首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During germination and early growth of the castor bean (Ricinus communis) nitrogenous constituents from the endosperm are transferred via the cotyledons to the growing embryo. Exudate collected from the cut hypocotyl of 4-day seedlings contained 120 millimolar soluble amino nitrogen and glutamine was the predominant amino acid present, comprising 35 to 40% of the total amino nitrogen. To determine the nature of nitrogen transfer, the endosperm and hypocotyl were removed and glutamine uptake by the excised cotyledons was investigated. Uptake was linear for at least 2 hours and the cotyledons actively accumulated glutamine against a concentration gradient. The uptake was sensitive to respiratory inhibitors and uncouplers and efflux of glutamine from the excised cotyledons was negligible. Transport was specific for the l-isomer. Other neutral amino acids were transported at similar rates to glutamine. Except for histidine, the acidic and basic amino acids were transported at lower rates than the neutral amino acids. For glutamine transport, the K(m) was 11 to 12 millimolar and the V(max) was 60 to 70 micromoles per gram fresh weight per hour. Glutamine uptake was diminished in the presence of other amino acids and the extent of inhibition was greatest for those amino acids which were themselves rapidly transported into the cotyledons. The transport of amino acids, on a per seedling basis, was greatest for cotyledons from 4-to 6-day seedlings, when transfer of nitrogen from the endosperm is also maximal. It is concluded that the castor bean cotyledons are highly active absorptive organs transporting both sucrose and amino acids from the surrounding endosperm at high rates.  相似文献   

2.
The cotyledons of castor bean (Ricinus communis L.) act as absorption organs for amino acids, which are supplied to the medium. The analysis of the sieve-tube sap, which exudes from the cut hypocotyl, demonstrated the ability of the cotyledons to load particular amino acids into the phloem and to reject the loading of others. The sieve-tube sap of cotyledons, which were embedded in the endosperm, contained 150 mM amino acids, with 50 mM glutamine as the major amino acid, and 10–15 mM each of valine, isoleucine, lysine and arginine. Removal of the endosperm led to a drastic decline in the amino-acid content of sieve-tube sap down to 16 mM. Addition of single amino acid species to the medium increased the amino acid concentration in the sieve-tube sap in specific manner: glutamine caused the largest increase (up to 140 mM in exudate), glutamate and alanine smaller increases (up to 60 mM), and arginine the smallest. In addition, the amino acid composition of the sieve-tube sap changed, for instance, glutamine or alanine readily appeared in the sieve-tube sap upon incubation in glutamine or alanine, respectively, whereas glutamate was hardly discernible even in the case of incubation with glutamate; arginine was loaded into the sieve tubes only reluctantly. In general, glutamine and alanine accumulated four- to tenfold in the sieve tubes. The uptake of amino acids and of sucrose into the sieve tubes was interdependent: the loading of sucrose strongly reduced the amino acid concentration in the sieve-tube exudate and loading of amino acids decreased the sucrose concentration. Comparison of the concentrations of various amino acids on their way from the endosperm via the cotyledon-endosperm interface, through the cotyledons and into the sieve tubes showed that glutamine, valine, isoleucine and lysine are accumulated on this pathway, whereas glutamate and arginine are more concentrated in the cotyledons than in the sieve tubes. Obviously the phloem-loading system has a transport specificity different from that of the amino acid uptake system of the cotyledon in general and it strongly discriminates between amino acids within the cotyledons.  相似文献   

3.
The mechanism and specificity of amino-acid transport at the plasma membrane of Ricinus communis L. roots was investigated using membrane vesicles isolated by phase partitioning. The transport of glutamine, isoleucine, glutamic acid and aspartic acid was driven by both a pH gradient and a membrane potential (internally alkaline and negative), created artificially across the plasma membrane. This is consistent with transport via a proton symport. In contrast, the transport of the basic amino acids, lysine and arginine, was driven by a negative internal membrane potential but not by a pH gradient, suggesting that these amino acids may be taken up via a voltage-driven uniport. The energized uptake of all of the amino acids tested showed a saturable phase, consistent with carrier-mediated transport. In addition, the membrane-potential-driven transport of all the amino acids was greater at pH 5.5 than at pH 7.5, which suggests that there could be a direct pH effect on the carrier. Several amino-acid carriers could be resolved, based on competition studies: a carrier with a high affinity for a range of neutral amino acids (apart from asparagine) but with a low affinity for basic and acidic amino acids; a carrier which has a high affinity for a range of neutral amino acids except isoleucine and valine, but with a low affinity for basic and acidic amino acids; and a carrier which has a higher affinity for basic and some neutral amino acids but has a lower affinity for acidic amino acids. The existence of a separate carrier for acidic amino acids is discussed.Abbreviations PM plasma membrane - TPP+ tetraphenylphosphonium ion - pH pH gradient - membrane potential This work was supported by the Agricultural and Food Research Council and The Royal Society. We would like to thank Mrs. Sue Nelson for help with some of the membrane preparations.  相似文献   

4.
Plasma membrane vesicles, purified by aqueous two-phase partitioning, were used to investigate the presence of sugar and amino acid carriers in cotyledons and roots of Ricinus communis L. and in roots of red beet (Beta vulgaris L.). Artificial pH and electrical gradients were generated across the plasma membrane, and [14C]acetate and [14C]tetraphenylphosphonium were used to demonstrate the presence of an internal alkaline pH gradient and an internal negative membrane potential, respectively. In Ricinus cotyledons, uptake of sucrose was more strongly inhibited than that of glutamine by p-chloromercuribenzenesulphonic acid, phlorizin and phenylglyoxal. The sucrose transport system showed a high degree of substrate specificity with only the presence of maltose and phenyl--glucoside significantly affecting sucrose uptake; in contrast, the glutamine transport system was inhibited by a number of other amino acids. pH+gD-driven glutamine uptake showed saturation kinetics with a K m of 0.35 mol · m–3. Sucrose and glutamine -driven uptake was pH dependent with an optimum in the acidic range (pH 6.25) and a decrease at higher pH values. Vesicles obtained from cotyledons and roots of Ricinus showed different transport properties. In the cotyledons, gDH+gD-driven transport for both sucrose and glutamine were observed at similar levels; however, in the root tissue, pH--driven glutamine transport was the dominant uptake process. Uptake rates for glucose and fructose were low in the cotyledons whereas, in the roots, glucose and sucrose transport were slightly higher than that of fructose. In vesicles from red beet tissue there was a different uptake profile, with evidence of proton-coupled cotransport systems for sucrose and glucose, but lower uptake of glutamine and fructose. The results are discussed in relation to the reported different pathways for loading and unloading of solutes in these tissues.Abbreviations CCCP carbonyl cyanide-m-chlorophyenyl hydrazone - DEPC diethyl pyrocarbonate - NEM N-ethylmaleimide - PCMBS p-chloromercuribenzenesulfonic acid - TPP tetraphenylphosphonium ion - gDH+ proton electrochemical potential gradient - membrane potential We would like to thank the SERC(UK) and the Royal Society for financial support.  相似文献   

5.
E. Johannes  H. Felle 《Planta》1985,166(2):244-251
The transport of several amino acids with different side-chain characteristics has been investigated in the aquatic liverwort Riccia fluitans. i) The saturation of system I (neutral amino acids) by addition of excess -aminoisobutyric acid to the external medium completely eliminated the electrical effects which are usually set off by neutral amino acids. Under these conditions arginine and lysine significantly depolarized the plasmalemma. ii) L- and D-lysine/arginine were discriminated against in favour of the L-isomers. iii) Increasing the external proton concentration in the interval pH 9 to 4.5 stimulated plasmalemma depolarization, electrical net current, and uptake of [14C]-basic amino acids. iv) Uptake of [14C]-glutamic acid took place only at acidic pHs. v) [14C]-histidine uptake had an optimum between pH 6 and 5.5. vi) Overlapping of the transport of basic, neutral, and acidic amino acids was common. It is suggested that besides system I, a second system (II), specific for basic amino acids, exists in the plasmalemma of Riccia fluitans. It is concluded that the amino-acid molecule with an uncharged side chain is the substrate for system I, which also binds and transports the neutral species of acidic amino acids, whereas system II is specific for amino acids with a positively charged side chain. The possibility of system II being a proton cotransport is discussed.Abbreviation AiB -aminoisobutyric acid  相似文献   

6.
R. McDonald  S. Fieuw  J. W. Patrick 《Planta》1996,198(4):502-509
The mechanism of carrier-mediated sucrose uptake by the dermal transfer cells of developing Vicia faba L. cotyledons was studied using excised cotyledons and isolated transfer cell protoplasts. Addition of sucrose resulted in a transitory alkalinization of the bathing solution whereas additions of glucose, fructose or raffinose had no effect. Dissipating the proton motive force by exposing cotyledons and isolated transfer cell protoplasts to an alkaline pH, carbonylcyanide m-chlorophenylhydrazone, weak acids (propionic acid and 5,5-dimethyl-oxazolidine-2,4-dione) or tetraphenylphos-phonium ion resulted in a significant reduction of sucrose uptake. The ATPase inhibitors, erythrosin B (EB), diethylstilbestrol (DES) and N,N-dicyclohexylcarbodiimide (DCCD) were found to abolish the sucrose-induced medium alkanization as well as reduce sucrose uptake. Cytochemical localization of the ATPase, based on lead precipitation, demonstrated that the highest activity was present in the plasma membranes located in wall ingrowth regions of the dermal transfer cells. The presence of a transplasma-membrane redox system was detected by the extracellular reduction of the electron acceptor, hexacyanoferrate III. The reduction of the ferric ion was coupled to a release of protons. The redox-induced proton extrusion was abolished by the ATPase inhibitors EB, DES and DCCD suggesting that proton extrusion was solely through the H+-ATPase. Based on these findings, it is postulated that cotyledonary dermal transfer cells take up sucrose by a proton symport mechanism with the proton motive force being generated by a H + -ATPase. Sucrose uptake by the storage parenchyma and inner epidermal cells of the cotyledons did not exhibit characteristics consistent with sucrose-proton symport.Abbreviations CCCP carbonylcyanide m-chlorophenylhydrazone - DCCD N,N-dicyclohexylcarbodiimide - DES diethylstilbestrol - EB erythrosin B - Em membrane potential - FC fusicoccin - HCF II hexacyanoferrate II - HCF III hexacyanoferrate III - Mes 2-(N-morpholino)ethanesulfonic acid - pmf proton motive force - TPP+ tetraphenylphosphonium ion The investigation was supported by funds from the Research Management Committee, The University of Newcastle and the Australian Research Council. One of us, R. McDonald, gratefully acknowledges the support of an Australian Postgraduate Research Award. We are indebted to Stella Savory for preparing the ultrathin sections for electron microscopy.  相似文献   

7.
During germination and early growth of castor bean (Ricinus communis), all cellular constituents of the endosperm are eventually transferred to the growing embryo. The present results bear on the transport of breakdown products of nucleic acids. The total content of nucleic acids and nucleotides declines rapidly between day 4 and day 8 of seedling development. Concomitant with this decline, a secretion of adenosine, guanosine, and adenine from excised endosperms into the incubation medium takes place, accompanying a much more extensive release of sucrose and amino acids. Release of nucleotides could not be detected. The rates of release were linear for at least 5 hours for all compounds measured, indicating that they were liberated due to a coordinated metabolism. Uptake studies with cotyledons removed from the seedling showed that these have the ability to absorb all the substances released from the endosperm. Besides sucrose and amino acids, both nucleosides and free purine and pyrimidine bases were taken up by the cotyledons with high efficiency. AMP was also transported whereas ATP was not. Kinetic analyses were carried out to estimate the maximal uptake capacities of the cotyledons. Rates of uptake were linear for at least 1 to 2 hours and saturation kinetics were observed for all substances investigated. It is concluded that nucleosides can serve best as transport metabolites of nucleic acids, inasmuch as they are taken up by the cotyledons with the highest efficiency, the Vmax/Km ratios being considerably higher than those found for free purine and pyrimidine bases. For both adenosine and adenine transport, the Vmax was about 2 micromoles per hour per gram fresh weight, and the Km values were 0.12 and 0.37 millimolar, respectively. The rates of metabolite release from the endosperm and the capacity of the absorption system in the cotyledons are shown to account for the observed rates of disappearance of nucleic acids from the endosperm and efficient transport to the growing embryo.  相似文献   

8.
Ewald Komor 《Planta》1977,137(2):119-131
Cotyledons of Ricinus communis take up externally supplied sucrose at a rate of up to 150 mol/h/g fresh weight, which is very high when compared with other sugar transport systems of higher plants. The uptake of sucrose is catalysed with a K m of 25 mmol l–1; at high sucrose concentrations a linear (diffusion) component becomes obvious. Other mono-, di-, or trisaccharides do not compete for sucrose uptake. Sucrose is accumulated by the cotyledons up to 100-fold, whereby most of the transported, externally supplied sucrose mixes with sucrose present in the tissue. At low sucrose concentrations, however; a small unexchangeable internal pool of sucrose becomes evident. Poisons of energy metabolism such as FCCP inhibit uptake and accumulation of sucrose. The transport of sucrose induces an increase of respiration, from which an energy requirement of 1.4 ATP/sucrose taken up can be calculated. Sucrose is taken up together with protons at an apparent stoichiometry of 0.3 protons/sucrose. Other sugars do not cause proton uptake. The K m for sucrose induced proton uptake is 5 mmol l–1; the discrepancy to the K m for sucrose uptake as well as the low proton: sucrose stoichiometry might possibly be caused by a large contribution of diffusion barriers. The estimated proton-motive potential difference would by sufficient to explain an electrogenic sucrose accumulation. The rate of uptake of sucrose is subject to feedback inhibition by internal sucrose. It is also regulated during growth of the seedlings since it develops rapidly during the first days of germination and declines again after the 4th day of germination, though no substantial increase of passive permeability resistance was observed.Abbreviations DMO dimethyloxazolidinedione - FCCP trifluoromethoxy (carbonyl-cyanide) phenylhydrazon - fr. wt. fresh weight  相似文献   

9.
In previous experiments it was shown that Castor-bean (Ricinus communis) endosperm releases carbohydrates, amino acids and nucleoside derivatives, which are subsequently imported into the developing cotyledons (Kombrink and Beevers in Plant Physiol 73:370-376, 1983). To investigate the importance of the most prominent nucleoside adenosine for the metabolism of growing Ricinus seedlings, we supplied adenosine to cotyledons of 5-days-old seedlings after removal of the endosperm. This treatment led to a 16% increase in freshweight of intact seedlings within 16 h, compared to controls. Using detached cotyledons, we followed uptake of radiolabelled adenosine and identified 40% of label in solubles (mostly ATP and ADP), 46% incorporation in RNA and 2.5% in DNA, indicating a highly active salvage pathway. About 7% of freshly imported adenosine entered the phloem, which indicates a major function of adenosine for cotyledon metabolism. Import and conversion of adenosine improved the energy content of cotyledons as revealed by a substantially increased ATP/ADP ratio. This effect was accompanied by slight increases in respiratory activity, decreased levels of hexose phosphates and increased levels of fructose-1,6-bisphosphate and triose phosphates. These alterations indicate a stimulation of glycolytic flux by activation of phosphofructokinase, and accordingly we determined a higher activity of this enzyme. Furthermore the rate of [(14)C]-sucrose driven starch biosynthesis in developing castor-bean is significantly increased by feeding of adenosine. In conclusion, our data indicate that adenosine imported from mobilizing endosperm into developing castor-bean cotyledons fulfils an important function as it promotes anabolic reactions in this rapidly developing tissue.  相似文献   

10.
Upon germination, the endosperm triacylglycerols and proteinswere converted to sucrose and amino acids. During early postgerminativegrowth, the rate of sucrose and amino acid production exceededthe rate of uptake by the cotyledons. As a result, the levelsof total amino acid and sucrose in the endosperm increased;maximum levels were reached at 7 d and 10 d after imbibition(DAI), respectively. Intact seedlings were used to measure thedevelopment of valine, arginine, glutamic acid, and sucroseuptake rate throughout the course of endosperm depletion. Maximumamino acid uptake rates were measured at around 9 DAI, the highestuptake rate for sucrose was obtained at 12 DAI (just beforedepletion of the endosperm). The daily increase of sucrose andamino acid uptake could be manipulated, by replacing the endospermwith a pre-incubation solution during 1 d. The increase in sucroseuptake in vitro was equal to that measured with intact seedlingswhen the cotyledons were pre-incubated in 10 mol m–3 sucrose.Higher sucrose concentrations reduced the increase of sucroseuptake; at 300 mol m–3 sucrose (corresponding to the meanendosperm sucrose concentration) sucrose uptake after pre-incubationwas even lower than before. This reduction was largely counteractedwhen the pre-incubation solution was supplemented with minerals.The development of the valine uptake was hardly affected bysucrose, but was inhibited by several amino acids. Key words: Euphorbia lathyris seedling, sucrose uptake, amino acid uptake, reserve mobilization  相似文献   

11.
Stewart CR  Beevers H 《Plant physiology》1967,42(11):1587-1595
During germination of the castor bean all of the contents of the endosperm are ultimately transported to the embryo through the cotyledon or respired. A net loss of nitrogen from the endosperm begins about the fourth day, i.e. at the time when embryo growth and fat breakdown are also beginning. Amino acid analysis of the exudate from the cotyledons, still enclosed in the endosperm, showed that the amounts of aspartate, glutamate, glycine, and alanine were very low and that glutamine made up 40% of the amino acids in the exudate.

Amino acids labeled with 14C were applied to intact excised endosperms to follow utilization. Aspartate, glutamate, alanine, glycine, serine, and leucine were converted to sugar to varying extents. Proline, arginine, valine, and phenylalanine were not appreciably converted to sugars. Proline and glutamate were converted to glutamine. When 14C-glutamate, aspartate, and alanine were added to the outer endosperm of intact seedlings, only sugars and glutamine contained appreciable label in the exudate. When 14C-valine was added, it was virtually the only labeled compound in the exudate.

The results show that amino acids which on deamination can give rise to intermediates in the pathway of conversion of fat to sucrose are largely converted to sucrose and the nitrogen transported as glutamine. Other amino acids released from the endosperm protein are transported intact into the seedling axis. Some carbon from the gluconeogenic amino acids is also transported as glutamine.

  相似文献   

12.
Eva Johannes  Hubert Felle 《Planta》1987,172(1):53-59
By means of pH-sensitive microelectrodes, cytoplasmic pH has been monitored continuously during amino-acid transport across the plasmalemma of Riccia fluitans rhizoid cells under various experimental conditions. (i) Contrary to the general assumption that import of amino acids (or hexoses) together with protons should lead to cytoplasmic acidification, an alkalinization of 0.1–0.3 pHc units was found for all amino acids tested. Similar alkalinizations were recorded in the presence of hexoses and methylamine. No alkalinization occurred when the substrates were added in the depolarized state or in the presence of cyanide, where the electrogenic H+-pump is inhibited. (ii) After acidification of the cytoplasm by means of various concentrations of acetic acid, amino-acid transport is massively altered, although the protonmotive force remained essentially constant. It is suggested that H+-cotransport is energetically interconnected with the proton-export pump which is stimulated by the amino-acid-induced depolarization, thus causing proton depletion of the cytoplasm. It is concluded that, in order to investigate H+-dependent cotransport processes, the cytoplasmic pH must be measured and be under continuous experimental control; secondly, neither pH nor the protonmotive force across a membrane are reliable quantities for analysing a proton-dependent process.Abbreviations 3-OMG 3-oxymethylglucose - pHc cytoplasmic pH - m electrical potential difference across the respective membrane, i.e. membrane potential - H+/F (=pmf) electrochemical proton gradient  相似文献   

13.
The influence of carbohydrates on ammonium uptake and ammonium transporter (AMT1) expression was investigated in roots of field pea (Pisum arvense) and rutabaga (Brassica napus var. rapifera). Ammonium transport into field pea seedlings diminished markedly following cotyledon removal, which indicated that uptake of ammonium was under control of reserves stored in the cotyledons. Excision of cotyledons decreased also the level of some amino acids, glucose and total reducing sugars in field pea roots. To investigate the importance of the sugar supply for the regulation of ammonium uptake at low external NH 4 + level, 1 mM glucose or sucrose was supplied for several hours to the field pea seedlings deprived cotyledons or to intact rutabaga plants. Supply of both sugars resulted in a substantial increase in ammonium uptake by both plant species and enhanced markedly the expression of AMT1 in rutabaga roots. The results indicate that sugars may regulate ammonium transport at the genetic level.  相似文献   

14.
Norbert Sauer 《Planta》1984,161(5):425-431
Glucose or non-metabolizable glucose analogues induce two systems of amino-acid transport in Chlorella vulgaris: an arginine-lysine system and a proline system. An additional third system of amino-acid transport is induced when glucose and an inorganic nitrogen source are present during glucose induction. The transport rates in glucose-NH 4 + -treated cells are 10 to 80 times higher than in untreated cells. The transport system shows a rather broad specificity and catalyses the transport of at least ten neutral and acidic amino acids. Three of these amino acids (l-alanine, l-serine and glycine) are transported by the proline system as well. The system is specific for l-amino acids and has a pH optimum between 5 and 6. Transport by this system seems to be active, since amino acids are accumulated inside the cells.  相似文献   

15.
Protoplasts isolated from beetroot tissue took up glucose preferentially whereas sucrose was transported more slowly. The 14C-label from [14C]glucose and [14C]sucrose taken up by the cells could be detected rapidly in phosphate esters and, after feeding of [14C]glucose was found also in sucrose. The temperature-dependent uptake process (activation energy EA about 50 kJ · mol–1) seems to be carrier mediated as indicated by its substrate saturation and, for glucose, by competition experiments which revealed positions C1, C5 and C6 of the D-glucose molecule as important for effective uptake. The apparent Km(20° C) for glucose (3-O-methylglucose) was about 1 mM whereas for sucrose a significantly lower apparent affinity was determined (Km about 10 mM). When higher concentrations of glucose (5 mM) or sucrose (20 mM) were administered, the uptake process followed first-order kinetics. Carrier-mediated transport was inhibited by N,N-dicyclohexylcarbodiimide, Na-orthovanadate, p–chloromercuribenzenesulfonic acid, and by uncouplers and ionophores. The uptake system exhibited a distinct pH optimum at pH 5.0. The results indicate that generation of a proton gradient is a prerequisite for sugar uptake across the plasma membrane. Protoplasts from the bundle regions in the hypocotyl take up glucose at higher rates than those derived from bundle-free regions. The results favour the idea that apoplastic transport of assimilates en route of unloading might be restricted to distinct areas within the storage organ (i.e. the bundle region) whereas distribution in the storage parenchyma is symplastic.Abbreviations CCCP Carbonylcyanide m–chlorophenylhydrazone - DCCD N,N-dicyclohexylcarbodiimide - DOG deoxyglucose - Mes 2-(N-morpholino)ethanesulfonic acid - 3-OMG 3-O-methylglucose - PCMBS p–chloromercuribenzenesulfonic acid - SDS Sodium dodecyl sulfate - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   

16.
Transport of branched-chain amino acids in Corynebacterium glutamicum   总被引:5,自引:0,他引:5  
The transport of branched-chain amino acids was characterized in intact cells of Corynebacterium glutamicum ATCC 13032. Uptake and accumulation of these amino acids occur via a common specific carrier with slightly different affiniteis for each substrate (K m[Ile]=5.4 M, K m[Leu]=9.0 M, K m[Val]=9.5 M). The maximal uptake rates for all three substrates were very similar (0.94–1.30 nmol/mg dw · min). The optimum of amino acid uptake was at pH 8.5 and the activation energy was determined to be 80 kJ/mol. The transport activity showed a marked dependence on the presence of Na+ ions and on the membrane potential, but was independent of an existing proton gradient. It is concluded, that uptake of branched-chain amino acid transport proceeds via a secondary active Na+-coupled symport mechanism.Abbreviations CCCP Carboxyl cyanide m-chlorophenylhydrazone - dw dry weight - MES 2[N-morpholino]ethanesulfonic acid - mon monensin - nig nigericin - TPP tetraphenylphosphonium bromide - Tris tris[hydroxymethyl]aminomethane - val valinomycin  相似文献   

17.
The timing of changes in total nitrogen and soluble amino nitrogen content, and in the activities of proteinase (pH 7.0), isocitrate lyase, catalase, phytase, phosphatase (pH 5.0), -galactosidase and -mannosidase were studied in extracts from the cotyledons, axis and endosperms of germinating and germinated light-promoted lettuce seeds. The largest amount of total nitrogen (2.7% seed dry weight) occurs within the cotyledons, as storage protein. As this decreases the total nitrogen content of the axis increases and the soluble amino nitrogen in the cotyledons and axis increases. Proteinase activity in the cotyledons increases coincidentally with the depletion of total nitrogen therein. Enzymes for phytate mobilisation and for gluconeogenesis of hydrolysed lipids increase in activity in the cotyledons as the appropriate stored reserves decline. Beta-mannosidase, an enzyme involved in the hydrolysis of oligo-mannans released by the action of endo--mannase on mannan reserves in the endosperm, arises within the cotyledons. This indicates that complete hydrolysis of mannans to the monomer does not occur within the endosperm. Mobilisation of all cotyledon reserves occurs after the endosperm has been degraded, providing further evidence that the endosperm is an early source of food reserves for the growing embryo.Abbreviations HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulphonic acid - EDTA ethylenediamine tetraacetic acid disodium salt - TCA trichloroacetic acid Part 2 of a series, of which the first was published in Planta 139, 1–8 (1978)  相似文献   

18.
Changes in the dry weight of the endosperm of Euphorbia lathyris L. seedlings showed that 2 mg material was taken up by the cotyledons after 10 d germination. A similar amount of sucrose could be taken up by these seedlings after removal of the endosperm. The maximum yield of latex triterpenes synthesized from this exogenously supplied substrate was in the same order of magnitude as the daily latex lipid increase in 19 g per seedling. Cotyledons and adjacent 1–2 cm segment of the hypocotyl were the most active tissues in latex trieterpene synthesis. Excised cotyledons were able to accumulate 1–1.5 mg sucrose in 48 h from a sugar concentration higher than 0.1 mol l-1. In this period a maximum amount of 8–10 g latex triterpenes could be synthesized from this substrate. [14C]Mevalonic acid was rapidly taken up by excised cotyledons but not metabolized by the laticifers. This exogenously supplied precursor was rapidly converted to squalene and triterpenes by the adjacent tissue, and after 48 h incubation most of the 14C in the nonsaponifiable fraction was traced in the phytosterolds.  相似文献   

19.
14C-Sugar uptake and incorporation into starch by slices of developing maize (Zea mays L.) endosperm were examined and compared with sugar uptake by maize endosperm-derived suspension cultures. Rates of sucrose, fructose, and d- and l-glucose uptake by slices were similar, whereas uptake rates for these sugars differed greatly in suspension cultures. Concentration dependence of sucrose, fructose, and d-glucose uptake was biphasic (consisting of linear plus saturable components) with suspension cultures but linear with slices. These and other differences suggest that endosperm slices are freely permeable to sugars. After diffusion into the slices, sugars were metabolized and incorporated into starch. Starch synthesis, but not sugar accumulation, was greatly reduced by 2.5 millimolar p-chloromercuribenzenesulfonic acid and 0.1 millimolar carbonyl cyanide m-chlorophenylhydrazone. Starch synthesis was dependent on kernel age and incubation temperature, but not on external pH (5 through 8). Competing sugars generally did not affect the distribution of 14C among the soluble sugars extracted from endosperm slices incubated in 14C-sugars. Competing hexoses reduced the incorporation of 14C into starch, but competing sucrose did not, suggesting that sucrose is not a necessary intermediate in starch biosynthesis. The bidirectional permeability of endosperm slices to sugars makes the characterization of sugar transport into endosperm slices impossible, however the model system is useful for experiments dealing with starch biosynthesis which occurs in the metabolically active tissue.  相似文献   

20.
The mechanism of sucrose transport across the plasma membrane (PM) was investigated in membrane vesicles isolated from sugarbeet (Beta vulgaris L.) leaves. In the presence of a membrane potential () generated as a K+-diffusion potential, negative inside, sucrose induced a rapid and transient alkalization of the medium. Alkalization was inhibited by carbonyl cyanide m-chlorophenylhydrazone, was specific for the sucrose sugar and was dependent on the sucrose concentration with a Km of approx. 1 mM. Sucrose-induced alkalization and sucrose transport were inhibited by the sulfhydryl-reactive reagent, p-chloromercuribenzene sulfonic acid, and by the histidine-reactive reagent, diethyl pyrocarbonate. Parallel analysis of sucrose uptake and alkalization indicated that the stoichiometry of sucrose uptake to proton consumed was 11. These results provide clear evidence that the saturable mechanism of sucrose transport across the PM in plants is a coupled H+-sucrose symport.Abbreviations and Symbols CCCP carbonyl cyanide m-chlorophenylhydrazone - DEPC diethyl pyrocarbonate - PCMBS p-chloromercuribenzene sulfonic acid - pH pH gradient - membrane potential difference - PM plasma membrane The financial support for a portion of thus study was provided by the Deutsche Forschungsgemeinschaft. We thank Kimberly A. Mitchell for her excellent technical assistance and dedicate this report to the memory of Mr. William A. Dungey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号