首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Reactions of [Rh(COD)Cl]2 with the ligand RN(PX2)2 (1: R = C6H5; X = OC6H5) give mono- or disubstituted complexes of the type [Rh2(COD)Cl22−C6H5N(P(OC6H5)2)2}] or [RhCl{ν2−C6H5 N(P(OC6H5)2)2 }]2 depending on the reaction conditions. Reaction of 1 with [Rh(CO)2Cl]2 gives the symmetric binuclear complex, [Rh(CO)Cl{μ−C6H5N(P(OC6H5)2)2} 2, whereas the same reaction with 2 (R = CH3; X = OC6H5) leads to the formation of an asymmetric complex of the type [Rh(CO)(μ−CO)Cl{μ−CH3N(P(OC6H5)2)2}2 containing both terminal and bridging CO groups. Interestingly the reaction of 3 (R = C6H5, X = OC6H4Br−p with either [Rh(COD)Cl]2 or [Rh(CO)2Cl]2 leads only to the formation of the chlorine bridged binuclear complex, [RhCl{ν2−C6H5N(P(OC6H4Br−p)2)2}]2. The structural elucidation of the complexes was carried out by elemental analyses, IR and 31P NMR spectroscopic data.  相似文献   

2.
Rates of stepwise anation of cis-Cr(ox)2(H2O2) with SCN/N3, Cr(acac)2(H2O)2+ with SCN and Cr(atda)(H2O)2 with SCN have been investigated in weakly acidic aqueous solutions. Rate constants, kI and kII for the two steps in each system, are composite as kx = kx0+kxX[X] (x = I, II; X = SCN, N3). These rate constants have been evaluated also as the corresponding ΔH and ΔS values. The results obtained and the plausible Id mechanism seem to suggest Cr---OOC bond dissociation (hence a strongly negative ΔS) generating the transition state in each system with outer-sphere association forming the precursor complex in the X dependent paths.  相似文献   

3.
Square-pyramidal (Ph3X)bis(4,5-dichloro-1,2-benzosemiquinonediiminato)cobalt(III) complexes (X = As, Sb or P) have been synthesized. The kinetics of axial substitution for the triphenylantimony complex have been studied for 10 entering ligands (L*). The reaction is of reversible second-order in both directions for all complexes. Labile behavior is indicated by the rate constants in the range from 6.33 × 103 (for L* = Ph3P in MeOH) to 5.4 (L* = py in CH2Cl2) M−1 s−1. The kinetics is consistent with an Ia mechanism. The log of the second-order rate constant for axial substitution is a linear function of nucleophilic reactivity nPt°, which is due to the trans-labilizing effect of the entering ligand in the six-coordinate transition state.  相似文献   

4.
Photolysis of the allenylidene pentacarbonyl chromium complexes [(CO)5CrCCC(R1)R2] (R1=NMe2, NPh2; R2=NMe2, OMe, Ph) in THF in the presence of equimolar amounts of XR3 (XR3=various phosphanes, P(OMe)3, AsPh3, SbPh3) affords cis-allenylidene tetracarbonyl XR3 complexes, cis-[(CO)4(XR3)CrCCC(R1)R2]. When in the photolysis of [(CO)5CrCCC(NMe2)Ph], the phosphanes PR3 (R=C6H4F-p, C6H4Cl-p, OMe) are used in excess (three equivalents) two carbonyl ligands are displaced and the mer-tricarbonyl complexes mer-[(CO)3(PR3)2CrCCC(NMe2)Ph] are formed both PR3 ligands being mutually trans. The structure of the new complexes is established by IR, NMR, and UV-Vis spectroscopy, that of cis-[(CO)4(PPh3)CrCCC(NMe2)Ph] additionally by an X-ray structural analysis. As indicated by the spectroscopic data of the compounds, these complexes are best described as hybrids of allenylidene and zwitterionic alkynyl complexes with delocalization of the electron pair at nitrogen bonded to the Cγ atom of the allenylidene ligand towards the metal center. The relative contribution of the allenylidene and zwitterionic alkynyl resonance forms is influenced by XR3. Increasing the donor properties of XR3 favors the allenylidene resonance form.  相似文献   

5.
Reactions of RhCl(cod)(THP) (cod = 1,5-cyclooctadiene; THP = P(CH2OH)3) with PMePh2 or PCyPh2 (Cy = cyclohexyl) in acetone/MeOH solution under H2 surprisingly form the complexes cismer-Rh(H)2Cl(PRPh2)3 (R = Me or Cy); both complexes are characterized by crystallography (the first structures in which the hydride ligands of such dihydrido-chloro-trisphosphine complexes have been located), and by detailed 1H and 31P NMR spectroscopy. The key role of the THP in the observed chemistry is discussed.  相似文献   

6.
The reactions of [(H5C6)3P]2ReH6 with (CH3CN)3Cr(CO)3, (diglyme)Mo(CO)3 or (C3H7CN)3W(CO)3 led to the formation of [(H5C6)3P]2ReH6M(CO)3 (M = Cr, Mo, W) complexes. These have been characterized by IR and NMR spectroscopies, as well as elemental analyses. A single crystal X-ray diffraction study has also been carried out for the M = Cr complex as a K(18-crown-6)+ salt. The complex crystallizes as a THF monosolvate in the monoclinic space group P21/n with a = 22.323(6), B = 9.523(2), C = 27.502(5) Å, β = 104.98(2)0 and V = 5648 Å3 for Z = 4. The Re---Cr separation is 2.5745(12) Å, and the two phosphine ligands are oriented unsymmetrically. Although the hydride ligands were not found, the presence of three bridging hydrides and a dodecahedral coordination geometry about rhenium could be inferred. Low temperature 1H and 31P NMR spectroscopic studies did not reveal the low symmetry of the solid state structure.  相似文献   

7.
Kinetic studies of the addition of a wide range of tertiary phosphines and phosphites to the tropylium ring of the cation [Cr(CO)37-C7H7]+ (1) reveal the two-term raw, kobs = k1[PR3] + k−1. This is consistent with the reversible equilibrium process (i) which is also confirmed from IR and 1H NMR studies. In the case of the highly basic nucleophiles PBu3n and PEt2Ph, the rate is dominated by the k1 term and the equilibrium lies far to the right. The first-order rate constants k1, for addition to the tropylium ring decrease markedly down the series PBu3n>PEt2Ph>P(4-MeOC6H4)3>P(4-MeC6H4)3>P(C6H11 3>PPh2(4-MeC6H4)>PPh3>P(2-CNC2H4)3>P(OBun)3 (overall variation 104). This reactivity order parallels the decreasing electron availability at the phosphorus centres, as confirmed by the linear correlation between log k1 and the Tolman Σχ values for the nucleophiles. Excellent Hammett and Brønsted correlations are also observed for ring addition by a range of P(4-XC6H4)3 nucleophiles. The Brønsted slope, , of 0.7 conirms the major importance of basicity in determining nucleophilicity towards cation 1. Kinetic studies of the related additions of PBu3n to the cations [M(CO)37-C7H7]+ (M = Mo, W) reveal the rate law, Rate = k1[M][PBu3n, and show only a small dependence of k1 on the nature of metal (Cr>WMo; 2:1.1:1). These data, together with the associated activation parameters, support a mechanism involving direct addition (k1) of the phosphorus nucleophiles to the tropylium ring, and are inconsistent with initial rate-determining attack at the metal centre.  相似文献   

8.
A new synthetic process is reported for the preparation of two substituted metal carbonyls, (p-CH3OC6H4)2TeM(CO)5 (M = Mo, W). In the presence of (p-CH3OC6H4)2TeO as O atom transfer reagent in tetrahydrofuran solvent, a CO ligand is replaced by telluroether when M(CO)6 (M = Mo, W) is reacted with (p-CH3OC6H4)2TeO under very mild experimental conditions (r.t.). The products were characterized by elemental analysis, mass, IR and 1H NMR spectroscopies. The spectra suggest that the coordination geometry is distorted from a regular octahedral structure due to an asymmetrical bulky telluroether ligand on the metal atom. Kinetics of these reactions of M(CO)6 with (p-CH3OC6H4)2TeO show the reactions are first order in the concentration of M(CO)6 and of Te oxide. The rates of reaction decrease in the order W(CO)6>Mo(CO)6>Cr(CO)6, and the results obtained are discussed in term of a presumed mechanism.  相似文献   

9.
The rates of displacement of dimethyl sulfoxide from the cation [Pt(phen) (CH3) (Me2SO)]+ by a series of uncharged and negatively charged nucleophiles have been measured in a methanol/water (19:1 vol./vol.) mixture. The starting complex and the reaction products were characterized either as solids or in solution by their IR and 1H NMR spectra. The substitution reactions take place by way of a direct bimolecular attack of the ligand on the substrate. The sequence of reactivity observed is as expected on the basis of a nucleophilicity scale relevant for + 1 charged substrates ([Pt(en) (NH3)Cl]+ used as standard). The difference of reactivity between the first (t-BuNH2) and the last (SeCN) members of the series spans five orders of magnitude. The value measured for the nucleophilic discrimination (1.55) is the highest found so far for cationic substrates. This is a result of the easy transfer of some of the electron density brought in by the incoming ligand into the ancillary ligands. When the reaction is carried out in a series of protic and dipolar aprotic solvents, using chloride ion as nucleophile, the rate of formation of [Pt (phen) (CH3)Cl] is dominated by the extent of solvation of Cl, as measured by its values of the Gibbs molar energy of transfer ΔtG0. Conductivity measurements at 25°C in dichloromethane were fitted to the Fuoss equation and the values of the dissociation constants Kd for the ion pairs were calculated as follows: 2.27 × 10−5 M for Bu4NCl, 2.75 × 10−5 M for Bu4NSCN and 17.05 × 10−5 M for [Pt(phen) (CH3) (Me2SO)]PF6. The pseudo-first-order rate constants kobs for the reactions with Bu4NCl, Bu4NBr, Bu4NSCN and Bu4NI showed a curvilinear dependence on the concentration of the salt which levels off very soon (at concentrations higher than 0.005 M the kinetics are zero order in [Bu4NX]). On addition of the inert electrolyte Bu4NPF6 the rates slow down and the kinetics follow the rate law kobs = kKip[Bu4NX]/[Bu4NPF6] + Kip[Bu4NX]). These findings fit well with a reaction scheme which involves a pre-equilibrium Kip between ion pairs, followed by unimolecular substitution within the contact ion pair [Pt(phen) (CH3) (Me2SO)X]ip. Values of the equilibrium constants Kip for ion-pair exchange and of the internal substitution rates k were derived. The latter showed that the discrimination in reactivity between Cl, Br, SCN and I is greatly reduced with respect to aqueous solutions. The reason behind this may be desolvation of the ions coupled to the fact that a contact ion pair is already at a certain distance along the reaction coordinate in the direction of the transition state. Applications of the special salt effect and of ion pairing to synthesis are discussed.  相似文献   

10.
A series of cuboidal iron-sulfur clusters [Fe4S3(NO)4(PR3)3]0,1+ (R = Et, Pri, Cy) were synthesized by two routes: reductive desulfurization of [Fe4S4(NO)4] by tertiary phosphines, and substitution of triphenylphosphine in [Fe44S3(NO)4(PPh3)3] by a more basic phosphine. The structures of 3[Fe4S3(NO)4(PEt3)3] · 0.5Et2O, [Fe4S3(NO)4(PEt3)3] [Fe4S3(NO)7] and partially substituted [Fe4S3(NO)4(PPh3)2 (PPri3)] have been determined by X-ray diffraction in order to define the cuboidal Fe4S3 core, previously known only in Roussin's black anion and its reduced form, [Fe4S3(NO)77]1−,2−, and as a part of the iron-molybdenum cofactor of nitrogenase.  相似文献   

11.
Kinetic results are reported for intramolecular PPh3 substitution reactions of Mo(CO)21-L)(PPh3)2(SO2) to form Mo(CO)22-L)(PPh3)(SO2) (L = DMPE = (Me)2PC2H4P(Me)2 and dppe=Ph2PC2H4PPh2) in THF solvent, and for intermolecular SO2 substitutions in Mo(CO)32-L)(η2-SO2) (L = 2,2′-bipyridine, dppe) with phosphorus ligands in CH2Cl2 solvent. Activation parameters for intramolecular PPh3 substitution reactions: ΔH values are 12.3 kcal/mol for dmpe and 16.7 kcal/mol for dppe; ΔS values are −30.3 cal/mol K for dmpe and −16.4 cal/mol K for dppe. These results are consistent with an intramolecular associative mechanism. Substitutions of SO2 in MO(CO)32-L)(η2-SO2) complexes proceed by both dissociative and associative mechanisms. The facile associative pathways for the reactions are discussed in terms of the ability of SO2 to accept a pair of electrons from the metal, with its bonding transformations of η2-SO2 to η1-pyramidal SO2, maintaining a stable 18-e count for the complex in its reaction transition state. The structure of Mo(CO)2(dmpe)(PPh3)(SO2) was determined crystallographically: P21/c, A=9.311(1), B = 16.344(2), C = 18.830(2) Å, ß=91.04(1)°, V=2865.1(7) Å3, Z=4, R(F)=3.49%.  相似文献   

12.
The labile iridium(I) precursor trans-[IrCl(C8H14)(PiPr3)2] (2), prepared in situ from [IrCl(C8H14)2]2 (1) and PiPr3, reacted with equimolar amounts of 1,4-C6H4(CCSiMe3)2 (3) at 60 °C to give the mononuclear vinylidene complex trans-[IrCl(CC(SiMe3)C6H4CCSiMe3)(PiPr3)2] (4). From 2 and 3 in the molar ratio of 2:1, the dinuclear compound trans,trans-[(PiPr3)2ClIr(CC(SiMe3)C6H4C(SiMe3)C)IrCl(PiPr3)2] (5) was obtained. Reaction of 4 with [RhCl(PiPr3)2]2 (6) at room temperature afforded the heterodinuclear alkyne(vinylidene) complex trans,trans-[(PiPr3)2ClIr(CC(SiMe3)C6H4CCSiMe3)RhCl(PiPr3)2] (7), which on heating at 45 °C was converted to the bis(vinylidene) isomer trans,trans-[(PiPr3)2ClIr(CC(SiMe3)C6H4C(SiMe3)C)RhCl(PiPr3)2] (8).  相似文献   

13.
Complexes of the type (R-bpy)2RuCl2 (R: H, Me, tert-but) were synthesised by microwave-activated reactions of [Ru(cod)Cl2]n with substituted 2,2′-bipyridines in dimethylformamide as the solvent. The complexes were isolated in high yields and high purity from the reaction mixture. Microwave-assisted or thermal reaction of the (R-bpy)2RuCl2 solutions with substituted bibenzimidazoles, 1,10 phenanthroline or bipyrimidine in dmf/water mixtures resulted in the formation of mixed ligand complexes of the type [(R-bpy)2Ru(L-L)]Cl2. The complexes were characterised by NMR spectroscopy and MS. Furthermore, their photochemical and electrochemical properties were investigated and the solid state structure of (4-tert-butyl-bpy)2RuCl2 (3), [(4-tert-butyl-bpy)2Ru(tetramethylbibenzimidazole)](PF6)2 (4), and [(4-tert-butyl-bpy)2Ru(bipyrimidine] (PF6)2 (5) was determined by X-ray diffraction analysis of single crystals.  相似文献   

14.
The first η2-olefinic monocarbon metallacarbone closo-2-(Ph3P)-1-N,2-[μ-(η2-CH2CH=Ch2)]-1-N-(σ-CH2CH=CH2)-2,1- RhCB10H10 has been prepared by the reaction of the dimeric anion {[Ph3PRhB10H10CNH2]2-μ-H}[PPN]+ with allyl bromide and characterized by a combination of spectroscopic methods and a single-crystal X-ray diffraction study. The variable temperature 1H and 13C NMR studies revealed the fluxional behavior of the η2-olefinic complex in CD2Cl2 solution which is associated with the allyl side-chain exchange process.  相似文献   

15.
Reaction of tetrathiafulvalene carboxylic acid (TTFCO2H) with paddlewheel dirhodium complex Rh2(ButCO2)4 yielded TTFCO2-bridged complexes Rh2(ButCO2)3(TTFCO2) (1) and cis- and trans-Rh2(ButCO2)2(TTFCO2)2 (cis- and trans-2). Their triethylamine adducts [1(NEt3)2] and cis-[2(NEt3)2] were purified and isolated with chromatographic separation, and characterized with single crystal X-ray analysis. Trans-[2(NEt3)2] is not completely separated from a mixture of cis- and trans-[2(NEt3)2], but its single crystals were obtained from a solution of the mixture. A three-step quasi-reversible oxidation process was observed for 1 in MeCN. The first two steps correspond to the oxidation of the TTFCO2 moiety and the last one is the oxidation of the Rh2 core. The oxidation of cis-2 is observed as a two-step process with very similar E1/2 values to those of the first two processes for 1. Both 1+ and cis-22+ in MeCN at room temperature show isotropic ESR spectra with a g value of 2.008 and aH = 0.135 mT for two equivalent H atoms and aH = 0.068 mT for one H atom. The redox and ESR data of cis-2 suggest that the intramolecular interaction between the TTF moieties is very small.  相似文献   

16.
The crystal structures of the four-coordinate trans-[Rh(Cl)(CO)(SbPh3)2] (1) and the five-coordinate trans-[Rh(Cl)(CO)(SbPh3)3] (2) are reported, as well as the unexpected oxidative addition product, trans-[Rh(I)2(CH3)(CO)(SbPh3)2] (3), obtained from the reaction of 2 with CH3I. The formation constants of the five-coordinate complex were determined in dichloromethane, benzene, diethyl ether, acetone and ethyl acetate as 163±8, 363±10, 744±34, 1043±95 and 1261±96 M−1, respectively. While coordinating solvents facilitate the formation of the five-coordinate complex, the four-coordinate complex could be obtained from diethyl ether due to the favorable low crystallization energy. The tendency of stibine ligands to form five-coordinate rhodium(I) complexes is attributed mainly to electron deficient metal centers in these systems, with smaller contributions by the steric effects. The average effective cone angle for the SbPh3 ligand in the three crystallographic studies was determined as 139° with individual values ranging from 133 to 145°.  相似文献   

17.
The solution of [RhCl(PPh3)3] in acidic 1-ethyl-3-methylimidazolium chloroaluminate(III) ionic liquid (AlCl3 molar fraction, xAlCl3=0.67) was investigated by 1H and 31P{1H} NMR. One triphenyl phosphine is lost from the complex and is protonated in the acidic media, and cis-[Rh(PPh3)2ClX], (2), where X is probably [AlCl4], is formed. On, standing, 2 is converted to trans-[Rh(H)(PPh3)2X], (3). The reaction of 2 and H2 also produces trans-[Rh(H)(PPh3)2X], (3). 1H and 31P{1H} NMR support the suggestion that a weak ligand such as [AlCl4], present in solution may interact with the metal centre. When [RhCl(PPh3)3] is dissolved in CH2Cl2/AlCl3/HCl for comparison, two exchanging isomers of what is probably [RhH{(μ-Cl)2AlCl2}{(μ-Cl)AlCl3}(PPh3)2], (6) and (7), are formed.  相似文献   

18.
The reaction between [Rh(H2O)6](ClO4)3 and the monoanion Hdopn (H2dopn=bis(diacetylmonoxime-imino)propane 1,3=3,9-dimethyl-4,8-diazaundeca-3,8-diene-2,10-dione dioxime) afforded a new dimeric rhodium(II) compound of formula [Rh(Hdopn)(H2O)]2(ClO4)2 · H2O (1). Treatment of methanolic solution of 1 with NaX (X=Cl, Br, I) results in the replacement of water with halides in 1, leading to the formation of [Rh(Hdopn)X]2 rhodium(II) dimers. The X-ray crystal structure of [Rh(Hdopn)Cl]2 · 0.5H2O (2) was determined showing a [Rh(II)-Rh(II)] core. Upon the reaction of 1 with NaI carried out in air, [Rh(Hdopn)(I)2] (3) was isolated and characterized by a single-crystal X-ray diffraction analysis.  相似文献   

19.
The kinetics of the reactions between anhydrous HCl and trans-[MoL(CNPh)(Ph2PCH2CH2PPh2)2] (L=CO, N2 or H2) have been studied in thf at 25.0 °C. When L=CO, the product is [MoH(CO)(CNPh)(Ph2PCH2CH2PPh2)2]+, and when L=H2 or N2 the product is trans-[MoCl(CNHPh)(Ph2PCH2CH2PPh2)2]. Using stopped-flow spectrophotometry reveals that the protonation chemistry of trans-[MoL(CNPh)(Ph2PCH2CH2PPh2)2] is complicated. It is proposed that in all cases protonation occurs initially at the nitrogen atom of the isonitrile ligand to form trans-[MoL(CNHPh)(Ph2PCH2CH2PPh2)2]+. Only when L=N2 is this single protonation sufficient to labilise L to dissociation, and subsequent binding of Cl gives trans-[MoCl(CNHPh)(Ph2PCH2CH2PPh2)2]. At high concentrations of HCl a second protonation occurs which inhibits the substitution. It is proposed that this second proton binds to the dinitrogen ligand. When L=CO or H2, a second protonation is also observed but in these cases the second protonation is proposed to occur at the carbon atom of the aminocarbyne ligand, generating trans-[MoL(CHNHPh)(Ph2PCH2CH2PPh2)2]2+. Addition of the second proton labilises the trans-H2 to dissociation, and subsequent rapid binding of Cl and dissociation of a proton yields the product trans-[MoCl(CNHPh)(Ph2PCH2CH2PPh2)2]. Dissociation of L=CO does not occur from trans-[Mo(CO)(CHNHPh)(Ph2PCH2CH2PPh2)2]2+, but rather migration of the proton from carbon to molybdenum, and dissociation of the other proton produces [MoH(CO)(CNPh)(Ph2PCH2CH2PPh2)2]+.  相似文献   

20.
Reaction of Zn(AcO)2 · 2H2O with 6-methyl-2-pyridinecarboxylic acid (L) yielded a new compound [Zn(MeC5H3NCOO)2(H2O)] · H2O. This complex was characterised by elemental analyses, conductivity measurements, infrared, 1H and 13C{1H} NMR spectroscopies and single-crystal X-ray diffraction. The crystal structure consists of discrete molecules involving a pentacoordinated Zn atom with a geometry intermediate between a trigonal bipyramid and a square pyramid and with the two Npy atoms occupying the apical sites. Treatment of the complex [Zn(MeC5H3NCOO)2(H2O)] · H2O with 2,2-bipyridine (bpy) produced [Zn(MeC5H3NCOO)2(bpy)]. The metallic atom in this complex displays a distorted octahedral geometry and is coordinated to two ligands (L) via the pyridine nitrogen and the carbonyl oxygen atoms and to one 2,2-bypyridine (bpy).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号