共查询到20条相似文献,搜索用时 15 毫秒
1.
Roy MC Nakanishi H Takahashi K Nakanishi S Kajihara S Hayasaka T Setou M Ogawa K Taguchi R Naito T 《Journal of lipid research》2011,52(3):463-470
Salamander large cells facilitated identification and localization of lipids by MALDI imaging mass spectrometry. Salamander retina lipid extract showed similarity with rodent retina lipid extract in phospholipid content and composition. Like rodent retina section, distinct layer distributions of phospholipids were observed in the salamander retina section. Phosphatidylcholines (PCs) composing saturated and monounsaturated fatty acids (PC 32:0, PC 32:1, and PC 34:1) were detected mainly in the outer and inner plexiform layers (OPL and IPL), whereas PCs containing polyunsaturated fatty acids (PC 36:4, PC 38:6, and PC 40:6) composed the inner segment (IS) and outer segment (OS). The presence of PCs containing polyunsaturated fatty acids in the OS layer implied that these phospholipids form flexible lipid bilayers, which facilitate phototransduction process occurring in the rhodopsin rich OS layer. Distinct distributions and relative signal intensities of phospholipids also indicated their relative abundance in a particular cell or a cell part. Using salamander large cells, a single cell level localization and identification of biomolecules could be achieved by MALDI imaging mass spectrometry. 相似文献
2.
? Matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI) of tissues provides the means to analyse the spatial distributions of small molecules and proteins within tissues. This imaging technique is commonplace in medicinal and pharmaceutical research, but its application in plant science is very recent. Broader introduction requires specific adaptations for plant tissues. Sample preparation is of paramount importance in order to obtain high-quality spectra providing sufficient spatial resolution for compounds. Optimization is required for sectioning, choice of matrix and means of matrix deposition. ? Here, we present our current protocols for the detection of small molecules in cryodissected immature barley (Hordeum vulgare) grains and tobacco (Nicotiana tabacum) roots. ? Examples of MALDI-MSI measurements are provided, and the level of reproducibility across biological replicates is addressed. Furthermore, our approaches for the validation of distribution patterns and for the identification of molecules are described. ? Finally, we discuss how MALDI-MSI can contribute to applied plant research. 相似文献
3.
Belin G. Teklezgi Annapurna Pamreddy Sooraj Baijnath Nirmala D. Gopal Tricia Naicker Hendrik G. Kruger Thavendran Govender 《Journal of molecular histology》2017,48(4):285-292
Heroin is an illicit opioid drug which is commonly abused and leads to dependence and addiction. Heroin is considered a pro-drug and is rapidly converted to its major active metabolite 6-monoacetylmorphine (6-MAM) which mediates euphoria and reward through the stimulation of opioid receptors in the brain. The aim of this study was to investigate the distribution and localization of 6-MAM in the healthy Sprague Dawley rat brain following intraperitoneal (i.p) administration of heroin (10 mg/kg), using matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI), in combination with quantification via liquid chromatography mass spectrometry (LC–MS/MS). These findings revealed that 6-MAM is present both in plasma and brain tissue with a Tmax of 5 min (2.8 µg/mL) and 15 min (1.1 µg/mL), respectively. MSI analysis of the brain showed high intensities of 6-MAM in the thalamus-hypothalamus and mesocorticolimbic system including areas of the cortex, caudate putamen, and ventral pallidum regions. This finding correlates with the distribution of opioid receptors in the brain, according to literature. In addition, we report a time-dependent distribution in the levels of 6-MAM, from 1 min with the highest intensity of the drug observed at 15 min, with sparse distribution at 45 min before decreasing at 60 min. This is the first study to use MSI as a brain imaging technique to detect a morphine’s distribution over time in the brain. 相似文献
4.
Shanta SR Choi CS Lee JH Shin CY Kim YJ Kim KH Kim KP 《Journal of lipid research》2012,53(9):1823-1831
Neuronal membrane phospholipids are highly affected by oxidative stress caused by ischemic injury. Thus, it is necessary to identify key lipid components that show changes during ischemia to develop an effective approach to prevent brain damage from ischemic injury. The recent development of MALDI imaging MS (MALDI IMS) makes it possible to identify phospholipids that change between damaged and normal regions directly from tissues. In this study, we conducted IMS on rat brains damaged by ischemic injury and detected various phospholipids that showed unique distributions between normal and damaged areas of the brain. Among them, we confirmed changes in phospholipids such as lysophosphatidylcholine, phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin by MALDI IMS followed by MS/MS analysis. These lipids were present in high concentrations in the brain and are important for maintenance of cellular structure as well as production of second messengers for cellular signal transduction. Our results emphasize the identification of phospholipid markers for ischemic injury and successfully identified several distinctly located phospholipids in ischemic brain tissue. 相似文献
5.
6.
MITICS (MALDI Imaging Team Imaging Computing System): a new open source mass spectrometry imaging software 总被引:1,自引:0,他引:1
Jardin-Mathé O Bonnel D Franck J Wisztorski M Macagno E Fournier I Salzet M 《Journal of Proteomics》2008,71(3):332-345
MITICS is a new software developed for MALDI imaging. We tried to render this software compatible with all types of instruments. MITICS is divided in two parts: MITICS control for data acquisition and MITICS Image for data processing and images reconstruction. MITICS control is available for Applied BioSystems MALDI-TOF instruments and MITICS Image for both Applied BioSystems and Bruker Daltonics ones. MITICS Control provides an interface to the user for setting the acquisition parameters for the imaging sequence, namely set instruments acquisition parameters, create the raster of acquisition and control post-acquisition data processing, and provide this settings to the automatic acquisition software of the MALDI instrument. MITICS Image ensures image reconstruction, files are first converted to XML files before being loaded in a database. In MITICS image we have chosen to implement different data representations and calculations for image reconstruction. MITICS Image uses three different representations that have shown to ease extraction of information from the whole data set. It also offers image reconstruction base either on the maximum peak intensity or the peak area. Image reconstruction is possible for single ions but also by summing signals of different ions. MITICS was validated on biological cases. 相似文献
7.
Archived formalin-fixed paraffin-embedded (FFPE) tissue collections represent a valuable informational resource for proteomic studies. Multiple FFPE core biopsies can be assembled in a single block to form tissue microarrays (TMAs). We describe a protocol for analyzing protein in FFPE-TMAs using matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS). The workflow incorporates an antigen retrieval step following deparaffinization, in situ trypsin digestion, matrix application and then mass spectrometry signal acquisition. The direct analysis of FFPE-TMA tissue using IMS allows direct analysis of multiple tissue samples in a single experiment without extraction and purification of proteins. The advantages of high speed and throughput, easy sample handling and excellent reproducibility make this technology a favorable approach for the proteomic analysis of clinical research cohorts with large sample numbers. For example, TMA analysis of 300 FFPE cores would typically require 6 h of total time through data acquisition, not including data analysis. 相似文献
8.
Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) is emerging as a powerful tool for investigating the distribution of molecules within biological systems through the direct analysis of thin tissue sections. Unique among imaging methods, MALDI-IMS can determine the distribution of hundreds of unknown compounds in a single measurement. We discuss the current state of the art of MALDI-IMS along with some recent applications and technological developments that illustrate not only its current capabilities but also the future potential of the technique to provide a better understanding of the underlying molecular mechanisms of biological processes. 相似文献
9.
Mass spectrometry (MS) has become an essential tool for the detection, identification, and characterization of the molecular components of biological processes, such as those responsible for the dynamic properties of the nervous system. Generally, the application of these powerful techniques requires the destruction of the specimen under study, but recent technological advances have made it possible to apply the matrix-assisted laser desorption/ionization (MALDI) MS technique directly to tissue sections. The major advantage of direct MALDI analysis is that it enables the acquisition of local molecular expression profiles, while maintaining the topographic integrity of the tissue and avoiding time-consuming extraction, purification, and separation steps, which have the potential for introducing artifacts. With automation and the ability to display complex spectral data using imaging software, it is now possible to create multiple 2D maps of selected biomolecules in register with tissue sections, a method now known as MALDI Imaging, or MSI (for Mass Spectrometry Imaging). This creates, for example, an opportunity to correlate functional states, determined a priori with live recording or imaging, with the corresponding molecular maps obtained at the time the tissue is frozen and analyzed with MSI. We review the increasing application of MALDI Imaging to the analysis of molecular distributions of proteins and peptides in nervous tissues of both vertebrates and invertebrates, focusing in particular on recent studies of neurodegenerative diseases and early efforts to implement assays of neuronal development. 相似文献
10.
The molecular complexity of biological tissue and the spatial and temporal variation in the biological processes involved in human disease requires new technologies and new approaches to provide insight into disease processes. Imaging mass spectrometry is an effective tool that provides molecular images of tissues in the molecular discovery process. The analysis of human tissue presents special challenges and limitations because the heterogeneity among human tissues and diseases is much greater than that observed in animal models, and discoveries made in animal tissues might not translate well to their human counterparts. In this article, we briefly review the challenges of imaging human tissue using mass spectrometry and suggest approaches to address these issues. 相似文献
11.
Physical and linkage mapping underpin efforts to sequence and characterize the genomes of eukaryotic organisms by providing a skeleton framework for whole genome assembly. Hitherto, linkage and physical “contig” maps were generated independently prior to merging. Here, we develop a new and easy method, BAC HAPPY MAPPING (BAP mapping), that utilizes BAC library pools as a HAPPY mapping panel together with an Mbp-sized DNA panel to integrate the linkage and physical mapping efforts into one pipeline. Using Arabidopsis thaliana as an exemplar, a set of 40 Sequence Tagged Site (STS) markers spanning ∼10% of chromosome 4 were simultaneously assembled onto a BAP map compiled using both a series of BAC pools each comprising 0.7x genome coverage and dilute (0.7x genome) samples of sheared genomic DNA. The resultant BAP map overcomes the need for polymorphic loci to separate genetic loci by recombination and allows physical mapping in segments of suppressed recombination that are difficult to analyze using traditional mapping techniques. Even virtual “BAC-HAPPY-mapping” to convert BAC landing data into BAC linkage contigs is possible. 相似文献
12.
Marko-Varga G Fehniger TE Rezeli M Döme B Laurell T Végvári A 《Journal of Proteomics》2011,74(7):982-992
Lung cancer is a common cause of cancer mortality in the world, largely due to the risk factor of tobacco smoking. The drug therapy at the molecular level includes targeting the epidermal growth factor receptor (EGFR) tyrosine kinase activity by using inhibitors, such as erlotinib (Tarceva) and gefitinib (Iressa). The heterogeneity of disease phenotypes and the somatic mutations presented in patient populations have a great impact on the efficacy of treatments using targeted personalized medicine. In this study, we report on basic physical and chemical properties of erlotinib and gefitinib in three different lung cancer tumor phenotypes, using MALDI instrumentation in imaging mode, providing spatial localization of drugs without chemical labeling. Erlotinib and gefitinib were analyzed in i) planocellular lung carcinoma, ii) adenocarcinoma and iii) large cell lung carcinoma following their deposition on the tissue surfaces by piezo-dispensing, using a controlled procedure. The importance of high-resolution sampling was crucial in order to accurately localize the EGFR tyrosine kinase inhibitors deposited in heterogeneous cancer tissue compartments. This is the first report on personalized drug characterization with localizations at a lateral resolution of 30μm, which allowed us to map these compounds at attomolar concentrations within the lung tumor tissue microenvironments. 相似文献
13.
New developments in profiling and imaging of proteins from tissue sections by MALDI mass spectrometry 总被引:1,自引:0,他引:1
Chaurand P Norris JL Cornett DS Mobley JA Caprioli RM 《Journal of proteome research》2006,5(11):2889-2900
Molecular imaging of tissue by MALDI mass spectrometry is a powerful tool for visualizing the spatial distribution of constituent analytes with high molecular specificity. Although the technique is relatively young, it has already contributed to the understanding of many diverse areas of human health. In recent years, a great many advances in the practice of imaging mass spectrometry have taken place, making the technique more sensitive, robust, and ultimately useful. The purpose of this review is to highlight some of the more recent technological advances that have improved the efficiency of imaging mass spectrometry for clinical applications. Advances in the way MALDI mass spectrometry is integrated with histology, improved methods for automation, and better tools for data analysis are outlined in this review. Refined top-down strategies for the identification and validation of candidate biomarkers found in tissue sections are discussed. A clinical example highlighting the application of these methods to a cohort of clinical samples is described. 相似文献
14.
Mass spectrometric techniques have been developed to record mass spectra of biomolecules including lipids as they naturally exist within tissues and thereby permit the generation of images displaying the distribution of specific lipids in tissues, organs, and intact animals. These techniques are based on matrix-assisted laser desorption/ionization (MALDI) that requires matrix application onto the tissue surface prior to analysis. One technique of application that has recently shown significant advantages for lipid analysis is sublimation of matrix followed by vapor deposition directly onto the tissue. Explanations for enhanced sensitivity realized by sublimation/deposition related to sample temperature after a laser pulse and matrix crystal size are presented. Specific examples of sublimation/deposition in lipid imaging of various organs including brain, ocular tissue, and kidney are presented. 相似文献
15.
Lijuan Peng 《Analytical biochemistry》2010,400(1):56-280
Previous studies in our group have shown that the analyte signal in a matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) experiment is strongly influenced by the binding interactions between the target surface and the analyte. Specifically, the analyte signal increases with decreases in surface binding affinity, which has been attributed to more unbound analyte being available for incorporation within the MALDI matrix. In this work, polyethylene glycol (PEG) was chemically grafted onto a polyurethane (PU) film to produce a MALDI target having reduced surface-protein binding affinity, and the effect of this modification on protein MALDI ion signals was investigated. The proteins myoglobin, lysozyme, and albumin were used to evaluate the PEG PU modified target as compared with a PU target and a commercial stainless steel target. It is shown that there are enhancements in the protein MALDI ion signals on the PEG PU modified target and that the limit of detection for these proteins is decreased by a factor of 2 to 6 in comparison with the unmodified PU and the commercial stainless steel targets. 相似文献
16.
17.
Meding S Nitsche U Balluff B Elsner M Rauser S Schöne C Nipp M Maak M Feith M Ebert MP Friess H Langer R Höfler H Zitzelsberger H Rosenberg R Walch A 《Journal of proteome research》2012,11(3):1996-2003
In clinical diagnostics, it is of outmost importance to correctly identify the source of a metastatic tumor, especially if no apparent primary tumor is present. Tissue-based proteomics might allow correct tumor classification. As a result, we performed MALDI imaging to generate proteomic signatures for different tumors. These signatures were used to classify common cancer types. At first, a cohort comprised of tissue samples from six adenocarcinoma entities located at different organ sites (esophagus, breast, colon, liver, stomach, thyroid gland, n = 171) was classified using two algorithms for a training and test set. For the test set, Support Vector Machine and Random Forest yielded overall accuracies of 82.74 and 81.18%, respectively. Then, colon cancer liver metastasis samples (n = 19) were introduced into the classification. The liver metastasis samples could be discriminated with high accuracy from primary tumors of colon cancer and hepatocellular carcinoma. Additionally, colon cancer liver metastasis samples could be successfully classified by using colon cancer primary tumor samples for the training of the classifier. These findings demonstrate that MALDI imaging-derived proteomic classifiers can discriminate between different tumor types at different organ sites and in the same site. 相似文献
18.
Lemaire R Desmons A Tabet JC Day R Salzet M Fournier I 《Journal of proteome research》2007,6(4):1295-1305
Formalin fixation, generally followed by paraffin embedding, is the standard and well-established processing method employed by pathologist. This treatment conserves and stabilizes biopsy samples for years. Analysis of FFPE tissues from biopsy libraries has been, so far, a challenge for proteomics biomarker studies. Herein, we present two methods for the direct analysis of formalin-fixed, paraffin-embedded (FFPE) tissues by MALDI-MS. The first is based on the use of a reactive matrix, 2,4-dinitrophenylhydrazine, useful for FFPE tissues stored less than 1 year. The second approach is applicable for all FFPE tissues regardless of conservation time. The strategy is based on in situ enzymatic digestion of the tissue section after paraffin removal. In situ digestion can be performed on a specific area of the tissue as well as on a very small area (microdigestion). Combining automated microdigestion of a predefined tissue array with either in situ extraction prior to classical nanoLC/MS-MS analysis or automated microspotting of MALDI matrix according to the same array allows the identification of both proteins by nanoLC-nanoESI and MALDI imaging. When adjacent tissue sections are used, it is, thus, possible to correlate protein identification and molecular imaging. These combined approaches, along with FFPE tissue analysis provide access to massive amounts of archived samples in the clinical pathology setting. 相似文献
19.
Céline Meriaux Julien Franck Maxence Wisztorski Michel Salzet Isabelle Fournier 《Journal of Proteomics》2010,73(6):1204-1218
Lipids are a major component of cells and play a variety of roles in organisms. In general, they play a key role in the structural composition of membranes. Some lipids, such as sphingoglycolipids, however, are also mediators of different biological processes, including protein transport, regulation of cell growth, cellular morphogenesis, neuronal plasticity, and regulation of the immune response. With the advent of MALDI mass spectrometry imaging (MALDI MSI), lipids have begun to be intensively investigated by several groups. Here we present a novel development in the detection and study of lipids using an automatic microspotter coupled to specific liquid ionic matrixes based on a 2,5-DHB matrix (i.e., 2,5-DHB/ANI, 2,5-DHB/Pyr, and 2,5-DHB/3-AP). This development allows to decrease the time of the sample preparation by comparison with crystalline 2,5-DHB as matrix and was validated on human ovarian cancer biopsies to demonstrate its use as a precise procedure that is particularly useful for specific diagnoses. 相似文献
20.
MALDI imaging mass spectrometry ('MALDI imaging') is an increasingly recognized technique for biomarker research. After years of method development in the scientific community, the technique is now increasingly applied in clinical research. In this article, we discuss the use of MALDI imaging in clinical proteomics and put it in context with classical proteomics techniques. We also highlight a number of upcoming challenges for personalized medicine, development of targeted therapies and diagnostic molecular pathology where MALDI imaging could help. 相似文献