首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The catalytic activity of he cyclo-oxygenase prostaglandin E2 synthetase complex in subcellular organelles of goat vesicular gland was determined. The enzyme activity was found to be located mostly in the rough endoplasmic reticulum and partly in the nuclear membrane; comparatively very little activity could be detected in the smooth endoplasmic reticulum. There was no detectable activity of the enzyme in the plasma membrane.  相似文献   

2.
The activity of cholinephosphotransferase was measured in the subcellular fractions of guinea-pig lung. The specific activity of the enzyme was highest in a fraction, intermediate in density between mitochondria and microsomes. Similar subcellular distribution patterns were observed for both cholinephosphotransferase and rotenone-insensitive NADH-cytochrome c reductase, an enzyme associated with the outer membrane of mitochondria and endoplasmic reticulum, suggesting that cholinephosphotransferase may be localized in both of these organelles. The distribution of cholinephosphotransferase activity in the subfractions of mitochondria and the intermediate fractions recovered by linear density gradient paralleled that of the mitochondrial outer membrane marker enzyme, monoamine oxidase. RNA content of a subfraction enriched in cholinephosphotransferase and monoamine oxidase was not typical to that of either rough or smooth endoplasmic reticulum. The results of this study suggest that in guinea-pig lung, cholinephosphotransferase is localized in both the outer membrane of mitochondria, and the endoplasmic reticulum.  相似文献   

3.
西瓜柱头乳突细胞分泌活动期间ATP酶活性超微结构定位   总被引:4,自引:1,他引:4  
研究了西瓜柱头乳突细胞ATP酶活性的超微结构定位。分泌活动旺盛的细胞中,质膜、内质网、质体的内部片层、胞间连丝以及多数大液泡的膜上面都有大量ATP酶活性反应产物,线粒体和小泡上只有少量酶活性反应产物。分泌活动停止后处于解体状态的细胞内,反应产物主要定位于液泡膜上。分泌旺盛的乳突细胞质膜具有高的ATP酶活性表明分泌物运出需要大量能量,内质网ATP酶活性强可能意味着该细胞参与分泌物合成。  相似文献   

4.
研究了西瓜柱头乳突细胞ATP酶活性的超微结构定位。分泌活动旺盛的细胞中,质膜、内质网、质体的内部片层、胞间连丝以及多数大液泡的膜上面都有大量ATP 酶活性反应产物,线粒体和小泡上只有少量酶活性反应产物。分泌活动停止后处于解体状态的细胞内,反应产物主要定位于液泡膜上。分泌旺盛的乳突细胞质膜具有高的ATP酶活性表明分泌物运出需要大量能量,内质网 ATP 酶活性强可能意味着该细胞器参与分泌物合成。  相似文献   

5.
We have investigated the subcellular location and regulation of hepatic bilirubin UDP-glucuronyltransferase, which has been presumed to be located largely in the smooth endoplasmic reticulum. Purity of subcellular membrane fractions isolated from rat liver was assessed by electron microscopy and marker enzymes. Bilirubin UDP-glucuronyltransferase activity was measured by radiochemical assay using a physiologic concentration of [14C]bilirubin, and formation rates of bilirubin diglucuronide and monoglucuronides (C-8 and C-12 isomers) were determined. Activity of the enzyme was widely distributed in subcellular membranes, the majority being found in smooth and rough endoplasmic reticulum, with small amounts in nuclear envelope and Golgi membranes. No measurable activity was found in plasma membranes or in cytosol. Synthesis of bilirubin diglucuronide as a percentage of total conjugates and the ratio of C-8/C-12 bilirubin monoglucuronide isomers formed were comparable in all membranes, suggesting that the same enzyme is present in all locations. However, the regulation of bilirubin UDP-glucuronyltransferase activity differed among intracellular membranes; enzyme activity measured in the presence of the allosteric effector uridine 5'-diphospho-N-acetylglucosamine exhibited latency in smooth endoplasmic reticulum and Golgi membranes, but not in rough endoplasmic reticulum and nuclear envelope. Since rough membranes comprise 60% of hepatocyte endoplasmic reticulum and bilirubin UDP-glucuronyltransferase activity in vitro is maximal in this membrane fraction under presumed physiologic conditions, it is likely that the rough endoplasmic reticulum represents the major site of bilirubin glucuronidation in hepatocytes.  相似文献   

6.
Summary The ultrastructural localization of glucose 6-phosphatase activity was investigated in the proximal convoluted tubule cells of the rat kidney. The reaction product for the enzyme activity was present in the endoplasmic reticulum and nuclear envelope, as reported for the hepatic enzyme and others, but was absent from the brush border, plasma membrane and other organelles. The metabolic significance of the association of this enzyme with the endoplasmic reticulum and the role of the enzyme in the active reabsorption and transport of glucose in the renal tubules are discussed.  相似文献   

7.
The endoplasmic reticulum from Neurospora crassa was identified by monitoring the activity of the putative enzyme marker phosphatidylcholine glyceride transferase. After differential centrifugation of a cell homogenate, phosphatidylcholine glyceride transferase activity initially copurified with plasma membrane H+-ATPase. However, isopycnic centrifugation of the whole-cell homogenate on a linear sucrose gradient separated the two enzyme activities into different fractions. The lighter membrane fraction exhibited characteristics that have been associated with the endoplasmic reticulum in other organisms: (i) the inclusion of magnesium caused this light membrane fraction to shift to a higher density on the gradient; (ii) it was highly enriched in cytochrome c reductase, an endoplasmic reticulum marker in other systems; and (iii) the morphology of the light fraction with and without added magnesium was clearly distinguishable from that of the plasma membrane fraction by electron microscopy. A reinvestigation of the location of chitin synthetase confirmed its association with the plasma membrane fraction even after separation of the lighter fractions.  相似文献   

8.
Enzyme induction of HeLa cell placental alkaline phosphatase with various agents such as prednisolone, sodium butyrate, hyperosmolality (NaCl), or combination of these inducers resulted in the appearance of enzyme activity in the rough endoplasmic reticulum, nuclear envelope, Golgi apparatus, and plasma membrane. In the Golgi apparatus, intense reaction product deposits tended to be concentrated on its trans side, with small vesicles and granules also being positively stained. Inhibition of protein synthesis with cycloheximide was followed by the disappearance of enzyme activity from these cytoplasmic organelles but not from the plasma membrane. Treatment with monensin, a secretory protein transport inhibitor, uniformly increased activity in the rough endoplasmic reticulum while causing marked dilatation of the intensely positive Golgi cisternae. These results suggest that intracellular alkaline phosphatase is newly synthesized in the endoplasmic reticulum and then passes en route through the Golgi apparatus to the plasma membrane. Accordingly, the present system could represent the biosynthesis, transport, and incorporation of the model cell surface enzyme protein to add to the vesicular stomatitus virus glyco-1 (VSV-G) protein and acetylcholine receptor model systems for studying the dynamics of cell surface protein genesis, transport, and membrane integration.  相似文献   

9.
Isolated membrane vesicles from pig stomach smooth muscle (antral part) were subfractionated by a density gradient procedure modified in order to obtain an efficient extraction of extrinsic proteins. By using this method in combination with digitonin-treatment, an endoplasmic reticulum fraction contaminated with maximally 10 to 20% of plasma membranes was isolated, together with a plasma membrane fraction containing at most 30% endoplasmic reticulum. The endoplasmic reticulum and plasma membrane fractions differed in protein composition, reaction to digitonin, binding of wheat germ agglutinin, activities of marker enzymes and in the characteristics of the Ca2+ uptake. The Ca2+ uptake by the endoplasmic reticulum was much more stimulated by oxalate than the uptake by plasma membranes. Both fractions showed a (Ca2+ + Mg2+)-ATPase activity, but the largest amount of this enzyme was present in the plasma membranes. The study of the phosphorylated intermediates of the (Ca2+ + Mg2+)-ATPase by polyacrylamide gel electrophoresis revealed two phosphoproteins one of 130 kDa and one of 100 kDa (Wuytack, F., Raeymaekers, L., De Schutter, G. and Casteels, R. (1982) Biochim. Biophys. Acta 693, 45-52). The 130 kDa enzyme was predominant in the fraction enriched in plasma membrane whereas the distribution of the 100 kDa polypeptide correlated with the endoplasmic reticulum markers. The 130 kDa ATPase was the main 125I-calmodulin binding protein detected on nitrocellulose blots of proteins separated by gel electrophoresis. The (Ca2+ + Mg2+)-ATPase activity of the plasma membranes was higher than the (Na+ + K+)-ATPase activity, suggesting that the Ca2+ extrusion from these cells depends much more on the activity of the (Ca2+ + Mg2+)-ATPase than on Na+-Ca2+ exchange.  相似文献   

10.
The origin of the limiting membranes of autophagic vacuoles (AV) in mouse hepatocytes was studied by cytochemical techniques. Autophagocytosis was induced by an intraperitoneal injection of vinblastine (50 mg/kg). The marker enzymes used were adenosine triphosphatase for the plasma membrane, glucose-6-phosphatase for the endoplasmic reticulum and thiamine pyrophosphatase for the Golgi apparatus and the endoplasmic reticulum. All the three enzymes showed a characteristic localization in both control and vinblastine-treated hepatocytes. The space between the limiting membranes of a few apparently newly formed AV's showed weak glucose-6-phosphatase activity. Neither adenosine triphosphatase nor thiamine pyrophosphatase activities were observed on or between the AV membranes. It was suggested that endoplasmic reticulum membranes may be used as a source of AV membranes in hepatocytes. The lack of glucose-6-phosphatase activity in the limiting membranes even of most of the newly formed AV's suggests a transformation process of the membranes destined to form AV, during which the enzyme activity characteristic for endoplasmic reticulum may disappear from them.  相似文献   

11.
Summary The origin of the limiting membranes of autophagic vacuoles (AV) in mouse hepatocytes was studied by cytochemical techniques. Autophagocytosis was induced by an intraperitoneal injection of vinblastine (50 mg/kg). The marker enzymes used were adenosine triphosphatase for the plasma membrane, glucose-6-phosphatase for the endoplasmic reticulum and thiamine pyrophosphatase for the Golgi apparatus and the endoplasmic reticulum. All the three enzymes showed a characteristic localization in both control and vinblastine-treated hepatocytes. The space between the limiting membranes of a few apparently newly formed AV's showed weak glucose-6-phosphatase activity. Neither adenosine triphosphatase nor thiamine pyrophosphatase activities were observed on or between the AV membranes. It was suggested that endoplasmic reticulum membranes may be used as a source of AV membranes in hepatocytes. The lack of glucose-6-phosphatase activity in the limiting membranes even of most of the newly formed AV's suggests a transformation process of the membranes destined to form AV, during which the enzyme activity characteristic for endoplasmic reticulum may disappear from them.  相似文献   

12.
We have used isopycnic density gradient centrifugation to study the distribution of several rat liver microsomal enzymes of cholesterol synthesis and metabolism. All of the enzymes assayed in the pathway from lanosterol to cholesterol (lanosterol 14-demethylase, steroid 14-reductase, steroid 8-isomerase, cytochrome P-450, and cytochrome b5) are distributed in both smooth (SER) and rough endoplasmic reticulum (RER). The major regulatory enzyme in the pathway, hydroxymethylglutaryl-CoA reductase, also was found in both smooth and rough fractions, but we did not observe any associated with either plasma membrane or golgi. Since cholesterol can only be synthesized in the presence of these requisite enzymes, we conclude that the intracellular site of cholesterol biosynthesis is the endoplasmic reticulum. This is consistent with the long-held hypothesis. When the overall pathway was assayed by the conversion of mevalonic acid to non-saponifiable lipids (including cholesterol), the pattern of distribution obtained in density gradients verified its general endoplasmic reticulum localization. The enzyme acyl-CoA-cholesterol acyltransferase which removes free cholesterol from the membrane by esterification, was found only in the rough fraction of endoplasmic reticulum. In addition, when the RER was degranulated by the addition of EDTA, the activity of acyl-CoA-cholesterol acyltransferase not only shifted to the density of SER but was stimulated approximately 3-fold. The localization of these enzymes coupled with the stimulatory effect of degranulation on acyl-CoA-cholesterol acyltransferase activity has led us to speculate that the accumulation of free cholesterol in the RER membrane might be a driving factor in the conversion of RER to SER.  相似文献   

13.
After a 3-h incubation of Krebs II ascitic cells in the presence of phospholipase C from Clostridium welchii under nonlytic conditions, the incorporation of [3H] choline into phosphatidylcholine was increased 1.7-fold as compared to untreated cells. The total amounts of phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin were unchanged up to 3 h of incubation. The limiting step in phosphatidylcholine biosynthesis was the formation of CDP-choline catalyzed by CTP:choline-phosphate cytidylyltransferase (EC 2.7.7.15) as monitored by the decrease in phosphocholine labeling following phospholipase C treatment of cells prelabeled with [3H]choline. The specific activity of homogenate cytidylyltransferase was increased about 1.6-fold in phospholipase C-treated cells. Specific activity of the membrane fraction was increased 2-fold, whereas cytosolic specific activity decreased in phospholipase C-treated cells. The activation of cytidylyltransferase was concomitant with translocation of the enzyme from the cytosol to the membrane fraction. The latter was further fractionated using a Percoll gradient that allowed an efficient separation between endoplasmic reticulum and other subcellular membranes. In control cells, particulate cytidylyltransferase activity co-migrated with the endoplasmic reticulum and ribosome markers and not with the plasma membrane. Also, in treated cells, the stimulation of cytidylyltransferase activity occurred at the endoplasmic reticulum level and did not involve either the external cell membrane or other cellular organelles including the Golgi apparatus, lysosomes, or mitochondria. Thus, our results demonstrate that a stimulus acting on the plasma membrane promotes the translocation of the soluble form of cytidylyltransferase specifically to the endoplasmic reticulum.  相似文献   

14.
A hybrid gene has been constructed consisting of coding sequence for the membrane domain of the endoplasmic reticulum protein 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase linked to the coding sequence for the soluble enzyme Escherichia coli beta-galactosidase. Expression of the hybrid gene in transfected Chinese hamster ovary cells results in the production of a fusion protein (HMGal) which is localized in the endoplasmic reticulum. The fusion protein contains the high-mannose oligosaccharides characteristic of HMG-CoA reductase. Importantly the beta-galactosidase activity of HMGal decreases when low density lipoprotein is added to the culture media. Therefore, the membrane domain of HMG-CoA reductase is sufficient to determine both correct intracellular localization and sterol-regulation of degradation. Mutant fusion proteins which lack 64, 85, or 98 amino acid residues from within the membrane domain of HMG-CoA reductase are found to be localized in the endoplasmic reticulum and to retain beta-galactosidase activity. However, sterol-regulation of degradation is abolished.  相似文献   

15.
A cytochemical study using a lead precipitation technique has been made of the distribution of adenosine triphosphatase (ATPase) in mature and differentiating phloem and xylem cells of Nicotiana tabacum and Pisum sativum. The sites of ATPase localization in tobacco phloem were the plasma membrane, endoplasmic reticulum, mitochondria, dictyosomes, plasmodesmata, and the dispersed P proteins of mature sieve elements. In pea phloem sieve elements ATPase was localized in the endoplasmic reticulum, but was not associated with the P proteins or plasma membranes at any stage of their differentiation. In pea transfer cells ATPase activity was associated with the endoplasmic reticulum at all stages of their differentiation and with the plasma membrane of transfer cells that had formed wall ingrowths. In xylem cells of both tobacco and pea the patterns of ATPase activity was similar. At early stages of differentiation ATPase activity was associated with the plasma membrane and the endoplasmic reticulum. At intermediate stages of differentiation ATPase activity continued to be associated with the endoplasmic reticulum, but was no longer associated with the plasma membrane. At later stages of xylem element differentiation ATPase activity was associated with disintegrating organelles and with the hydrolyzing cell walls.  相似文献   

16.
125I-insulin was shown to be internalized in vivo to a discrete population of low-density membranes (ligandosomes), distinct from the Golgi, endoplasmic reticulum, plasma membrane, and lysosomes. However, analytical subcellular fractionation shows that glutathione-insulin transhydrogenase is localized to the endoplasmic reticulum. Measurement of the specific enzyme activity of glutathione-insulin transhydrogenase showed no differences between normal, diabetic, and hyperinsulinaemic rats. These results suggest that glutathione-insulin transhydrogenase is not directly involved in the subceltular processing of receptor-bound internalized insulin.  相似文献   

17.
应用电镜酶细胞化学方法研究了人颈淋巴结淋巴细胞ATP酶、G-6-P酶、5’-Nase的定位与活性。结果:ATP酶主要定位在淋巴细胞膜及内质网、线粒体等膜相结构。G-6-P酶主要定位在内质网、线粒体等膜相结构。5’-Nase主要定位在细胞膜外表面,在内质网与线粒体股外表面也可见此酶反应颗粒。3种酶定位准确、颗粒清晰,酶反应特异性强。结果提示应用此法可以检测以上酶活性,对判定机体免疫状态、对临床诊断与治疗具有一定意义。  相似文献   

18.
A microsomal fraction from rat liver was subfractionated into three rough endoplasmic reticulum fractions RIII, RII and RI, together with a smooth endoplasmic reticulum plus Golgi fraction. Cyclic nucleotide phosphodiesterase activity was found in all fractions. Subsequently it was shown that Golgi fractions were essentially devoid of cyclic AMP phosphodiesterase activity and the activity resided in the smooth endoplasmic reticulum fraction. The activity of the endoplasmic reticulum constituted some 20% of the homogenate activity, with the major fraction of this being associated with the RII fraction and the least with the RI fraction. With the exception of the activity of the RI fraction, which was a peripheral enzyme, all of the other enzyme activities were integral, requiring detergent or repeated freeze-thawing to effect solubilization. All of the activities appeared to be exposed at the external surface of the endoplasmic reticulum, as they were inactivated by trypsin under conditions where glucose 6-phosphatase was not. All of these activities displayed distinct sensitivities to both thermal and trypsin inactivation, yielding activity decays consistent with a single enzyme species being present in each case. The freeze-thaw-solubilized enzymes yielded single symmetrical peaks on sucrose-density-gradient centrifugation and polyacrylamide-gel electrophoresis. The sedimentation coefficients for the enzymes in the smooth-endoplasmic-reticulum-plus-Golgi, RIII, RII and RI fractions were 3.2S, 4.2S, 4.5S and 4.5S respectively. Whereas the activity in the smooth-endoplasmic-reticulum-plus-Golgi fraction exhibited normal Michaelis kinetics, those in the other fractions yielded kinetics indicative of apparent negative co-operativity. All of the enzymes exhibited low Km values towards cyclic AMP. The enzymes did not appear to be regulated by Ca2+ or calmodulin. ZnCl2 was found to be a potent non-competitive inhibitor of the enzyme in all fractions. NaF was a weak non-competitive inhibitor. The bilayer fluidizing agent benzyl alcohol exerted dissimilar effects on the enzyme activities. It is concluded that the endoplasmic reticulum displays lateral heterogeneity, with single, rather distinct, cyclic AMP phosphodiesterases being found in the different fractions.  相似文献   

19.
Moore TS 《Plant physiology》1974,54(2):164-168
The synthesis of phosphatidylglycerol in castor bean (Ricinus communis var. Hale) endosperm tissue was found to be located in both the endoplasmic reticulum and mitochondrial fractions separated on sucrose density gradients. The enzyme of both fractions attained maximum activity at 5 mm Mn(2+), 0.075% Triton X-100, and pH 7.3. The addition of dithiothreitol produced little effect, but sulfhydryl inhibitors reduced activity in both systems. Cytidine diphosphate-diglyceride exhibited an apparent Michaelis constant for the endoplasmic reticulum enzyme of 2.8 mum and for the mitochondrial enzyme of 2.0 mum; the maximum reaction rate was achieved at about 20 mum. For the second substrate, glycerol-phosphate, the apparent Michaelis constant for both fractions was about 50 mum and maximum velocity was reached at 400 mum. The specific activity of the mitochondrial enzyme was generally twice that of the endoplasmic reticulum.  相似文献   

20.
The relationship between the neutral lipid and phospholipid metabolism and some structure-function peculiarities of regenerating rat liver endoplasmic reticulum membranes (13 hours after surgery, i.e., corresponding to the G1-period of the cell cycle) was studied. There was an increase in the degree of the endoplasmic reticulum membrane development and the nonesterified fatty acid (NFA) and triglyceride (TG) content in regenerating rat liver microsomes. The relative specific radioactivity of neutral lipid and phospholipid fractions in regenerating rat liver microsomes was lower than in control animals, presumably due to the high rate of the microsomal lipid exchange in the regenerating liver with other cell organelles. The changes in the lipid content and rate of their metabolism in the regenerating rat liver were associated with the increase in the membrane microviscosity and the decrease in the activity of the membrane-bound enzyme (glucose-6-phosphatase). The differences in the time-dependent changes in the synthesis and metabolism of lipids in the NFA and TG fractions may be regarded as an endogenous factor determining the structure-function peculiarities of endoplasmic reticulum membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号