首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Accumulation and toxicity of chloride in bean plants   总被引:1,自引:0,他引:1  
Summary Chloride tends to accumulate in tissues, particularly leaves, of some plants to toxic levels. Chloride accumulation in plants is closely related to Cl concentration in the external solution and the genotype.An experiment was conducted to study the rate of Cl accumulation in bean plants under greenhouse conditions and to determine the toxic levels of this anion in the leaves of red kidney beans. Plants were grown in large tanks containing a basal nutrient solution, salinized with either NaCl or Na2SO4 to produce 80 meq/l solutions of these two salts. Control plants were grown in nonsalinized nutrient solutiosn. Salt-treated plants were harvested at different time intervals and analyzed. Chemical analysis of leaves showed that accumulation of chloride was different from that of other ions derived from salines. The leaf-Cl accumulation was shown to be dependent on Cl concentration of the culture solution as well as the duration of the experiment. The data also revealed two processes of rapid Cl accumulation in the leaves of bean plants when a relatively high concentration of this ion is present in the external solution. These are: (a) a rapid Cl accumulation occurring between transplanting and the first harvest; (b) a second rapid Cl accumulation occurring after the fourth harvest to the end of the experiment leading to a toxic concentration of Cl in the leaves. The second rapid absorption period was absent for the other ions derived from salines.  相似文献   

2.
The aim of the study was to evaluate the effect of hibernation on electrophysiological parameters of isolated frog skin under control incubation (Ringer solution) and after inhibition of Na+ and CI- transepithelial transport by application of amiloride and bumetanide. The transepithelial electrical potential difference (PD in mV) was measured before and after mechanical stimulation of isolated frog skin. The tissues were mounted in a modified Ussing chamber. The results revealed a reduced PD of frog skin during hibernation. In February, as compared with November, PD of frog skin incubated in Ringer solution decreased by about 50%. Hibernation also affected hyperpolarization (dPD) of frog skin after mechanical stimulation. In November and December, dPD was about 50% and 30% lower, respectively, compared with the subsequent two months of the experiment. The incubation of frog skin with amiloride, a sodium ion channel blocker, resulted in reduced values of all measured electrophysiological parameters irrespective of the phase of hibernation. After application of chloride ion transport inhibitor (bumetanide), the PD in November and December decreased compared with the control incubation by about 80% and 75%, while in January and February by about 40% and 25%, respectively. In January and February dPD increased by four times and three times as compared with November and December. Hibernation reduces net ion flow in isolated frog skin. During the initial period of hibernation the sensitivity of the skin to mechanical stimulation also decreases. Towards the end of hibernation, on the other hand, excitation of mechanosensitive ion channels takes place.  相似文献   

3.
Effects of sodium chloride on tobacco plants   总被引:7,自引:1,他引:6  
Abstract The effect of salinity on the growth and ion concentrations in a number of tobacco cultivars is described. Sodium chloride, at a concentration of 200 mol m?3, hardly affected the fresh weight, but significantly reduced the dry weight. The difference in the response of fresh and dry weights to salt was due to a change in succulence (water per unit leaf area); the latter increased with increasing leaf Na+ and Cl? concentration. Under saline conditions, increasing the external Na+: Ca? ratio by decreasing the Ca2+ concentration increased the accumulation of Na+ and Cl? into the leaf tissue.  相似文献   

4.
Determinations were made of the influence of NaCl concentration, cell density, and flow velocity on the transport of Pseudomonas sp. strain KL2 through columns of aquifer sand under saturated conditions. A pulse-type boundary condition was used. The experiments were conducted by using 0.3-m-long Plexiglas columns with an internal diameter of 0.05 m. When a 1-h pulse of a 0.01 M NaCl solution containing 10(8) cells per ml was added at a flow rate of 10(-4) m s-1, the bacterial density in the effluent never exceeded 2.2% of the density of cells added, and only 1.5% of the bacteria passed through the aquifer material. In contrast, when the bacteria were applied in distilled water, the relative cell density in the effluent approached 100%, and 60% of the bacteria were transported through the aquifer solids. Under these conditions, the breakthrough of Pseudomonas sp. strain KL2 was slower than chloride. When the flow rate was 2.0 x 10(-4) m s-1, the cell density in the effluent reached 7.3% of that added in 0.01 M NaCl solution, but only 3.9% of the bacteria were transported through the aquifer particles. On the other hand, the density in the effluent approached 100% of that added in deionized water, and 77% of the added bacteria were recovered. When the density of added cells was 10(9) cells per ml at a flow rate of 10(-4) m s-1, the densities in the effluent reached 70 and 100% of those added in salt solution and deionized water, respectively, and 44 and 57% of the bacteria were transported through the aquifer solids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Determinations were made of the influence of NaCl concentration, cell density, and flow velocity on the transport of Pseudomonas sp. strain KL2 through columns of aquifer sand under saturated conditions. A pulse-type boundary condition was used. The experiments were conducted by using 0.3-m-long Plexiglas columns with an internal diameter of 0.05 m. When a 1-h pulse of a 0.01 M NaCl solution containing 10(8) cells per ml was added at a flow rate of 10(-4) m s-1, the bacterial density in the effluent never exceeded 2.2% of the density of cells added, and only 1.5% of the bacteria passed through the aquifer material. In contrast, when the bacteria were applied in distilled water, the relative cell density in the effluent approached 100%, and 60% of the bacteria were transported through the aquifer solids. Under these conditions, the breakthrough of Pseudomonas sp. strain KL2 was slower than chloride. When the flow rate was 2.0 x 10(-4) m s-1, the cell density in the effluent reached 7.3% of that added in 0.01 M NaCl solution, but only 3.9% of the bacteria were transported through the aquifer particles. On the other hand, the density in the effluent approached 100% of that added in deionized water, and 77% of the added bacteria were recovered. When the density of added cells was 10(9) cells per ml at a flow rate of 10(-4) m s-1, the densities in the effluent reached 70 and 100% of those added in salt solution and deionized water, respectively, and 44 and 57% of the bacteria were transported through the aquifer solids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Kuiper PJ 《Plant physiology》1968,43(9):1372-1374
Ion transport properties of grape root lipids were measured as liquid-membrane permeability. Phosphatidylcholine exchanged chloride very slowly against carbonate and bicarbonate but more rapidly against nitrate, phosphate, and sulfate. Exchange of chloride against nitrate was rather low for the phosphatidylcholine and phosphatidylethanolamine lipid fractions; monogalactose diglyceride was by far the most effective chloride transporter studied. Comparison between the lipid composition of the roots of the 5 grape rootstocks and the chloride transport capacity of the specific membranes strongly suggests that, indeed, the chloride transport capacity of the lipids present in the membranes of the root cells accounts for the observed differences in chloride transport to the leaves. Whereas monogalactose diglyceride had a high chloride transport capacity, compared with phosphatidylcholine, the reverse was true for exchange of sodium against potassium. Thus, phosphatidylcholine has more the properties of a cation exchanger, and monogalactose diglyceride those of an anion transporter.  相似文献   

7.
High-affinity potassium and sodium transport systems in plants   总被引:20,自引:0,他引:20  
All living cells have an absolute requirement for K+, which must be taken up from the external medium. In contrast to marine organisms, which live in a medium with an inexhaustible supply of K+, terrestrial life evolved in oligotrophic environments where the low supply of K+ limited the growth of colonizing plants. In these limiting conditions Na+ could substitute for K+ in some cellular functions, but in others it is toxic. In the vacuole, Na+ is not toxic and can undertake osmotic functions, reducing the total K+ requirements and improving growth when the lack of K+ is a limiting factor. Because of these physiological requirements, the terrestrial life of plants depends on high-affinity K+ uptake systems and benefits from high-affinity Na+ uptake systems. In plants, both systems have received extensive attention during recent years and a clear insight of their functions is emerging. Some plant HAK transporters mediate high-affinity K+ uptake in yeast, mimicking K+ uptake in roots, while other members of the same family may be K+ transporters in the tonoplast. In parallel with the HAK transporters, some HKT transporters mediate high-affinity Na+ uptake without cotransporting K+. HKT transporters have two functions: (i) to take up Na+ from the soil solution to reduce K+ requirements when K+ is a limiting factor, and (ii) to reduce Na+ accumulation in leaves by both removing Na+ from the xylem sap and loading Na+ into the phloem sap.  相似文献   

8.
Bean plants (Phaseolus vulgaris) were very sensitive to moderate concentrations of NaCl, showing a dramatic decrease in their K+ content in the presence of this salt. Increasing the KCl content of the nutrient medium released the inhibitory effect of NaCl by increasing the K+ content of the plants. Likewise moderate concentrations of KCl were toxic for bean plants because they produced a large K+ loading. NaCl partially released this toxicity by inhibiting the K+ loading. When compared to the moderately salt tolerant sunflower plants (Helianthus annuus), bean plants showed a lower capacity to discriminate between K+ and Na+, at high Na+ levels, and an uncontrolled K+ uptake at moderate concentrations of K+. It is concluded that this low capacity of discrimination of the K+ uptake system of bean plants in presence of Na+ can account for by the NaCl sensitivity of bean plants.  相似文献   

9.
Energetics of coupled active transport of sodium and chloride   总被引:4,自引:4,他引:0  
A Clark electrode was used to measure oxygen consumption by the gall bladder, in which there is a direct and one-to-one linkage between active Na and active Cl transport. O2 uptake was reversibly depressed when Cl in the mucosal bathing solution was replaced by a poorly transported anion, such as sulfate. This effect of Cl was abolished by ouabain or in Na-free solutions. When the anion was chloride, treatment with ouabain or replacement of Na by a poorly transported cation depressed QO2 more than did replacement of Cl. However, ouabain or removal of Na also depressed QO2 in Na2SO4 solutions, in which salt transport is minimal. It is concluded that oxygen uptake in the gall bladder consists of three fractions: 9% requires both Na and Cl, is inhibited by ouabain, and is linked to the NaCl pump; 36% requires Na but not Cl, is inhibited by ouabain, and possibly is linked to the cellular K uptake mechanism; and 55% represents basal uptake. If the extra oxygen uptake observed during transport supplies all the energy for transport, then 25 Na + 25 Cl ions are transported actively per O2 consumed; i.e., twice as many ions as in epithelia which transport only Na actively. This extra uptake is more than sufficient to supply the energy for overcoming internal membrane resistance under the experimental conditions used.  相似文献   

10.
Effect of arsenic on some physiological parameters in bean plants   总被引:6,自引:0,他引:6  
The objective of the study was to investigate the effect of different arsenic concentrations on some physiological parameters of bean (Phaseolus vulgaris L.) cultivars Plovdiv 10 and Prelom in the early growth phases. Seedlings, grown in sand with Hoagland-Arnon nutrient solution in a climatic box, were treated with 0, 2, 5 mg(As) dm–3 as Na3AsO4 (pH 5.5). After 5 d of As treatment, the changes in leaf gas-exchange, water potential, chlorophyll and protein contents, peroxidase activity and lipid peroxidation in roots were recorded. Physiological analysis showed a minor negative effect of arsenic at concentration 2 mg(As) dm–3, but at the higher dosage of 5 mg(As) dm–3 growth, leaf gas-exchange, water potential, protein content and biomass accumulation were reduced in both cultivars. The peroxidase activity and lipid peroxidation increased considerably at 5 mg(As) dm–3, which is a typical reaction of the plants to a presence of oxidative stress.  相似文献   

11.
12.
This protocol describes a method for high-frequency recovery of transgenic soybean, bean and cotton plants, by combining resistance to the herbicide imazapyr as a selectable marker, multiple shoot induction from embryonic axes of mature seeds and biolistics techniques. This protocol involves the following stages: plasmid design, preparation of soybean, common bean and cotton apical meristems for bombardment, microparticle-coated DNA bombardment of apical meristems and in vitro culture and selection of transgenic plants. The average frequencies (the total number of fertile transgenic plants divided by the total number of bombarded embryonic axes) of producing germline transgenic soybean and bean and cotton plants using this protocol are 9, 2.7 and 0.55%, respectively. This protocol is suitable for studies of gene function as well as the production of transgenic cultivars carrying different traits for breeding programs. This protocol can be completed in 7-10 months.  相似文献   

13.
14.
Radial transport of sodium and chloride into tomato root xylem   总被引:1,自引:0,他引:1       下载免费PDF全文
Transport of Na and Cl across exuding tomato (Lycopersicon esculentum Mill.) roots was determined as a function of ambient NaCl concentrations in the ranges of both systems 1 and 2. Kinetics of radial transport under steady-state conditions and the effect of dinitrophenol indicate that Na and Cl were transported by two different mechanisms. Sodium was neither accumulated against a concentration gradient nor directly inhibited by dinitrophenol from diffusing into the xylem. Chloride was accumulated in the xylem and its transport was nearly completely blocked by dinitrophenol. A comparison of the radial transport isotherms for Na and Cl for intact and decapitated plants indicates that the separate mechanisms were not unique to excised roots. It is concluded that radial Na transport in tomatoes was facilitated by a passive convective type process with the rate-limiting barrier located at the outer cortical plasmalemma. Chloride transport in both concentration ranges involved, either directly or indirectly, a metabolic mechanism. Absorption and retention of Na in the root tissue was negligible. Chloride was accumulated by the tissue but was unaffected by dinitrophenol.  相似文献   

15.
16.
17.
Sodium chloride tolerant cell lines of finger millet were isolated from embryogenic cultures growing on MS medium supplemented with picloram (2 mg I-1), kinetin (0.1 mg l-1) and sodium chloride (1 %) at the end of 6 passages. The sodium chloride tolerant cell lines showed better growth in comparison with control at all concentrations of sodium chloride tested, with optimum growth at 0.25 % NaCl. When the tolerant lines were grown for 3 passages in absence of NaCl, the growth was lower than that of the tolerant lines tested immediately at the end of 6 passages of selection. NaCl tolerant calli had more Na1 in comparison with control and they regenerated plants in presence of 1 % NaCl, while the control lines failed to differentiate. When screened in a hydroponics system with 1 % NaCl, the tolerant plants grew to maturity while the control plants failed to grow.  相似文献   

18.
Effect of glyphosate on auxin transport in corn and cotton tissues   总被引:1,自引:1,他引:0       下载免费PDF全文
Baur JR 《Plant physiology》1979,63(5):882-886
Basipetal auxin transport in 6-day-old dark-grown corn coleoptiles was severely inhibited by increasing levels of glyphosate applied during the transport period.  相似文献   

19.
We examined the interaction of heptanol and hydrostatic pressure on Na+ and Cl- transport in isolated toad skin. In the presence of Cl-, heptanol decreased short-circuit current (Isc) and total transepithelial resistance (Rt). However, in the absence of Cl- in the mucosal bath, heptanol increased Rt, although it retained the same inhibitory effect on Isc. When transepithelial active Na+ transport was blocked by amiloride, heptanol had no effect on Isc whether or not Cl- was present, whereas it decreased the shunt resistance (Rs) only in the presence of Cl- in the mucosal bath. Moreover, this effect of heptanol on Rs was significantly smaller in the presence of diphenylamine-2-carboxylate (DPC), a known Cl- channel blocker. Pressure also decreased Isc through inhibition of active Na+ transport, but it increased Rs. When heptanol and pressure were applied together, their inhibitory effects on Isc were additive, but their effects on Rs were antagonistic. Furthermore, when a transepithelial Cl- current was produced by reducing the Cl- concentration of the serosal bath, heptanol stimulated this current, which was reversibly inhibited by pressure or DPC addition to the mucosal bath. When the heptanol-stimulated Cl- current was first inhibited by pressure, subsequent DPC addition had less or no effect. These results suggest that one site of an antagonistic interaction of heptanol and pressure in toad skin is an apical membrane Cl- conductance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号