination was more evident in cells damaged with heparinase I than high glucose.

Conclusion

Endothelial cells injured by high glucose or heparinase I are protected by a combination of insulin, heparin and bFGF, although protection by heparin and/or bFGF was variable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号