首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Allosteric proteins demonstrate the phenomenon of a ligand binding to a protein at a regulatory or effector site and thereby changing the chemical affinity of the catalytic site. As such, allostery is extremely important biologically as a regulatory mechanism for molecular concentrations in many cellular processes. One particularly interesting feature of allostery is that often the catalytic and effector sites are separated by a large distance. Structural comparisons of allosteric proteins resolved in both inactive and active states indicate that a variety of structural rearrangement and changes in motions may contribute to general allosteric behavior. In general it is expected that the coupling of catalytic and regulatory sites is responsible for allosteric behavior. We utilize a novel examination of allostery using rigidity analysis of the underlying graph of the protein structures. Our results indicate a general global change in rigidity associated with allosteric transitions where the R state is more rigid than the T state. A set of allosteric proteins with heterotropic interactions is used to test the hypothesis that catalytic and effector sites are structurally coupled. Observation of a rigid path connecting the effector and catalytic sites in 68.75% of the structures points to rigidity as a means by which the distal sites communicate with each other and so contribute to allosteric regulation. Thus structural rigidity is shown to be a fundamental underlying property that promotes cooperativity and non-locality seen in allostery.  相似文献   

2.
We have measured the forward and reverse rates of the allosteric transition of hemoglobin A with three CO molecules bound by using modulated excitation coupled with fluorescence quenching of the DPG analogue, PTS (8-hydroxy-1,3,6 pyrene trisulfonic acid). This dye is observed to bind to the T state with significantly larger affinity than to the R state, and thus provides an unequivocal marker for the molecule's conformational change. The allosteric rates obtained with the fluorescent dye (pH 7.0, bis-Tris buffer) are (3.4 +/- 1.0) x 10(3)s-1 for the R to T transition and (2.1 +/- 0.5) x 10(4)s-1 for the T to R transition. This gives an equilibrium constant L3 of 0.16 +/- 0.06. These results provide good agreement with modulated difference spectra calibrated from model compounds, arguing that there is little if any difference in the kinetics observed by the heme spectra and the kinetics of the full subunit motion. The equilibrium constant between structures (L3) is smaller in the absence of phosphates than observed in phosphate buffer (0.33). However, the rates of the allosteric transition increase in the absence of phosphates as compared with the corresponding rates in phosphate buffer of 1.0 x 10(3)s-1 and 3.0 x 10(3)s-1. The effects of inorganic phosphates on the equilibrium can be separated from the effects on kinetics. We find that phosphates also affect the dynamic behavior of hemoglobin, and the presence of 0.15 M phosphate can be viewed as raising the transition state energy between R and T conformations by approximately 0.5 kcal/mol exclusive of the T state stabilization. Dissociation constants for the dye were measured to be 104 +/- 25 microM for unligated T state and 930 +/- 300 microM for the fully ligated R state. The best fit equilibrium constant (125 +/- 40 microM) for three ligands bound does not differ significantly from that measured without ligands bound. Incidental to the measurement technique is the determination of the rates of binding and release of the dye. The association rate for binding to the T state is large, (at least 4 x 10(9) M-1 s-1) and may be diffusion limited, while the association and dissociation rates for R state binding, while not determined with precision, are clearly much smaller, of the scale of 10(5) M-1 s-1 for association.  相似文献   

3.
Although detailed crystal structures of haemoglobin (Hb) provide a clear understanding of the basic allosteric mechanism of the protein, and how this in turn controls oxygen affinity, recent experiments with artificial effector molecules have shown a far greater control of oxygen binding than with natural heterotropic effectors. Contrary to the established text-book view, these non-physiological compounds are able to reduce oxygen affinity very strongly without switching the protein to the T (tense) state. In an earlier paper we showed that bezafibrate (BZF) binds to a surface pocket on the alpha subunits of R state Hb, strongly reducing the oxygen affinity of this protein conformation. Here we report the crystallisation of Hb with L35, a related compound, and show that this binds to the central cavity of both R and T state Hb. The mechanism by which L35 reduces oxygen affinity is discussed, in relation to spectroscopic studies of effector binding.  相似文献   

4.
5.
The reduction of purine nucleoside diphosphates by murine ribonucleotide reductase requires catalytic (R1) and free radical-containing (R2) enzyme subunits and deoxynucleoside triphosphate allosteric effectors. A quantitative 16 species model is presented, in which all pertinent equilibrium constants are evaluated, that accounts for the effects of the purine substrates ADP and GDP, the deoxynucleoside triphosphate allosteric effectors dGTP and dTTP, and the dimeric murine R2 subunit on both the quaternary structure of murine R1 subunit and the dependence of holoenzyme (R1(2)R2(2)) activity on substrate and effector concentrations. R1, monomeric in the absence of ligands, dimerizes in the presence of substrate, effectors, or R2(2) because each of these ligands binds R1(2) with higher affinity than R1 monomer. This leads to apparent positive heterotropic cooperativity between substrate and allosteric effector binding that is not observed when binding to the dimeric protein itself is evaluated. Allosteric activation results from an increase in k(cat) for substrate reduction upon binding of the correct effector, rather than from heterotropic cooperativity between effector and substrate. Neither the allosteric site nor the active site displays nucleotide base specificity: dissociation constants for dGTP and dTTP are nearly equivalent and K(m) and k(cat) values for both ADP and GDP are similar. R2(2) binding to R1(2) shows negative heterotropic cooperativity vis-à-vis effectors but positive heterotropic cooperativity vis-à-vis substrates. Binding of allosteric effectors to the holoenzyme shows homotropic cooperativity, suggestive of a conformational change induced by activator binding. This is consistent with kinetic results indicating full dimer activation upon binding a single equivalent of effector per R1(2)R2(2).  相似文献   

6.
The molecular details of the mechanism of action of allosteric effectors on hemoglobin oxygen affinity are not clearly understood. The global allostery model proposed by Yonetani et al. suggests that the binding of allosteric effectors can take place both in the R and T states and that they influence oxygen affinity through inducing global tertiary changes in the subunits. Recently published high pressure studies yielded dissociation constants at atmospheric pressure that showed a stabilizing effect of heterotropic allosteric effectors on the dimer interface in the R state, and a more pronounced destabilizing effect in a T state model. In the present work, we report on computational modeling used to interpret the high pressure experimental data. We show structural changes in the hemoglobin interdimeric interfaces, indicative of a global tertiary structural change induced by the binding of allosteric effectors. We also show that the number of water molecules bound at the interface is significantly influenced by binding effectors in the T state in accordance with the experimental data. Our results suggest that the binding of effectors at definite sites leads to tertiary changes that propagate to the interfaces and results in overall structural re-organizations.  相似文献   

7.
A novel model linking the thermodynamics and kinetics of hemoglobin's allosteric (R --> T) and ligand binding reactions is applied to photolysis data for human HbCO. To describe hemoglobin's kinetics at the microscopic level of structural transitions and ligand-binding events for individual [ij]-ligation microstates ((ij)R --> (ij)T, (ij)R + CO --> ((i)(+1))(k)R, and (ij)T + CO --> ((i)(+1))(k)T), the model calculates activation energies, (ij)DeltaG(++), from previously measured cooperative free energies of the equilibrium microstates (Huang, Y., and Ackers, G. K. (1996) Biochemistry 35, 704-718) by using linear free energy relations ((ij)DeltaG(++) - (01)DeltaG(++) = alpha[(ij)DeltaG - (01)DeltaG], where the parameter alpha, describing the variation of activation energy with reaction energy perturbation, can depend on the natures of both the reaction and the perturbation). The alpha value measured here for the allosteric dynamics, 0.21 +/- 0.03, corresponds closely to values observed previously, strongly suggesting that the thermodynamic microstate energies directly underlie the allosteric kinetics (as opposed to the alpha((ij)DeltaG(RT)) serving merely as arbitrary fitting parameters). Besides systematizing the study of hemoglobin kinetics, the utility of the microstate linear free energy model lies in the ability to test microscopic aspects of allosteric dynamics such as the "symmetry rule" for quaternary change deduced previously from thermodynamic evidence (Ackers, G. K., et al. (1992) Science 255, 54-63). Reflecting a remarkably detailed correspondence between thermodynamics and kinetics, we find that a kinetic model that includes the large free energy splitting between doubly ligated T microstates implied by the symmetry rule fits the data significantly better than one that does not.  相似文献   

8.
The cooperative O(2)-binding of hemoglobin (Hb) have been assumed to correlate to change in the quaternary structures of Hb: T(deoxy)- and R(oxy)-quaternary structures, having low and high O(2)-affinities, respectively. Heterotropic allosteric effectors have been shown to interact not only with deoxy- but also oxy-Hbs causing significant reduction in their O(2)-affinities and the modulation of cooperativity. In the presence of two potent effectors, L35 and inositol hexaphosphate (IHP) at pH 6.6, Hb exhibits extremely low O(2)-affinities (K(T)=0.0085mmHg(-1) and K(R)=0.011mmHg(-1)) and thus a very low cooperativity (K(R)/K(T)=1.3 and L(0)=2.4). (1)H-NMR spectra of human adult Hb with these two effectors were examined in order to determine the quaternary state of Hb in solution and to clarify the correlation between the O(2)-affinities and the structural change of Hb caused by the heterotropic effectors. At pH 6.9, (1)H-NMR spectrum of deoxy-Hb in the presence of L35 and IHP showed a marker of the T-quaternary structure (the T-marker) at 14ppm, originated from inter- dimeric α(1)β(2)- (or α(2)β(1)-) hydrogen-bonds, and hyperfine-shifted (hfs) signals around 15-25ppm, caused by high-spin heme-Fe(II)s. Upon addition of O(2), the hfs signals disappeared, reflecting that the heme-Fe(II)s are ligated with O(2), but the T-marker signals still remained, although slightly shifted and broadened, under the partial pressure of O(2) (P(O2)) of 760mmHg. These NMR results accompanying with visible absorption spectroscopy and visible resonance Raman spectroscopy reveal that oxy-Hb in the presence of L35 and IHP below pH 7 takes the ligated T-quaternary structure under the P(O2) of 760mmHg. The L35-concentration dependence of the T-marker in the presence of IHP indicates that there are more than one kind of L35-binding sites in the ligated T-quaternary structure. The stronger binding sites are probably intra-dimeric binding sites between α(1)G- and β(1)G-helices, and the other weaker binding site causes the R→T transition without release of O(2). The fluctuation of the tertiary structure of Hb seems to be caused by both the structural perturbation of α(1)β(1) (or α(2)β(2)) intra-dimeric interface, where the stronger L35-binding sites exist, and by the IHP-binding to the α(1)α(2)- (or β(1)β(2)-) cavity. The tertiary structural fluctuation induced by the allosteric effectors may contribute to the significant reduction of the O(2)-affinity of oxy-Hb, which little depends on the quaternary structures. Therefore, the widely held assumptions of the structure-function correlation of Hb - [the deoxy-state]=[the T-quaternary structure]=[the low O(2)-affinity state] and [the oxy-state]=[the R-quaternary structure]=[the high O(2)-affinity state] and the O(2)-affiny of Hb being regulated by the T/R-quaternary structural transition - are no longer sustainable. This article is part of a Special Issue entitled: Allosteric cooperativity in respiratory proteins.  相似文献   

9.
10.
Careful analyses of precise oxygenation curves of hemoglobin (Hb) clearly indicate that, contrary to the common belief, allosteric effectors exert a dramatic control of the oxygenation characteristics of the protein by binding not only to the T (unligated), but also to the R (ligated) state, in a process that is proton-driven and involves proton uptake. The most striking functional changes were obtained when the allosteric effectors were bound to the fully ligated Hb: the oxygen affinity decreased dramatically, Bohr effect was enhanced, and cooperativity of oxygen ligation was almost absent, emulating a Root effect-like behavior. However, structural analysis, such as Cys beta 93 sulfhydryl reactivity and ultraviolet circular dichroism, confirmed that the ligated Hb was in fact in the R state, despite its extremely low affinity state features. These findings provide a new global view for allosteric interactions and invoke for a modern interpretation of the role of allosteric effectors and a reformulation of the Monod-Wyman-Changeaux model for control of allosteric systems, and other complementary models as well.  相似文献   

11.
M Brouwer  B Serigstad 《Biochemistry》1989,28(22):8819-8827
Hemocyanin of the horseshoe crab Limulus polyphemus is composed of 48 oxygen-binding subunits, which are arranged in eight hexameric building blocks. Allosteric interactions in this oligomeric protein have been examined by measurement of high-precision oxygen-equilibrium curves, using an automated Imai cell. Several models were compared in numerical analysis of the data. A number of conclusions can be drawn with confidence. (1) Oxygen binding by Limulus hemocyanin cannot satisfactorily be described by the two-state MWC model [Monod, J., Wyman, J., & Changeux, J.P. (1965) J. Mol. Biol. 12, 88-118] for allosteric transitions with either the hexamer or dodecamer as the allosteric unit. (2) Of the models tested, the data sets can be best described by an extended MWC model that allows for an equilibrium, within the 48-subunit ensemble, between cooperative hexamers and cooperative dodecamers. The model invokes T and R states for both hexamers (T6 and R6) and dodecamers (T12 and R12). Allosteric effectors modulate oxygen affinity and cooperativity by affecting the R to T equilibria within hexamers and dodecamers and by shifting the equilibria between hexamers and dodecamers. (3) The fitted model parameters show that under most conditions the intersubunit contacts within T-state hexamers are more constrained than those within T-state dodecamers. (4) The oxygen affinities of the hexameric and dodecameric R states are the same, but under all conditions examined the conformation of the fully oxygenated molecule is that of the dodecameric R state. (5) Between pH 7.4 and pH 8.5 the dodecameric T state has a higher affinity for oxygen than the hexameric T state, allowing for "T-state cooperativity".(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Dror Tobi 《Proteins》2017,85(8):1507-1517
A new algorithm for comparison of protein dynamics is presented. Compared protein structures are superposed and their modes of motions are calculated using the anisotropic network model. The obtained modes are aligned using the dynamic programming algorithm of Needleman and Wunsch, commonly used for sequence alignment. Dynamical comparison of hemoglobin in the T and R2 states reveals that the dynamics of the allosteric effector 2,3‐bisphosphoglycerate binding site is different in the two states. These differences can contribute to the selectivity of the effector to the T state. Similar comparison of the ionotropic glutamate receptor in the kainate+(R,R)‐2b and ZK bound states reveals that the kainate+(R,R)‐2b bound states slow modes describe upward motions of ligand binding domain and the transmembrane domain regions. Such motions may lead to the opening of the receptor. The upper lobes of the LBDs of the ZK bound state have a smaller interface with the amino terminal domains above them and have a better ability to move together. The present study exemplifies the use of dynamics comparison as a tool to study protein function. Proteins 2017; 85:1507–1517. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
Ribonucleotide reductases are a family of essential enzymes that catalyze the reduction of ribonucleotides to their corresponding deoxyribonucleotides and provide cells with precursors for DNA synthesis. The different classes of ribonucleotide reductase are distinguished based on quaternary structures and enzyme activation mechanisms, but the components harboring the active site region in each class are evolutionarily related. With a few exceptions, ribonucleotide reductases are allosterically regulated by nucleoside triphosphates (ATP and dNTPs). We have used the surface plasmon resonance technique to study how allosteric effects govern the strength of quaternary interactions in the class Ia ribonucleotide reductase from Escherichia coli, which like all class I enzymes has a tetrameric alpha(2) beta(2) structure. The component alpha(2)called R1 harbors the active site and two types of binding sites for allosteric effector nucleotides, whereas the beta(2) component called R2 harbors the tyrosyl radical necessary for catalysis. Our results show that only the known allosteric effector nucleotides, but not non-interacting nucleotides, promote a specific interaction between R1 and R2. Interestingly, the presence of substrate together with allosteric effector nucleotide strengthens the complex 2-3 times with a similar free energy change as the mutual allosteric effects of substrate and effector nucleotide binding to protein R1 in solution experiments. The dual allosteric effects of dATP as positive allosteric effector at low concentrations and as negative allosteric effector at high concentrations coincided with an almost 100-fold stronger R1-R2 interaction. Based on the experimental setup, we propose that the inhibition of enzyme activity in the E. coli class Ia enzyme occurs in a tight 1:1 complex of R1 and R2. Most intriguingly, we also discovered that thioredoxin, one of the physiological reductants of ribonucleotide reductases, enhances the R1-R2 interaction 4-fold.  相似文献   

14.
To understand the interplay between tertiary and quaternary transitions associated with hemoglobin function and regulation, oxygen binding curves were obtained for hemoglobin A fixed in the T quaternary state by encapsulation in wet porous silica gels. At pH 7.0 and 15 degrees C, the oxygen pressure at half saturation (p50) was measured to be 12.4 +/- 0.2 and 139 +/- 4 torr for hemoglobin gels prepared in the absence and presence of the strong allosteric effectors inositol hexaphosphate and bezafibrate, respectively. Both values are in excellent agreement with those found for the binding of the first oxygen to hemoglobin in solution under similar experimental conditions. The corresponding Hill coefficients of hemoglobin gels were 0.94 +/- 0.02 and 0.93 +/- 0.03, indicating, in the frame of the Monod, Wyman, and Changeux model, that high and low oxygen-affinity tertiary T-state conformations have been isolated in a pure form. The values, slightly lower than unity, reflect the different oxygen affinity of alpha- and beta-hemes. Significantly, hemoglobin encapsulated in the presence of the weak effector phosphate led to gels that show intermediate oxygen affinity and Hill coefficients of 0.7 to 0.8. The heterogeneous oxygen binding results from the presence of a mixture of the high and low oxygen-affinity T states. The Bohr effect was measured for hemoglobin gels containing the pure conformations and found to be more pronounced for the high-affinity T state and almost absent for the low-affinity T state. These findings indicate that the functional properties of the T quaternary state result from the contribution of two distinct, interconverting conformations, characterized by a 10-fold difference in oxygen affinity and a different extent of tertiary Bohr effect. The very small degree of T-state cooperativity observed in solution and in the crystalline state might arise from a ligand-induced perturbation of the distribution between the high- and low-affinity T-state conformations.  相似文献   

15.
The effector T cell repertoire in experimental interstitial nephritis was examined in a variety of susceptible and nonsusceptible mice. We observed that L3T4+ effector T cells in disease-susceptible mice disappear soon after immunization in preference to the emergence of Lyt-2+ effector cells. These latter cells respond with delayed-type hypersensitivity to tubular antigen in the context of H-2K. Such cells also express idiotypes (RE-Id) shared with kidney-bound alpha TBM-Ab that are regulated by an interactional effect of genes in Igh-1 and H-2K. These Lyt-2+ effector cells can be removed from renal infiltrates, and the transfer of similar cells under the renal capsule of naive mice results, within 5 days, in local interstitial nephritis. Nonsusceptible mice, however, not having these immune response genes, produce either L3T4+, Lyt-1+, RE-Id- effector T cells, which only respond to tubular antigen in the context of I-A, or Lyt-2+, RE-Id- T cells, which may lack very fine specificity. These findings suggest that susceptible mice carry a unique set of immune response genes that promote a T cell selection process that operates after induction, during the differentiation and development of disease-producing effector T cells.  相似文献   

16.
By introducing an additional H-bond in the alpha(1)beta(2) subunit interface or altering the charge properties of the amino acid residues in the alpha(1)beta(1) subunit interface of the hemoglobin molecule, we have designed and expressed recombinant hemoglobins (rHbs) with low oxygen affinity and high cooperativity. Oxygen-binding measurements of these rHbs under various experimental conditions show interesting properties in response to pH (Bohr effect) and allosteric effectors. Proton nuclear magnetic resonance studies show that these rHbs can switch from the oxy (or CO) quaternary structure (R) to the deoxy quaternary structure (T) without changing their ligation states upon addition of an allosteric effector, inositol hexaphosphate, and/or reduction of the ambient temperature. These results indicate that if we can provide extra stability to the T state of the hemoglobin molecule without perturbing its R state, we can produce hemoglobins with low oxygen affinity and high cooperativity. Some of these rHbs are also quite stable against autoxidation compared to many of the known abnormal hemoglobins with altered oxygen affinity and cooperativity. These results have provided new insights into the structure-function relationship in hemoglobin.  相似文献   

17.
ATP sulfurylase from Penicillium chrysogenum is an allosteric enzyme in which Cys-509 is critical for maintaining the R state. Cys-509 is located in a C-terminal domain that is 42% identical to the conserved core of adenosine 5'-phosphosulfate (adenylylsulfate) (APS) kinase. This domain is believed to provide the binding site for the allosteric effector, 3'-phosphoadenosine 5'-phosphosulfate (PAPS). Replacement of Cys-509 with either Tyr or Ser destabilizes the R state, resulting in an enzyme that is intrinsically cooperative at pH 8 in the absence of PAPS. The kinetics of C509Y resemble those of the wild type enzyme in which Cys-509 has been covalently modified. The kinetics of C509S resemble those of the wild type enzyme in the presence of PAPS. It is likely that the negative charge on the Cys-509 side chain helps to stabilize the R state. Treatment of the enzyme with a low level of trypsin results in cleavage at Lys-527, a residue that lies in a region analogous to a PAPS motif-containing mobile loop of true APS kinase. Both mutant enzymes were cleaved more rapidly than the wild type enzyme, suggesting that movement of the mobile loop occurs during the R to T transition.  相似文献   

18.
Stabilization of the T and R allosteric states of Escherichia coli aspartate transcarbamoylase is governed by specific intra- and interchain interactions. The six interchain interactions between Glu-239 in one catalytic chain of one catalytic trimer with both Lys-164 and Tyr-165 of a different catalytic chain in the other catalytic trimer have been shown to be involved in the stabilization of the T state. In this study a series of hybrid versions of aspartate transcarbamoylase was studied to determine the minimum number of these Glu-239 interactions necessary to maintain homotropic cooperativity and the T allosteric state. Hybrids with zero, one, and two Glu-239 stabilizing interactions do not exhibit cooperativity, whereas the hybrids with three or more Glu-239 stabilizing interactions exhibit cooperativity. The hybrid enzymes with one or more of the Glu-239 stabilizing interactions also exhibit heterotropic interactions. Two hybrids with three Glu-239 stabilizing interactions, in different geometric relationships, had identical properties. From this and previous studies, it is concluded that the 239 stabilizing interactions play a critical role in the manifestation of homotropic cooperativity in aspartate transcarbamoylase by the stabilization of the T state of the enzyme. As substrate binding energy is utilized, more and more of the T state stabilizing interactions are relaxed, and finally the enzyme shifts to the R state. In the case of the Glu-239 stabilizing interactions more than three of the interactions must be broken before the enzyme shifts to the R state. The interactions between the catalytic and regulatory chains and between the two catalytic trimers of aspartate transcarbamoylase provide a global set of interlocking interactions that stabilize the T and R states of the enzyme. The substrate-induced local conformational changes observed in the structure of the isolated catalytic subunit drive the quaternary T to R transition of aspartate transcarbamoylase and functionally induced homotropic cooperativity.  相似文献   

19.
CP320626 has been identified as a potent inhibitor, synergistic with glucose, of human liver glycogen phosphorylase a (LGPa), a possible target for type 2 diabetes therapy. CP320626 is also a potent inhibitor of human muscle GPa. In order to elucidate the structural basis of the mechanism of CP320626 inhibition, the structures of T state rabbit muscle GPa (MGPa) in complex with glucose and in complex with both glucose and CP320626 were determined at 2.0 A resolution, and refined to crystallographic R values of 0.179 (R(free)=0.218) and 0.207 (R(free)=0.235), respectively. CP320626 binds at the new allosteric site, some 33 A from the catalytic site, where glucose binds. The binding of CP320626 to MGPa does not promote extensive conformational changes except for small shifts of the side chain atoms of residues R60, V64, and K191. Both CP320626 and glucose promote the less active T state, while structural comparisons of MGPa-glucose-CP320626 complex with LGPa complexed with a related compound (CP403700) and a glucose analogue inhibitor indicate that the residues of the new allosteric site, conserved in the two isozymes, show no significant differences in their positions.  相似文献   

20.
T-state hemoglobin with four ligands bound   总被引:8,自引:0,他引:8  
M C Marden  J Kister  B Bohn  C Poyart 《Biochemistry》1988,27(5):1659-1664
Flash photolysis kinetics have been measured for ligand recombination to hemoglobin (Hb) in the presence of two effectors: bezafibrate (Bzf) and inositol hexakisphosphate (IHP). The combined influence of the two independent effectors leads to predominantly T-state behavior. Samples equilibrated with 0.1 atm of CO are fully saturated, yet after photodissociation they show only T-state bimolecular recombination rates at all photolysis levels; this indicates that the allosteric transition from R to T occurs before CO rebinding and that the allosteric equilibrium favors the T-state tetramer with up to three ligands bound. Since all four ligands bind at the rate characteristic for the T-state, the return transition from T to R must occur after the fourth ligand was bound. At 1 atm of CO, rebinding to the initial R state competes with the allosteric transition resulting in a certain fraction of CO bound at the rate characteristic for the R state; this fraction is greater the smaller the percentage dissociation. Under 1 atm of oxygen, samples are not more than 93% saturated and show mainly T-state kinetics. The results show that all four hemes can bind oxygen or CO ligands in the T structure. The fraction of the kinetics occurring as geminate is less for partially liganded (T-state) samples than for fully liganded (R-state) Hb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号