首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The maturation of connective tissue involves the organization of collagen fibres by resident fibroblasts. Fibroblast attachment to collagen has been demonstrated to involve cell surface receptors, integrins of the β1 family. Integrins are associated with cytoplasmic actin of microfilaments either directly or through focal adhesions. The major actin isoform of fibroblast microfilaments is β actin and to a lesser extent α smooth muscle (α SM) actin. Cultured human dermal fibroblasts derived from adult dermis, newborn foreskin or keloid scar were grown on either uncoated or collagen-coated surfaces. The expression and synthesis of both α2β1 integrin and α SM actin were followed by immunohistology and immunoprecipitation. Fibroblasts on uncoated surfaces expressed little α2β1 integrin on their surface, while 20 per cent of them demonstrated α SM actin within microfilaments. Fibroblasts grown on a collagen-coated surface minimally expressed α SM actin in microfilament structures and a majority of the cells were positive for α2β1 integrin on their membranes. Using [35S]-methionine incorporation and immunoprecipitation, it was shown that fibroblasts grown in uncoated dishes synthesized more α SM actin than fibroblasts grown on collagen-coated dishes. In contrast, fibroblasts grown on collagen coated dishes synthesized more α2β1 integrin compared to the same cells grown on uncoated dishes. Fibroblasts maintained on a type I collagen upregulate the expression and synthesis of α2β1 integrin, and downregulate the expression and synthesis of α SM actin. © 1998 John Wiley & Sons, Ltd.  相似文献   

2.
Extracellular calcium (Ca(2+)(o)) can act as a first messenger in many cell types through a G protein-coupled receptor, calcium-sensing receptor (CaR). It is still debated whether the CaR is expressed in vascular smooth muscle cells (VSMCs). Here, we report the expression of CaR mRNA and protein in rat aortic VSMCs and show that Ca(2+)(o) stimulates proliferation of the cells. The effects of Ca(2+)(o) were attenuated by pre-treatment with MAPK kinase 1 (MEK1) inhibitor, as well as an allosteric modulator, NPS 2390. Furthermore, stimulation of the VSMCs with Ca(2+)(o)-induced phosphorylation of ERK1/2, but surprisingly did not cause inositol phosphate accumulation. We were not able to conclusively state that the CaR mediates Ca(2+)(o)-induced cell proliferation. Rather, an additional calcium-sensing mechanism may exist. Our findings may be of importance with regard to atherosclerosis, an inflammatory disease characterized by abnormal proliferation of VSMCs and high local levels of calcium.  相似文献   

3.
4.
Both rat derived vascular smooth muscle cells (SMC) and human myofibroblasts contain α smooth muscle actin (SMA), but they utilize different mechanisms to contract populated collagen lattices (PCLs). The difference is in how the cells generate the force that contracts the lattices. Human dermal fibroblasts transform into myofibroblasts, expressing α‐SMA within stress fibers, when cultured in lattices that remain attached to the surface of a tissue culture dish. When attached lattices are populated with rat derived vascular SMC, the cells retain their vascular SMC phenotype. Comparing the contraction of attached PCLs when they are released from the culture dish on day 4 shows that lattices populated with rat vascular SMC contract less than those populated with human myofibroblast. PCL contraction was evaluated in the presence of vanadate and genistein, which modify protein tyrosine phosphorylation, and ML‐7 and Y‐27632, which modify myosin ATPase activity. Genistein and ML‐7 had no affect upon either myofibroblast or vascular SMC‐PCL contraction, demonstrating that neither protein tyrosine kinase nor myosin light chain kinase was involved. Vanadate inhibited myofibroblast‐PCL contraction, consistent with a role for protein tyrosine phosphatase activity with myofibroblast‐generated forces. Y‐27632 inhibited both SMC and myofibroblast PCL contraction, consistent with a central role of myosin light chain phosphatase. J. Cell. Biochem. 111: 362–369, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
Studies were carried out to test the idea that transforming growth factor beta (TGFbeta) stimulated fibroblast contraction of collagen matrices by different mechanisms depending on mechanical loading on the cells and matrix. Under mechanically unloaded conditions (floating matrices), TGFbeta stimulated contraction directly as an agonist and indirectly by preactivating cells to express the myofibroblast phenotype. Increased contraction of floating matrices by preactivated cells appeared to result in part from an autocrine mechanism. Under mechanically loaded conditions (stressed matrices), TGFbeta had no direct agonist effect on contraction. Fibroblasts preactivated to become myofibroblasts showed increased ability to transfer tension to stressed matrices, and tension persisted even after the cells' actin cytoskeleton was disrupted. Our findings are consistent with the idea that fibroblasts activated to become myofibroblasts in vitro have increased contractile activity and indicate that multiple mechanisms that differ depending on mechanical loading on the cells and matrix are involved.  相似文献   

6.
Prior studies have demonstrated the expression of a contractile actin isoform, alpha-smooth muscle actin, in bone marrow stromal cells. One objective of the current study was to correlate contractility with alpha-smooth muscle actin expression in human bone marrow stroma-derived mesenchymal stem cells. A second objective was to determine the effects of transforming growth factor-beta1, platelet derived growth factor-BB, and a microfilament-modifying agent on alpha-smooth muscle actin expression and alpha-smooth muscle actin-enabled contraction. Adult human bone marrow stromal cells were passaged in monolayer and their inducibility to chondrocytic, osteoblastic, and adipogenic phenotypes was demonstrated. Western blot analysis was employed along with densitometry to quantify the alpha-smooth muscle actin content of the cells and their contractility was evaluated by their contraction of a type I collagen-glycosaminoglycan sponge-like matrix into which they were seeded. Transforming growth factor-beta1 (1 ng/ml) significantly increased and platelet-derived growth factor-BB (10 ng/ml) decreased alpha-smooth muscle actin expression and the contractility of the cells. Cytochalasin D also blocked cell contraction. There was a notably high correlation of cell-mediated contraction normalized to the DNA content of the matrices with alpha-smooth muscle actin content of the cells by linear regression analysis (R(2) = 0.88). These findings lay the groundwork for considering the role of alpha-smooth muscle actin-enabled contraction in mesenchymal stem cells and in their connective tissue cell progeny.  相似文献   

7.
The effect of TGF-beta receptor binding peptides on smooth muscle cells   总被引:1,自引:0,他引:1  
TGF-beta1 is a potent regulator of vascular smooth muscle cell (VSMC) proliferation, migration, and extracellular matrix (ECM) synthesis. In this study, we selected two peptides, IM-1 and IM-2, that bind to the TGF-beta type II receptor (TGF-beta RII) using phage display. IM-1 and IM-2 bind to the TGF-beta RII, with a K(d) of 1 microM. Like TGF-beta, IM-1 induced VSMC chemotaxis and PAI-1 mRNA expression, as determined using Boyden chambers and real time quantitative PCR. In contrast, IM-2 had no effect on VSMC chemotaxis or PAI-1 induction. Induction of ECM synthesis, involving proteins such as osteopontin and alpha-smooth muscle actin, was determined by ELISA. Osteopontin expression was inhibited by both peptides, but TGF-beta-induced alpha-smooth muscle actin expression could only be inhibited by IM-1. In conclusion, IM-1 activity on VSMC is agonistic with TGF-beta, except for ECM synthesis, whereas the IM-2 peptide is antagonistic for some examined TGF-beta functions.  相似文献   

8.
9.
Although it is known that transforming growth factor (TGF)-beta induces vascular endothelial growth factor (VEGF) synthesis in vascular smooth muscle cells, the underlying mechanisms are still poorly understood. In the present study, we examined whether the mitogen-activated protein (MAP) kinase superfamily is involved in TGF-beta-stimulated VEGF synthesis in aortic smooth muscle A10 cells. TGF-beta stimulated the phosphorylation of p42/p44 MAP kinase and p38 MAP kinase, but not that of SAPK (stress-activated protein kinase)/JNK (c-Jun N-terminal kinase). The VEGF synthesis induced by TGF-beta was not affected by PD98059 or U0126, specific inhibitors of the upstream kinase that activates p42/p44 MAP kinase. We confirmed that PD98059 or U0126 did actually suppress the phosphorylation of p42/p44 MAP kinase by TGF-beta in our preparations. PD169316 and SB203580, specific inhibitors of p38 MAP kinase, significantly reduced the TGF-beta-stimulated synthesis of VEGF (each in a dose-dependent manner). PD169316 or SB203580 attenuated the TGF-beta-induced phosphorylation of p38 MAP kinase. These results strongly suggest that p38 MAP kinase plays a part in the pathway by which TGF-beta stimulates the synthesis of VEGF in aortic smooth muscle cells.  相似文献   

10.
Regulation of (Na+ + K+)-adenosine triphosphatase (NaK-ATPase) by platelet-derived growth factor (PDGF) in cultured rat thoracic aortic smooth muscle cells (SMC) was examined. PDGF-BB enhances SMC proliferation and NaK-ATPase activity. Ouabain, an inhibitor of NaK-ATPase activity, prevents PDGF-BB-induced SMC proliferation. As shown by Western blot and immunochemiluminescence analysis, PDGF-BB also enhances 1, truncated 1, and 1 NaK-ATPase subunit levels. PDGF-AA and PDGF-AB show no effect on 1 and truncated 1 levels in slot blot analysis. Induction of NaK-ATPase subunit levels by PDGF-BB could be one of the initial events in vascular SMC proliferation.  相似文献   

11.
Tissue inhibitor of metalloproteinases-1 (TIMP-1) is a multifunctional protein, which is found in most tissues and body fluids. Here, we demonstrated that recombinant TIMP-1 but not the synthetic matrix metalloproteinase inhibitor, GM6001, stimulated proliferation of human aortic smooth muscle cells (AoSMC) in a dose-dependent manner. The mitogenic effect was associated with activation of Ras, increased phosphorylation of ERK, and stimulation of cyclin D1 expression. The phosphatidylinositol 3-kinase (PI3K) signaling pathway was also involved since the PI3K inhibitor, LY294002, abolished the TIMP-1-mediated growth stimulation. These data suggest that TIMP-1 activates Ras, which then turns on the ERK and PI3K signaling pathways to promote cell cycle progression of the AoSMC.  相似文献   

12.
Limb bud outgrowth in chicken embryos is initiated during the third day of development by Fibroblast Growth Factor 8 (FGF8) produced by the newly formed apical ectodermal ridge (AER). One of the earliest effects of this induction is a change in the properties of the limb field mesoderm leading to bulging of the limb buds from the body wall. Heintzelman et al. [Heintzelman, K.F., Phillips, H.M., Davis, G.S., 1978. Liquid-tissue behavior and differential cohesiveness during chick limb budding. J. Embryol. Exp. Morphol. 47, 1–15.] suggested that budding of the limbs is caused by a higher liquid-like cohesivity of limb bud tissue compared with flank. We sought additional evidence relevant to this hypothesis by performing direct measurements of the effective surface tension, a measure of relative tissue cohesivity, of 4-day embryonic chicken wing and leg bud mesenchymal tissue, and adjacent flank mesoderm. As predicted, the two types of limb tissues were 1.5- to 2-fold more cohesive than the flank tissue. These differences paralleled cell number and volume density differences: 4-day limb buds had 2- to 2.5-fold as many cells per unit area of tissue as surrounding flank, a difference also seen at 3 days, when limb budding begins. Exposure of flank tissue to exogenous FGF8 for 24 h increased its cell number and raised its cohesivity to limb-like values. Four-day flank tissue exhibited a novel and unique active rebound response to compression, which was suppressed by the drug latrunculin and therefore dependent on an intact actin cytoskeleton. Correspondingly, flank at this stage expressed high levels of α-smooth muscle actin (SMA) mRNA and protein and a dense network of microfilaments. Treatment of flank with FGF8 eliminated the rebound response. We term material properties of tissues, such as cohesivity and mechanical excitability, the “physical phenotype”, and propose that changes thereof are driving forces of morphogenesis. Our results indicate that two independent aspects of the physical phenotype of flank mesoderm can be converted to a limb-like state in response to treatment with FGF8. The higher tissue cohesivity induced by this effect will cause the incipient limb bud to phase separate from the surrounding flank, while the active mechanical response of the flank could help ensure that the limb bud bulges out from, rather than becoming engulfed by, this less cohesive tissue.  相似文献   

13.
14.
Angiogenic factor AGGF1 (AngioGenic factor with G-patch and FHA (Forkhead-Associated) domain 1) blocks neointimal formation (formation of a new or thickened layer of arterial intima) after vascular injury by regulating phenotypic switching of vascular smooth muscle cells (VSMCs). However, the AGGF1 receptor on VSMCs and the underlying molecular mechanisms of its action are unknown. In this study, we used functional analysis of serial AGGF1 deletions to reveal the critical AGGF1 domain involved in VSMC phenotypic switching. This domain was required for VSMC phenotypic switching, proliferation, cell cycle regulation, and migration, as well as the regulation of cell cycle inhibitors cyclin D, p27, and p21. This domain also contains an RDDAPAS motif via which AGGF1 interacts with integrin α7 (ITGA7), but not α8. In addition, we show that AGGF1 enhanced the expression of contractile markers MYH11, α-SMA, and SM22 and inhibited MEK1/2, ERK1/2, and ELK phosphorylation in VSMCs, and that these effects were inhibited by knockdown of ITGA7, but not by knockdown of ITGA8. In vivo, deletion of the VSMC phenotypic switching domain in mice with vascular injury inhibited the functions of AGGF1 in upregulating α-SMA and SM22, inhibiting MEK1/2, ERK1/2, and ELK phosphorylation, in VSMC proliferation, and in blocking neointimal formation. Finally, we show the inhibitory effect of AGGF1 on neointimal formation was blocked by lentivirus-delivered shRNA targeting ITGA7. Our data demonstrate that AGGF1 interacts with its receptor integrin α7 on VSMCs, and this interaction is required for AGGF1 signaling in VSMCs and for attenuation of neointimal formation after vascular injury.  相似文献   

15.
Summary Elastin accumulation in the extracellular matrix of cultured rat aortic smooth muscle cells was monitored as a function of age. The effect of the animal donor age and time in culture in single or consecutive passages on the cells’ ability to accumulate total protein as well as elastin was evaluated. Smooth muscle cells were obtained from animals ranging in age from 2 d to 36 mo. Protein accumulation by the cells based on DNA content was similar regardless of which of the above aging parameters was examined. Although there were significant amounts of elastin present in the extracellular matrix of those cells originating from the younger animals (2 d and 6 wk old), little or none was detected in cell cultures derived from the oldest animals. A soluble elastin-like fraction which was isolated from the cultures of the 2-d-old rats seemed to be lacking in the cultures of cells from the 36-mo-old animals. This observation may, in part, explain the absence of insoluble elastin in the matrix of some cultures obtained from older animals. The data strongly suggest that the age of the donor animal from which the cells originate has the greatest influence on in vitro elastin accumulation. This study was supported by National Institutes of Health Grants HL 19717 and HL 13262.  相似文献   

16.
We report here an analysis of the expression and function of the α chain of human VLA-4 in stable mouse L cell transfectants and the requirement for the β chain in these processes. L cells were transfected with human α4 cDNA or α4 and human β1 cDNA. Unexpectedly, human α4 cDNA, when transfected alone, could induce de novo surface expression of host β7 and increased expression of host β1. Induction of mouse β7 and β1 surface expression was not due to de novo gene activation, but instead represented α4/β intracellular subunit association and transport to the cell surface. Transfection with human β1 prevented surface expression of mouse β integrins. Whereas human α4 and human β1 subunits associated very tightly in anti-α4 immunoprecipitates, human α4 and mouse β subunits were only partially associated. Furthermore, binding of human/mouse chimeric receptors to recombinant VCAM, a major ligand for α4β7 and α4β1, was very poor, whereas human α4/human β1 receptors bound strongly to VCAM. One α4 transfectant, which exhibited a tight human α4/mouse β1 association, could be induced, but only after PMA activation, to bind strongly to VCAM. These results indicate that α4 subunits have specific affinity for β7 and β1 integrins and require β subunits for surface expression as well as high affinity ligand binding activity. Our results indicate that a tight association between the α4 and β subunit appears to be critical for ligand binding, consistent with a direct as well as regulatory role for the β subunit in ligand binding. Furthermore, these studies demonstrate that expression of foreign recombinant proteins can alter host cell protein expression resulting in de novo surface protein expression. © 1996 Wiley-Liss, Inc.  相似文献   

17.
In this study, we examined the impact of matrix metalloproteinases (MMP) on epithelialization, granulation tissue development, wound contraction, and alpha-smooth muscle actin (ASMA) expression during cutaneous wound repair through systemic administration of the synthetic broad-spectrum MMP inhibitor GM 6001 (N-[(2R)-2-(hydroxamidocarbonylmethyl)-4-methylpentanoyl]-L-tryptophan methylamide). Four full-thickness excisional wounds (50 mm2) on the back of 22 young female Sprague-Dawley rats, 12 treated with GM 6001 100 mg/kg and 10 with vehicle, were allowed to heal by secondary intention. GM 6001-treated wounds were minimally resurfaced with neoepithelium, despite unaltered keratinocyte proliferation in wound edges, whereas control wounds were completely covered with 3-7 cell layers of parakeratinized epithelium on post-wounding day 7. Hydroxyproline concentration, a marker of collagen, and cell proliferation in granulation tissue did not differ significantly between GM 6001-treated and control groups. Impaired wound contraction (P < 0.01) was associated with a dramatic reduction of ASMA-positive myofibroblasts in granulation tissue of GM 6001 wounds. This was not due to GM6001 blocking transforming growth factor-beta1 (TGF-beta1)-induced myofibroblast differentiation since GM 6001 did not inhibit TGF-beta1-induced ASMA expression and force generation in cultured rat dermal fibroblasts. The profound impairment of skin repair by the nonselective MMP inhibitor GM 6001 suggests that keratinocyte resurfacing, wound contraction, and granulation tissue organization are highly MMP-dependent processes.  相似文献   

18.
Malignant cell transformation is generally accompanied by changes in their interactions with environing matrix proteins in a way to facilitate their migration and generate invasion. Our results show the binding of rat colon adenocarcinoma PROb cells to fibronectin strongly reduced when compared to normal rat intestine epithelial cells. This decrease was not due to the level of α(s)β1 integrins expressed at the surface of the cell line. However, β1- and α(s)-associated subunits appeared to be structurally altered as shown by immunoprecipitation followed by electrophoresis. Pulse chase experiments using 35S methionine evidenced differences in the biosynthesis of β1- and α (s) associated integrins: normal epithelial IEC18 cells required 16 h for maximal biosynthesis of the completely mature β1 subunit, while PROb cells did it within 4-6 h. Studies using endoglycosidases O, H, D, and N glycanase confirmed that the molecular weight alterations were due to abnormal glycosylation and suggested that α(s)β1 integrins of PROb cells could bear both mature complex and immature high mannose types while IEC18 cells borne only mature complex type oligosaccharidic chains. Treatment of both cell types with castanospermine, an inhibitor of N-glycosylation, reduced the differences observed in their adhesion to the fibronectin without significantly affecting β1 receptors expression at the cell surface. These results strongly suggest a role of the glycosylation of β1 receptors in the adhesion of rat colon adenocarcinoma PROb cells to fibronectin substrata. © 1996 Wiley-Liss, Inc.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号