共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
In Bacillus subtilis, many membrane proteins localize to the sporulation septum, where they play key roles in spore morphogenesis and cell-specific gene expression, but the mechanism for septal targeting is not well understood. SpoIIQ, a forespore-expressed protein, is involved in engulfment and forespore-specific gene expression. We find that SpoIIQ dynamically localizes to the sporulation septum, tracks the engulfing mother cell membrane, assembles into helical arcs around the forespore and is finally degraded. Retention of SpoIIQ in the septum requires one or more mother cell-expressed proteins. We also observed that any forespore-expressed membrane protein initially localizes to the septum and later spreads throughout the forespore membrane, suggesting that membrane protein insertion occurs at the forespore septal region. This possibility provides an attractive mechanism for how activation of mother cell-specific gene expression is restricted to adjacent sister cells, since direct insertion of the signaling protein SpoIIR into the septum would spatially restrict its activity. In keeping with this hypothesis, we find that SpoIIR localizes to the septum and is transiently expressed. 相似文献
6.
7.
A gene required for nutritional repression of the Bacillus subtilis dipeptide permease operon 总被引:2,自引:8,他引:2
Frank J. Slack† Pascale Serror Elizabeth Joyce Abraham L. Sonenshein 《Molecular microbiology》1995,15(4):689-702
An insertion mutation was isolated that resulted in derepressed expression of the Bacillus subtilis dipeptide transport operon (dpp) during the exponential growth phase in rich medium. DNA flanking the site of insertion was found to encode an operon (codVWXY) of four potential open reading frames (ORFs). The deduced product of the codV ORF is similar to members of the λ Int family; CodW and CodX are homologous to HsIV and HsIU, two putative heat-shock proteins from Escherichia coli, and to LapC and LapA, two gene products of unknown function from Pasteurella haemolytica. CodX also shares homology with a family of ATPases, including CIpX, a regulatory subunit of the E. coli ClpP protease. CodY does not have any homologues in the databases. The insertion mutation and all previously isolated spontaneous cod mutations were found to map In codY. In-frame deletion mutations in each of the other cod genes revealed that only codY is required for repression of dpp in nutrient-rich medium. The cody mutations partially relieved amino acid repression of the histidine utilization (hut) operon but had no effect on regulation of certain other early stationary phase-induced genes, such as spoVG and gsiA. 相似文献
8.
9.
10.
11.
The chemotaxis machinery of Bacillus subtilis is similar to that of the well characterized system of Escherichia coli. However, B. subtilis contains several chemotaxis genes not found in the E. coli genome, such as cheC and cheD, indicating that the B. subtilis chemotactic system is more complex. In B. subtilis, CheD is required for chemotaxis; the cheD mutant displays a tumbly phenotype, has abnormally methylated chemoreceptors, and responds poorly to most chemical stimuli. Homologs of B. subtilis CheD have been found in chemotaxis-like operons of a large number of bacteria and archaea, suggesting that CheD plays an important role in chemotactic sensory transduction for many organisms. However, the molecular function of CheD has remained unknown. In this study, we show that CheD catalyzes amide hydrolysis of specific glutaminyl side chains of the B. subtilis chemoreceptor McpA. In addition, we present evidence that CheD deamidates other B. subtilis chemoreceptors including McpB and McpC. Previously, deamidation of B. subtilis receptors was thought to be catalyzed by the CheB methylesterase, as is the case for E. coli receptors. Because cheD mutant cells do not respond to most chemoattractants, we conclude that deamidation by CheD is required for B. subtilis chemoreceptors to effectively transduce signals to the CheA kinase. 相似文献
12.
Cloning of the Bacillus subtilis sulfanilamide resistance gene in Bacillus subtilis 总被引:1,自引:2,他引:1
下载免费PDF全文

A recombinant plasmid was constructed by ligation of chromosomal DNA from a sulfanilamide-resistant strain of Bacillus subtilis to the plasmid vector pUB110 which specifies neomycin resistance. Recombinant molecules generated in vitro were introduced into a B. subtilis recipient strain which carried the recE4 mutation, and selection was for neomycin-sulfanilamide-resistant transformants. A single colony was isolated containing the recombinant plasmid pKO101. This 6.3-megadalton plasmid simultaneously conferred resistance to neomycin and sulfanilamide when transferred into sensitive Rec+ or Rec- cells by either transduction or transformation. 相似文献
13.
Identification of a novel gene of pyrimidine nucleotide biosynthesis, pyrDII, that is required for dihydroorotate dehydrogenase activity in Bacillus subtilis.
下载免费PDF全文

An in-frame deletion in the coding region of a gene of previously unidentified function (which is called orf2 and which we propose to rename pyrDII) in the Bacillus subtilis pyr operon led to pyrimidine bradytrophy, markedly reduced dihydroorotate dehydrogenase activity, and derepressed levels of other enzymes of pyrimidine biosynthesis. The deletion mutation was not corrected by a plasmid encoding pyrDI, the previously identified gene encoding dihydroorotate dehydrogenase, but was complemented by a plasmid encoding pyrDII. We propose that pyrDII encodes a protein subunit of dihydroorotate dehydrogenase that catalyzes electron transfer from the pyrDI-encoded subunit to components of the electron transport chain. 相似文献
14.
Identification of a soluble diacylglycerol kinase required for lipoteichoic acid production in Bacillus subtilis 总被引:1,自引:0,他引:1
Jerga A Lu YJ Schujman GE de Mendoza D Rock CO 《The Journal of biological chemistry》2007,282(30):21738-21745
Diacylglycerol kinases (DagKs) are key enzymes in lipid metabolism that function to reintroduce diacylglycerol formed from the hydrolysis of phospholipids into the biosynthetic pathway. Bacillus subtilis is a prototypical Gram-positive bacterium with a lipoteichoic acid structure containing repeating units of sn-glycerol-1-P groups derived from phosphatidylglycerol head groups. The B. subtilis homolog of the prokaryotic DagK gene family (dgkA; Pfam01219) was not a DagK but rather was an undecaprenol kinase. The three members of the soluble DagK protein family (Pfam00781) in B. subtilis were tested by complementation of an E. coli dgkA mutant, and only the essential yerQ gene possessed DagK activity. This gene was dubbed dgkB, and the soluble protein product was purified, and its DagK activity was verified in vitro. Conditional inactivation of dgkB led to the accumulation of diacylglycerol and the cessation of lipoteichoic acid formation in B. subtilis. This study identifies a soluble protein encoded by the dgkB (yerQ) gene as an essential kinase in the diacylglycerol cycle that drives lipoteichoic acid production. 相似文献
15.
The last gene of the fla/che operon in Bacillus subtilis, ylxL, is required for maximal sigmaD function
下载免费PDF全文

Werhane H Lopez P Mendel M Zimmer M Ordal GW Márquez-Magaña LM 《Journal of bacteriology》2004,186(12):4025-4029
ylxL was found to be the last gene of the fla/che operon in Bacillus subtilis and is cotranscribed with the gene for the flagellum-specific alternate sigma factor, sigma(D). The ylxL gene was disrupted by insertional mutagenesis, and the resultant mutant strain was found to be compromised for sigma(D)-dependent functions. 相似文献
16.
17.
18.
The nasB operon and nasA gene are required for nitrate/nitrite assimilation in Bacillus subtilis.
下载免费PDF全文

K Ogawa E Akagawa K Yamane Z W Sun M LaCelle P Zuber M M Nakano 《Journal of bacteriology》1995,177(5):1409-1413
Bacillus subtilis can use either nitrate or nitrite as a sole source of nitrogen. The isolation of the nasABCDEF genes of B. subtilis, which are required for nitrate/nitrite assimilation, is reported. The probable gene products include subunits of nitrate/nitrite reductases and an enzyme involved in the synthesis of siroheme, a cofactor for nitrite reductase. 相似文献
19.
Requirement for the cell division protein DivIB in polar cell division and engulfment during sporulation in Bacillus subtilis
下载免费PDF全文

During spore formation in Bacillus subtilis, cell division occurs at the cell pole and is believed to require essentially the same division machinery as vegetative division. Intriguingly, although the cell division protein DivIB is not required for vegetative division at low temperatures, it is essential for efficient sporulation under these conditions. We show here that at low temperatures in the absence of DivIB, formation of the polar septum during sporulation is delayed and less efficient. Furthermore, the polar septa that are complete are abnormally thick, containing more peptidoglycan than a normal polar septum. These results show that DivIB is specifically required for the efficient and correct formation of a polar septum. This suggests that DivIB is required for the modification of sporulation septal peptidoglycan, raising the possibility that DivIB either regulates hydrolysis of polar septal peptidoglycan or is a hydrolase itself. We also show that, despite the significant number of completed polar septa that form in this mutant, it is unable to undergo engulfment. Instead, hydrolysis of the peptidoglycan within the polar septum, which occurs during the early stages of engulfment, is incomplete, producing a similar phenotype to that of mutants defective in the production of sporulation-specific septal peptidoglycan hydrolases. We propose a role for DivIB in sporulation-specific peptidoglycan remodelling or its regulation during polar septation and engulfment. 相似文献