首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N-nitrosodiethanolamine is converted to N-(2-hydroxyethyl)-N-(formylmethyl)nitrosamine (EFMN) and N-(2-hydroxyethyl)-N-carboxymethyl) nitrosamine (ECMN) by rat S9 liver preparation as a result of beta-oxidation. The beta-oxidized metabolites were isolated and identified by gas chromatography-mass spectrometry (GC-MS) by comparison with authentic standards. An original gas chromatographic method with thermal energy detection was set up to measure both metabolites quantitatively. Under the experimental conditions described, when NAD+ was used as cofactor, about 1% of N-nitrosodiethanolamine (NDELA) was converted to EFMN and about half of the latter product was in turn converted to ECMN. The beta-nitrosamino aldehyde seems to transfer the nitroso moiety to other amino-compounds, even at physiological pH. The significance of the metabolic formation of EFMN in relation to the carcinogenicity of NDELA is discussed.  相似文献   

2.
A Tc-99m-labeled long chain fatty acid derivative for myocardial imaging   总被引:3,自引:0,他引:3  
C-11- and I-123-labeled long chain fatty acid derivatives have been reported as useful radiopharmaceuticals for the estimation of myocardial fatty acid metabolism. We have reported that Tc-99m-labeled N-[[[(2-mercaptoethyl)amino]carbonyl]methyl]-N-(2-mercaptoethyl)-6-aminohexanoic acid ([(99m)Tc]MAMA-HA), a medium chain fatty acid derivative, is metabolized by beta-oxidation in the liver and that the MAMA ligand is useful for attaching to the omega-position of fatty acid derivatives as a chelating group for Tc-99m. On the basis of these findings, we focused on developing a Tc-99m-labeled long chain fatty acid derivative that reflected fatty acid metabolism in the myocardium. In this study, we synthesized a dodecanoic acid derivative, MAMA-DA, and a hexadecanoic acid derivative, MAMA-HDA, and performed radiolabeling and biodistribution studies. [(99m)Tc]MAMA-DA and [(99m)Tc]MAMA-HDA were prepared using a ligand-exchange reaction. Biodistribution studies were carried out in normal mice and rats. Then, a high initial uptake of Tc-99m was observed, followed by a rapid clearance from the heart. The maximum heart/blood ratio was 3.6 at 2 min postinjection of [(99m)Tc]MAMA-HDA. These kinetics were similar to those with postinjection of p-[(125)I]iodophenylpentadecanoic acid. Metabolite analysis showed [(99m)Tc]MAMA-HDA was metabolized by beta-oxidation in the body. In conclusion, [(99m)Tc]MAMA-HDA is a promising compound as a long chain fatty acid analogue for estimating beta-oxidation of fatty acid in the heart.  相似文献   

3.
Both diethylenetriaminepentaacetic acid (DTPA) and sulfadiazine (SD) were incorporated into polyaspartamides with different side chains, including poly-alpha,beta-[N-(2-hydroxyethyl)-L-aspartamide] (PHEA), poly-alpha,beta-[N- (3-hydroxypropyl)-L-aspartamide] (PHPA), poly-alpha,beta-[N-(2-aminoethy1)-L-aspartamide] (PAEA), poly-alpha,beta-[N-(4-aminobuty1)-L-aspartamide] (PABA), and poly-alpha,beta-[N-(6-aminohexyl)-L-aspartamide] (PAHA). The polyaspartamide ligands containing DTPA and SD groups were further reacted with gadolinium chloride to give the corresponding macromolecular gadolinium complexes. Experimental data of 1H NMR, IR, UV, and elemental analysis exhibited the formation of the polyaspartamide ligands and gadolinium complexes. Relaxivity studies indicated that the macromolecular chelates possess higher relaxivities than that of the clinically used Gd-DTPA. MR imaging showed that the macromolecular chelate PAEA-Gd-DTPA-SD greatly enhanced the contrast of MR images of hepatoma in the lower limb of mice and provided prolonged intravascular duration. Thus the polyaspartamide gadolinium complex containing SD groups is expected to be used as the potential macromolecular MRI contrast agents for hepatoma in mice.  相似文献   

4.
Omega-oxidation of leukotrienes is the initial step of hepatic degradation and thus inactivation of these proinflammatory mediators. Omega-oxidation is followed by beta-oxidation of leukotrienes from the omega-end. After exposure of rats to a single dose of the anesthetic agent halothane, a transient decrease in leukotriene omega-oxidation was induced both in vivo and in vitro. In untreated rats, 44.1 +/- 6.0% of N-[3H]acetylleukotriene E4 injected intravenously was recovered unchanged in bile collected for 60 min in vivo; 46.5 +/- 3.0% was recovered as omega-/beta-oxidation products, of which 24.7 +/- 4.5% were associated with beta-oxidation products only (mean +/- SEM; n = 5). In rats receiving a single dose of halothane 18 h before the experiment, recovery of unchanged N-[3H]acetylleukotriene E4 was significantly increased to 79.8 +/- 4.8%, while the fraction of omega-/beta-oxidation products decreased to 9.0 +/- 1.7% (n = 5); 90 h after exposure to halothane, N-[3H]acetylleukotriene E4 recovery decreased to 30.0 +/- 3.0% and omega-/beta-oxidation products amounted to 49.1 +/- 3.8%; the fraction of beta-oxidation products was significantly increased to 43.1 +/- 3.4% (n = 5). Ten days after exposure of rats to halothane, the recoveries of N-[3H]acetylleukotriene E4, of omega-/beta-oxidation products, and of beta-oxidation products alone, returned to almost normal values. Microsomal fractions obtained from rat hepatocytes catalyzed the NADPH- and O2-dependent leukotriene omega-oxidation in vitro. The formation of omega-hydroxy-metabolites of leukotriene B4, leukotriene E4, and N-acetylleukotriene E4 was decreased by 50% in microsomal fractions obtained from rats 18 h and 90 h after halothane treatment, and returned back to control levels in microsomal fractions obtained 10 days after halothane treatment. The Km value of leukotriene B4 omega-oxidation revealed no significant change in enzyme affinity towards leukotriene B4; in contrast, as reflected by the reduction of the Vmax value by 65%, a decrease in the amount of the active enzyme in microsomes obtained from rats 18 h after halothane treatment was observed. Halothane-metabolism-dependent trifluoroacetylation of hepatic proteins may mediate this process. Thus, the time course of the density on immunoblots of trifluoroacetylated protein adducts paralleled that of the transient decrease in leukotriene omega-oxidation. In contrast to its omega-oxidation, leukotriene B4 synthesis from 5-hydroperoxyeicosatetraenoate was not inhibited in hepatocyte homogenates obtained from rats pretreated with halothane. The data suggest that metabolism of halothane causes a transient derangement of hepatic leukotriene homeostasis in vivo.  相似文献   

5.
The synthesis of N-[2-(N-9-fluorenylmethoxycarbonyl)aminoethyl]-N-(2-N-(benzyloxycarbonyl)isocytosin-5-ylacetyl)glycine monomer and its incorporation into a PNA molecule via automated Fmoc solid-phase chemistry is described.  相似文献   

6.
The aim of this review is to summarize our recent data on butadiene (BD) derived hemoglobin adducts as biomarkers for the internal formation of the individual epoxides formed by butadiene (BD). It is well known that BD is oxidized by cytochrome P450s to several epoxides that form DNA and protein adducts. 1,2-Epoxy-3-butene (EB), 1,2;3,4-diepoxybutane (DEB) and 1,2-epoxy-3,4-butanediol (EB-diol) form N-(2-hydroxy-3-butenyl)-valine (HB-Val), N,N-(2,3-dihydroxy-1,4-butadiyl)-valine (pyr-Val) and N-(2,3,4-trihydroxybutyl)-valine (THB-Val) adducts, respectively. The analysis of HB-Val and THB-Val by the modified Edman degradation and GC-MS/MS has generated valuable insights into BD metabolism across species. In addition, a recently established method for the analysis of pyr-Val has been proven to be suitable for detection of pyr-Val in rodents exposed to BD as low as 1 ppm. These technologies have been applied to study a wide range of exposures to BD, EB, DEB, and 3-butene-1,2-diol as a precursor of EB-diol in male and female mice and rats. Altogether the data have shown that BD metabolism is species and concentration dependent, consistent with metabolism and carcinogenesis data. Mice form much more HB-Val and pyr-Val than rats, especially at low exposures. After 10 days of inhalation exposure to 3 ppm BD, mice formed 12.5-fold more pyr-Val than rats. In contrast, the amounts of THB-Val were similar in mice and rats exposed to 3 or 62.5 ppm BD. Furthermore, it appears that the formation of THB-Val is supralinear in mice and rats due to saturation of metabolic activation pathways. Gender differences in metabolism are less well established. One study with male and female rats exposed to 1000 ppm BD for 90 days demonstrated a 1.6-, 3.5- and 2.0-fold gender difference in formation of HB-Val, pyr-Val and THB-Val, respectively, with females being more efficient in epoxide formation. The analyses of BD derived protein adducts correlate well with the observed species and gender differences in BD-carcinogenesis and suggest that DEB may indeed be the most important metabolite.  相似文献   

7.
Four 18F-labeled acetylcholinesterase (AChE) substrates, (S)-N-[18F]fluoroethyl-2-piperidinemethyl acetate (1), (R)-N-[18F]fluoroethyl-3-pyrrolidinyl acetate (2), N-[18F]fluoroethyl-4-piperidinyl acetate (3), and (R)-N-[18F]fluoroethyl-3-piperidinyl acetate (4), were evaluated for in vivo blood and brain metabolism in mice, brain pharmacokinetics in rats monkeys (M. nemistrina) using PET imaging. All 18F-labeled compounds were compared to N-[11C]methyl-4-piperidinyl propionate (PMP). Compound 1 was completely metabolized within 1 min in mouse blood and brain. This compound had relatively fast regional brain pharmacokinetics and poor discrimination between brain regions with different AChE concentration. Compound 4 showed relatively slower blood metabolism and slower pharmacokinetics than compound 1 but again poor discrimination between brain regions. Both compounds 1 and 4 showed different kinetic profiles than PMP in PET studies. Compound 3 had the slowest blood metabolism and slower pharmacokinetics than PMP. Compound 2 showed highly encouraging characteristics with an in vivo metabolism rate, primate brain uptake, and regional brain pharmacokinetics similar to [11C]PMP. The apparent hydrolysis rate constant k3 in primate cortex was very close to that of [11C]PMP. This compound has potential to be a good PET radiotracer for measuring brain AChE activity. The longer lifetime of 18F would permit longer imaging times and allows preparation of radiotracer batches for multiple patients and delivery of the tracer to other facilities, making the technique more widely available to clinical investigators.  相似文献   

8.
In the prostatic portion of rat vas deferens, activation of adenosine A 2B-receptors, beta2-adrenoceptors, adenylyl cyclase or protein kinase A caused a facilitation of noradrenaline release. Blockade of alpha2-adrenoceptors with yohimbine (1 microM) attenuated the facilitation mediated by adenosine A 2B-receptors and by direct activation of adenylyl cyclase with forskolin but not that mediated by beta2-adrenoceptors or by direct activation of protein kinase A with 8-bromoadenosine-3',5'-cyclicAMP. The adenosine A 2B- and the beta2-adrenoceptor-mediated facilitation was prevented by the adenylyl cyclase inhibitors, 2',5'-dideoxy-adenosine (3 microM) and 9-cyclopentyladenine (100 microM), at concentrations that also attenuated the release enhancing effect of forskolin, but were not changed by the phospholipase C inhibitor 1-[6-[((17beta)-3-methoxyestra-1,3,5[10]-trien-17-yl)amino]hexyl]-1H-pyrrole-2,5-dione (U-73122, 1 microM). Facilitation of noradrenaline release mediated by adenosine A 2B-receptors was also attenuated by activation of protein kinase C with the phorbol ester 12-myristate 13-acetate (1 microM) and by inhibition of Gbetagamma subunits with an anti-betagamma peptide; facilitation mediated by beta2-adrenoceptors was mainly attenuated by the calmodulin inhibitor calmidazolium (10 microM) and by the calmodulin kinase II inhibitor (N-[2-[N-(4-chlorocinnamyl)-N-methylaminomethyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzene-sulfonamide phosphate (KN-93, 5 microM). The results suggest that adenosine A 2B- but not beta2-adrenoceptor-mediated facilitation of noradrenaline release is enhanced by an ongoing activation of alpha2-adrenoceptors. They further suggest that adenosine A 2B-receptors and beta2-adrenoceptors are coupled to distinct adenylyl cyclase isoforms what may explain the different influence of alpha2-adrenoceptor signalling pathway on the facilitatory effects mediated by the two adenylyl cyclase coupled receptors.  相似文献   

9.
Unsaturated fatty acids with odd-numbered double bonds, e.g. oleic acid, can be degraded by beta-oxidation via the isomerase-dependent pathway or the reductase-dependent pathway that differ with respect to the metabolism of the double bond. In an attempt to elucidate the metabolic functions of the two pathways and to determine their contributions to the beta-oxidation of unsaturated fatty acids, the degradation of 2-trans,5-cis-tetradecadienoyl-CoA, a metabolite of oleic acid, was studied with rat heart mitochondria. Kinetic measurements of metabolite and cofactor formation demonstrated that more than 80% of oleate beta-oxidation occurs via the classical isomerase-dependent pathway whereas the more recently discovered reductase-dependent pathway is the minor pathway. However, the reductase-dependent pathway is indispensable for the degradation of 3,5-cis-tetradecadienoyl-CoA, which is formed from 2-trans,5-cis-tetradecadienoyl-CoA by delta(3),delta(2)-enoyl-CoA isomerase, the auxiliary enzyme that is essential for the operation of the major pathway of oleate beta-oxidation. The degradation of 3,5-cis-tetradecadienoyl-CoA is limited by the capacity of 2,4-dienoyl-CoA reductase to reduce 2-trans,4-trans-tetradecadienoyl-CoA, which is rapidly formed from its 3,5 isomer by delta(3,5),delta(2,4)-dienoyl-CoA isomerase. It is concluded that both pathways are essential for the degradation of unsaturated fatty acids with odd-numbered double bonds inasmuch as the isomerase-dependent pathway facilitates the major flux through beta-oxidation and the reductase-dependent pathway prevents the accumulation of an otherwise undegradable metabolite.  相似文献   

10.
Liu Y  Glatt H 《Mutation research》2008,643(1-2):64-69
N-Nitrosodiethanolamine (NDELA) has demonstrated carcinogenic activity in various rodent models. However, it is negative or only weakly active in standard in vitro genotoxicity assays. This poor response might be due to the requirement of specific enzymes for its activation. Previous work indicated that cytochrome P450 (CYP) 2E1, alcohol dehydrogenases and sulphotransferases (SULTs) can convert NDELA into reactive metabolites. We report here that NDELA induces concentration-dependent gene mutations (at the hprt locus) in V79-hCYP2E1-hSULT1A1 cells, engineered for expression of human CYP2E1 and human SULT1A1, but is inactive in parental V79 cells. Mutagenicity of NDELA in V79-hCYP2E1-hSULT1A1 cells was abolished by the CYP2E1 inhibitor 1-aminobenzotriazole, but unaffected by the SULT1A1 inhibitor pentachlorophenol. The efficiency and specificity of these inhibitors was demonstrated in gene mutation assays using SULT- and CYP2E1-dependent reference mutagens, 2-nitropropane and N-nitrosodimethylamine, respectively. In this study, it is documented for the first time that NDELA can induce gene mutations in mammalian cells. Whereas human CYP2E1 was required for its activation, human SULT1A1 was not involved either in its activation or its inactivation in our cell model.  相似文献   

11.
According to current views, peroxisomal beta-oxidation is organized as two parallel pathways: the classical pathway that is responsible for the degradation of straight chain fatty acids and a more recently identified pathway that degrades branched chain fatty acids and bile acid intermediates. Multifunctional protein-2 (MFP-2), also called d-bifunctional protein, catalyzes the second (hydration) and third (dehydrogenation) reactions of the latter pathway. In order to further clarify the physiological role of this enzyme in the degradation of fatty carboxylates, MFP-2 knockout mice were generated. MFP-2 deficiency caused a severe growth retardation during the first weeks of life, resulting in the premature death of one-third of the MFP-2(-/-) mice. Furthermore, MFP-2-deficient mice accumulated VLCFA in brain and liver phospholipids, immature C(27) bile acids in bile, and, after supplementation with phytol, pristanic and phytanic acid in liver triacylglycerols. These changes correlated with a severe impairment of peroxisomal beta-oxidation of very long straight chain fatty acids (C(24)), 2-methyl-branched chain fatty acids, and the bile acid intermediate trihydroxycoprostanic acid in fibroblast cultures or liver homogenates derived from the MFP-2 knockout mice. In contrast, peroxisomal beta-oxidation of long straight chain fatty acids (C(16)) was enhanced in liver tissue from MFP-2(-/-) mice, due to the up-regulation of the enzymes of the classical peroxisomal beta-oxidation pathway. The present data indicate that MFP-2 is not only essential for the degradation of 2-methyl-branched fatty acids and the bile acid intermediates di- and trihydroxycoprostanic acid but also for the breakdown of very long chain fatty acids.  相似文献   

12.
1,3-Butadiene (BD) is a known rodent and human carcinogen that is metabolized mainly by P450 2E1 to three epoxides, 1,2-epoxy-3-butene (EB), 1,2:3,4-diepoxybutane (DEB) and 1,2-epoxy-3,4-butanediol (EB-diol). The individual epoxides vary up to 200-fold in their mutagenic potency, with DEB being the most mutagenic metabolite. It is important to understand the internal formation of the individual epoxides to assign the relative risk for each metabolite and to understand the molecular mechanisms responsible for major species differences in carcinogenicity. We have conducted extensive exposure-biomarker studies on mice, rats and humans. Using low exposures that range from current occupational levels to human exposures from tobacco smoke has provided evidence that mice are very different from humans, with mice forming ~200 times more DEB than humans at exposures of 0.1-1.5ppm BD. While no gender differences have been noted in mice and rats for globin adducts or N-7 guanine adducts, female rats and mice had 2-3-fold higher Hprt mutations and DNA-DNA cross-links, suggesting a gender difference in DNA repair. Numerous molecular epidemiology studies have evaluated globin adducts and Hprt mutations, SCEs and chromosomal abnormalities. None of the blinded studies have shown evidence of human genotoxicity at current occupational exposures and studies of globin adducts have shown similar or lower formation of adducts in females than males. If one calculates the EB dose-equivalents for the three species, mice clearly differ from rats and humans, being ~44 and 174 times greater than rats and humans, respectively. These data provide a scientific basis for improved risk assessment of BD.  相似文献   

13.
Participation of bacteria producing urease: Proteus mirabilis and Staphylococcus epidermidis in degradation of pesticides--urea derivatives, was investigated. Four new compounds were studies: N-/(3-trifluoromethyl)phenyl/N'-(2-cyanoethyl)-urea (IPO 6584), N-(4-chlorophenyl)-N'-(2-hydroxyethyl)-N'-ethylurea (PO 6236), N-(4-chlorophenyl)-N'-(2-hydroxyethyl), N'-propyl-urea (IPO 6237), N-(2-hydroxyethyl), N-methyl-N'-(3,4 dichlorophenyl)-urea (IPO 3102), pesticide reference standard--thiram fungicide--tetramethyl-bis-thiocarbamyl disulfide, and rodenticide-alpha-naphthylthiourea (ANTU). Investigated compounds were incubated with cells of P. mirabilis 4508 ans S. epidermidis CCM 2448 and commercial preparation of urease from beans. Mutagenicity of resulting metabolites was then studies by the Ames test. All compounds were decomposed by bacteria used in this study, as well with beans urease with different activity. Reaction products did not exhibit mutagenic activity for test strains S. typhimurium his- TA97a, TA98, TA100 and TA102.  相似文献   

14.
Two series of N-3-arylpropenyl-N-9-propionyl-3,9-diazabicyclo[3.3.1]nonanes (1b-j) and of the reverted N-3-propionyl-N-9-arylpropenyl isomers (2b-j) as analogues of the previously reported analgesic N-3(9)-cinnamyl-N-9(3)-propionyl-3,9-diazabicyclo[3.3.1]nonanes (DBN) (1a, 2a) were synthesised and their affinity and selectivity towards opioid mu-, delta- and kappa-receptors were evaluated. Several compounds (1e,i,j-2d,e,f,g,j) exhibited a mu-affinity in the low nanomolar range with moderate or negligible affinity towards delta- and kappa-receptors. The representative term N-9-(3,3-diphenylprop-2-enyl)-N-3-propionyl-DBN (2d) displayed in vivo (mouse) a potent analgesic effect (ED(50) 3.88 mg/kg ip) which favourably compared with that of morphine (ED(50) 5 mg/kg ip). In addition, 2d produced in mice tolerance after a period twice as long with morphine.  相似文献   

15.
The purpose of this study was to investigate early biochemical changes and possible mechanisms via which alkyl(C12)thioacetic acid (CMTTD, blocked for beta-oxidation), alkyl(C12)thiopropionic acid (CETTD, undergo one cycle of beta-oxidation) and a 3-thiadicarboxylic acid (BCMTD, blocked for both omega- (and beta-oxidation) influence the peroxisomal beta-oxidation in liver of rats. Treatment of rats with CMTTD caused a stimulation of the palmitoyl-CoA synthetase activity accompanied with increased concentration of hepatic acid-insoluble CoA. This effect was already established during 12-24 h of feeding. From 2 days of feeding, the cellular level of acid-insoluble CoA began to decrease, whereas free CoASH content increased. Stimulation of [1-14C]palmitoyl-CoA oxidation in the presence of KCN, palmitoyl-CoA-dependent dehydrogenase (termed peroxisomal beta-oxidation) and palmitoyl-CoA hydrolase activities were revealed after 36-48 h of CMTTD-feeding. Administration of BCMTD affected the enzymatic activities and altered the distribution of CoA between acid-insoluble and free forms comparable to what was observed in CMTTD-treated rats. It is evident that treatment of peroxisome proliferators (BCMTD and CMTTD), the level of acyl-CoA esters and the enzyme activity involved in their formation precede the increase in peroxisomal and palmitoyl-CoA hydrolase activities. In CMTTD-fed animals the activity of cyanide-insensitive fatty acid oxidation remained unchanged when the mitochondrial beta-oxidation and carnitine palmitoyltransferase operated at maximum rates. The sequence and redistribution of CoA and enzyme changes were interpreted as support for the hypothesis that substrate supply is an important factor in the regulation of peroxisomal fatty acid metabolism, i.e., the fatty acyl-CoA species appear to be catabolized by peroxisomes at high rates only when uptake into mitochondria is saturated. Administration of CETTD led to an inhibition of mitochondrial fatty acid oxidation accompanied with a rise in the concentration of acyl-CoA esters in the liver. Consequently, fatty liver developed. The peroxisomal beta-oxidation was marginally affected. Whether inhibition of mitochondrial beta-oxidation may be involved in regulation of peroxisomal fatty acid metabolism and in development of fatty liver should be considered.  相似文献   

16.
The paper presents results showing differential response to paraquat toxicity in Wistar rats and Swiss strain of mice. Paraquat-induced pulmonary biochemical responses in the two animal species were studied at different time point after giving a single intraperitoneal injection of the respective LD(10) doses of the herbicide paraquat to rats and mice. Paraquat induced different biochemical responses including different protective responses in the two animal species. As a protective response, NADPH-specific quinone reductase is induced in rats, while catalase is induced in mice. It is implied that an early induction of catalase in mice as opposed to rats may account for the resistance of Swiss mice to paraquat toxicity. Xanthine oxidase, which was induced in rats, remains unaffected in mice indicating that the enzyme contributes to paraquat toxicity only in Wistar rats. Time-course studies were also conducted to compare the differential responses of antioxidant enzymes and lipid peroxidation between the two species. The results of the study led us to suggest that the manifestation of paraquat toxicity involve distinct differences in early pulmonary biochemical responses in Wistar rats and Swiss mice.  相似文献   

17.
Evidence is given that phenothiazines depress hepatic peroxisomal fatty acid oxidation in vivo. After oral administration to rats thioridazine and chlorpromazine inhibit peroxisomal beta-oxidation, evaluated by H2O2 production, during 2 weeks. In mice, this effect could not be demonstrated. However, in both species VLCFA are increased after short and long term drug administration. Electron microscopy reveals the presence of membranous structures in liver cytoplasm or lysosomes. The inhibition by thioridazine of peroxisomal beta-oxidation does not lead to hepatic peroxisome proliferation. The activities of enzymes related to fatty acid breakdown are not increased and liver peroxisomes are microscopically normal.  相似文献   

18.
Beta-oxidation of carboxylates takes place both in mitochondria and peroxisomes and in each pathway parallel enzymes exist for each conversion step. In order to better define the substrate specificities of these enzymes and in particular the elusive role of peroxisomal MFP-1, hepatocyte cultures from mice with peroxisomal gene knockouts were used to assess the consequences on substrate degradation. Hepatocytes from mice with liver selective elimination of peroxisomes displayed severely impaired oxidation of 2-methylhexadecanoic acid, the bile acid intermediate trihydroxycholestanoic acid (THCA), and tetradecanedioic acid. In contrast, mitochondrial beta-oxidation rates of palmitate were doubled, despite the severely affected inner mitochondrial membrane. As expected, beta-oxidation of the branched chain compounds 2-methylhexadecanoic acid and THCA was reduced in hepatocytes from mice with inactivation of MFP-2. More surprisingly, dicarboxylic fatty acid oxidation was impaired in MFP-1 but not in MFP-2 knockout hepatocytes, indicating that MFP-1 might play more than an obsolete role in peroxisomal beta-oxidation.  相似文献   

19.
Polar metabolites of di-(2-ethylhexyl)phthalate in the rat   总被引:2,自引:0,他引:2  
Di-(2-ethylhexyl)phthalate (DEHP) is an important industrial chemical widely used as a plasticizer for vinyl and other plastics. DEHP is extensively metabolized by mammals, different species showing dramatic differences in metabolite distributions. Previous studies of the metabolism in rats led to the suggestion that the enzymatic processes normally associated with omega-, omega-1, alpha-, and beta-oxidation of fatty acids could account for the known metabolites of DEHP found in the urine. Several additional metabolites of DEHP have been identified in the present study. Their formation requires that the initial hydroxylation process be less specific than fatty acid omega- and omega-1 oxidation are thought to be. Furthermore, it is necessary to postulate either that the aliphatic chain of mono-(2-ethylhexyl)phthalate can be oxidized at two sites simultaneously, or that oxidation products can be recycled for a second hydroxylation prior to excretion.  相似文献   

20.
Neutrophils stimulated with fMLP or a variety of other chemoattractants that bind to serpentine receptors coupled to heterotrimeric G proteins exhibit rapid activation of two p21-activated protein kinases (Paks) with molecular masses of approximately 63 and 69 kDa (gamma- and alpha-Pak). Previous studies have shown that products of phosphatidylinositol 3-kinase and tyrosine kinases are required for the activation of Paks. We now report that a variety of structurally distinct compounds which interrupt different stages in calcium/calmodulin (CaM) signaling block activation of the 63- and 69-kDa Paks in fMLP-stimulated neutrophils. These antagonists included selective inhibitors of phospholipase C (1-[6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl]-1H-pyrrole-2,5-dione), the intracellular Ca(2+) channel (8-(N,N-diethylamino)-octyl-3,4,5-trimethoxybenzoate), CaM (N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide; N-(4-aminobutyl)-5-chloro-1-naphthalenesulfonamide; trifluoperazine), and CaM-activated protein kinases (N-[2-(N-(chlorocinnamyl)-N:-methylaminomethyl)phenyl]-N-[2-hydroxyethyl]-4-methoxybenzenesulfonamide). This inhibition was dose-dependent with IC(50) values very similar to those that interrupt CaM-dependent reactions in vitro. In contrast, less active analogues of these compounds (1-[6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl]-2,5-pyrrolidinedione; N-(6-aminohexyl)-1-naphthalenesulfonamide; N-(4-aminobutyl)-1-naphthalenesulfonamide; promethazine; 2-[N-(4-methoxybenzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzyl-amine]) did not affect activation of Paks in these cells. CaM antagonists (N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide; trifluoperazine), but not their less-active analogues (N-(6-aminohexyl)-1-naphthalenesulfonamide; promethazine), were also found to block activation of the small GTPases Ras and Rac in stimulated neutrophils along with the extracellular signal-regulated kinases. These data strongly suggest that the Ca(2+)/CaM complex plays a major role in the activation of a number of enzyme systems in neutrophils that are regulated by small GTPases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号