首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Conducting polymer polypyrrole supported bilayer lipid membranes   总被引:3,自引:0,他引:3  
Electrochemically synthesized conducting polymer polypyrrole (PPy) film on gold electrode surface was used as a novel support for bilayer lipid membranes (BLMs). Investigations by surface plasmon resonance (SPR) suggest that dimyristoyl-L-alpha-phosphatidylcholine (DMPC) and dimyristoyl-L-alpha-phosphatidyl-L-serine (DMPS) can form BLMs on PPy film surface but dimyristoyl-L-alpha-phosphatidylglycerol (DMPG) and didodecyldimethylammonium bromide (DDAB) can not do so, indicating the formation of PPy supported bilayer lipid membranes (s-BLMs) is dependent on the chemical structure of the lipids used. The self-assembly of DMPC induces a smoother topography than the PPy layer with rms roughness decreasing from 4.484 to 2.914 nm convinced by atomic force microscopy (AFM). Impedance spectroscopy measurements confirm that the deposition of BLM substantially increases the resistance of the system indicating a very densely packed BLM structures. The little change of PPy film in capacitance shows that solvent and electrolyte ions still retain within the porous PPy film after BLM deposition. Therefore, the PPy supported BLM is to some extent comparable to conventional BLM with aqueous medium retaining at its two sides. As an example and preliminary application, horseradish peroxidase (HRP) reconstituted into the s-BLM shows the expected protein activity and can transfer electron from or to the underlying PPy support for its response to electrocatalytic reduction of hydrogen peroxide in solution. Thus the system maybe possesses potential applications to biomimetic membrane studies.  相似文献   

2.
The mechanism by which vesicles spontaneously form supported lipid bilayer membranes on glass surfaces is becoming better understood and this knowledge is the basis of a technology of patterning membrane arrays and controlling composition. Controlled interactions between supported membranes and cells, particularly from the immune system, provide direct insight into cell-cell surface interactions.  相似文献   

3.
We investigate lateral organization of lipid domains in vesicles versus supported membranes and monolayers. The lipid mixtures used are predominantly DOPC/DPPC/Chol and DOPC/BSM/Chol, which have been previously shown to produce coexisting liquid phases in vesicles and monolayers. In a monolayer at an air-water interface, these lipids have miscibility transition pressures of approximately 12-15 mN/m, which can rise to 32 mN/m if the monolayer is exposed to air. Lipid monolayers can be transferred by Langmuir-Sch?fer deposition onto either silanized glass or existing Langmuir-Blodgett supported monolayers. Micron-scale domains are present in the transferred lipids only if they were present in the original monolayer before deposition. This result is valid for transfers at 32 mN/m and also at lower pressures. Domains transferred to glass supports differ from liquid domains in vesicles because they are static, do not align in registration across leaflets, and do not reappear after temperature is cycled. Similar static domains are found for vesicles ruptured onto glass surfaces. Although supported membranes on glass capture some aspects of vesicles in equilibrium (e.g., gel-liquid transition temperatures and diffusion rates of individual lipids), the collective behavior of lipids in large liquid domains is poorly reproduced.  相似文献   

4.
The atomic force microscope (AFM) was used to structurally modify supported lipid bilayers in a controlled quantitative manner. By increasing the force applied by the AFM tip, lipid was removed from the scanned area, leaving a cut through the lipid bilayer. Cuts were repaired with the AFM by scanning the region with a controlled force and driving lipid back into the cut. A slow self-annealing of cuts was also observed.  相似文献   

5.
The interaction of a model synovial fluid, here a solution of 3mg/mL hyaluronic acid (HA) in heavy water (D(2)O), with an oligolamellar stack of lipid (DMPC) membranes on silicon support has been studied by neutron reflectometry and infrared spectroscopy on the molecular scale at non-physiological and physiological conditions. The system under investigation represents a simple model for lipid-coated mammalian joints and other artificial implant surfaces. When exposed to pure D(2)O at 21°C, i.e. below the main phase transition of the system, the lipid membranes show a lamellar spacing of 65?. Heating to 26°C results in detachment of all lipid bilayers except for the innermost lipid lamella directly adsorbed to the surface of the silicon support. On the contrary, when incubated in the solution of HA in D(2)O the oligolamellar lipid system starts swelling. In addition, heating to 39°C does not result in loss of the lipid membranes into the liquid phase. The interfacial lipid coating adopts a new stable lamellar state with an increase in d-spacing by 380% to 247? measured after 43 days of incubation with the model synovial fluid. Potential consequences for joint lubrication and protective wear functionality are considered.  相似文献   

6.
The lateral mobility of cell membranes plays an important role in cell signaling, governing the rate at which embedded proteins can interact with other biomolecules. The past two decades have seen a dramatic transformation in understanding of this environment, as the mechanisms and potential implications of nanoscale structure of these systems has become accessible to theoretical and experimental investigation. In particular, emerging micro- and nano-scale fabrication techniques have made possible the direct manipulation of model membranes at the scales relevant to these biological processes. This review focuses on recent advances in nanopatterning of supported lipid bilayers, capturing the impact of membrane nanostructure on molecular diffusion and providing a powerful platform for further investigation of the role of this spatial complexity on cell signaling.  相似文献   

7.
The multifarious Tat peptide derived from the HIV-1 virus exhibits antimicrobial activity. In this article, we use Quartz Crystal Microbalance with Dissipation monitoring (QCM-D) to investigate the mechanisms of action of Tat (44-57) and Tat (49-57) on bacterial-mimetic 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/1,2-dimyristoyl-sn-glycero-3-phospho-rac-(1-glycerol) (sodium salt) (DMPG) membranes. The results reveal that both peptides disrupt DMPC/DMPG membranes via a surface-active (carpet-like) mechanism. The magnitude of this disruption is dependent on both membrane and peptide properties. Firstly, less disruption was observed on the more negatively charged membranes. Secondly, less disruption was observed for the longer and slightly more hydrophobic Tat (44-57) peptide. As a comparison, the behaviour of the two Tat peptides on mammalian-mimetic DMPC/cholesterol membranes was investigated. Consistent with the literature no membrane disruption was observed. These results suggest that both electrostatic and hydrophobic interactions, as well as peptide geometry, determine the antimicrobial activity of Tat. This should guide the development of more potent Tat antibiotics.  相似文献   

8.
M Nakanishi 《FEBS letters》1984,176(2):385-388
In hepatocytes from control rats, the ureogenic action of epinephrine is mainly mediated through alpha 1-adrenoceptors and the effect is independent of the presence of extracellular calcium. In hepatocytes from adrenalectomized rats, both alpha 1- and beta-adrenoceptors are involved in the action of epinephrine. Furthermore, the alpha 1-adrenergic-mediated stimulation of ureogenesis in these cells is dependent on the presence of extracellular calcium. Our results indicate that glucocorticoids modulate the calcium dependency of alpha 1-adrenergic effects and are consistent with our suggestion that two pathways are involved in the transduction of the alpha 1-adrenergic signal.  相似文献   

9.
Jeuken LJ 《Biophysical journal》2008,94(12):4711-4717
Electric-field induced changes in structure and conductivity of supported bilayer lipid membranes (SLM) have been studied at submicroscopic resolution using atomic force microscopy and electrochemical impedance spectroscopy. The SLMs are formed on gold surfaces modified with mixed self-assembled monolayers of a cholesterol-tether and 6-mercaptohexanol. At applied potentials of ≤−0.25 V versus standard hydrogen electrode, the conductance of the SLM increases and membrane areas of <150 nm in size are found to elevate from the surface up to 15 nm in height. To estimate the electric field experienced by the lipid membrane, electrowetting has been used to determine the point of zero charge of a 6-mercaptohexanol-modified surface (0.19 ± 0.13 V versus standard hydrogen electrode). The effects of electric fields on the structure and conductance of supported membranes are discussed.  相似文献   

10.
The method of atomic force microscopy has been used to investigate the morphology of mica-supported bilayer lipid membranes and stability of their complexes with a cationic polymer, poly-(N-ethyl-4-vinylpyridinium bromide). Lipid bilayers with a minimum of defects were obtained by the fusion of monolamellar neutral or mixed anionic bilayer vesicles (liposomes) on the mica surface, followed by excessive solvent removal by means of rapid rotation of a plate in horizontal plane (spin-coating). It has been shown that the cationic polymer does not interact with the bilayers, where the outer leaflet (i.e., the monolayer exposed to the surrounding aqueous solution) is made of an electroneutral phosphatidylcholine (PC). At the same time, the polymer irreversibly binds to the bilayer containing an anionic lipid.  相似文献   

11.
Stable bilayer lipid membranes on a metal support (s-BLMs) and on an agar gel salt bridge (sb-BLMs) have been formed and their potential usefulness as practical sensors demonstrated. This paper presents the preparation method of s-BLMs and sb-BLMs, and the application of cyclic voltammetry (CV) to their investigation. The instrument and data analysis of the CV are described. The application of CV to the C60-doped BLM system is presented. This technique is a basis for biosensor development, and a useful tool for membrane research.  相似文献   

12.
Many ion channel proteins have binding sites for toxins and pharmaceutical drugs and therefore have much promise as the sensing entity in high throughput technologies and biosensor devices. Measurement of ionic conductance changes through ion channels requires a robust biological membrane with sufficient longevity for practical applications. The conventional planar BLM is 100-300 μm in diameter and typically contains fewer than a dozen channels whereas pharmaceutical screening methods in cells use current recordings for many ion channels. We present a new, simple method for the fabrication of a disposable porous-supported bilayer lipid membrane (BLM) ion channel biosensor using hydrated Teflon (polytetrafluoroethylene, PTFE) filter material (pore size 5 μm, filter diameter=1 mm). The lipid layer was monitored for its thickness and mechanical stability by electrical impedance spectroscopy. The results showed membrane capacitances of 1.8±0.2 nF and membrane resistances of 25.9±4.1 GΩ, indicating the formation of lipid bilayers. The current level increased upon addition of the pore-forming peptide gramicidin. Following addition of liposomes containing voltage-gated sodium channels, small macroscopic sodium currents (1-80 pA) could be recorded. By preloading the porous Teflon with sodium channel proteoliposomes, prior to BLM formation, currents of 1-10 nA could be recorded in the presence of the activator veratridine that increased with time, and were inhibited by tetrodotoxin. A lack of rectification suggests that the channels incorporated in both orientations. This work demonstrates that PTFE filters can support BLMs that provide an environment in which ion channels can maintain their functional activity relevant for applications in drug discovery, toxin detection, and odour sensing.  相似文献   

13.
14.
Amyloid deposition of human islet amyloid polypeptide (hIAPP) in the islets of Langerhans is closely associated with the pathogenesis of type II diabetes mellitus. Despite substantial evidence linking amyloidogenic hIAPP to loss of β-cell mass and decreased pancreatic function, the molecular mechanism of hIAPP cytotoxicity is poorly understood. We here investigated the binding of hIAPP and nonamyloidogenic rat IAPP to substrate-supported planar bilayers and examined the membrane-mediated amyloid aggregation. The membrane binding of IAPP in soluble and fibrillar states was characterized using quartz crystal microbalance with dissipation monitoring, revealing significant differences in the binding abilities among different species and conformational states of IAPP. Patterned model membranes composed of polymerized and fluid lipid bilayer domains were used to microscopically observe the amyloid aggregation of hIAPP in its membrane-bound state. The results have important implications for lipid-mediated aggregation following the penetration of hIAPP into fluid membranes. Using the fluorescence recovery after photobleaching method, we show that the processes of membrane binding and subsequent amyloid aggregation are accompanied by substantial changes in membrane fluidity and morphology. Additionally, we show that the fibrillar hIAPP has a potential ability to perturb the membrane structure in experiments of the fibril-mediated aggregation of lipid vesicles. The results obtained in this study using model membranes reveal that membrane-bound hIAPP species display a pronounced membrane perturbation ability and suggest the potential involvement of the oligomeic forms of hAPP in membrane dysfunction.  相似文献   

15.
Physical inputs, both internal and external to a cell, can directly alter the spatial organization of cell surface receptors and their associated functions. Here we describe a protocol that combines solid-state nanolithography and supported lipid membrane techniques to trigger and manipulate specific receptors on the surface of living cells and to develop an understanding of the interplay between spatial organization and receptor function. While existing protein-patterning techniques are capable of presenting cells with well-defined clusters of protein, this protocol uniquely allows for the control of the spatial organization of laterally fluid receptor-ligand complex at an intermembrane junction. A combination of immunofluorescence and single-cell microscopy methods and complementary biochemical analyses are used to characterize receptor signaling pathways and cell functions. The protocol requires 2-5 d to complete depending on the parameters to be studied. In principle, this protocol is widely applicable to eukaryotic cells and herein is specifically developed to study the role of physical organization and translocation of the EphA2 receptor tyrosine kinase across a library of model breast cancer cell lines.  相似文献   

16.
Many prokaryotic organisms (archaea and bacteria) are covered by a regularly ordered surface layer (S-layer) as the outermost cell wall component. S-layers are built up of a single protein or glycoprotein species and represent the simplest biological membrane developed during evolution. Pores in S-layers are of regular size and morphology, and functional groups on the protein lattice are aligned in well-defined positions and orientations. Due to the high degree of structural regularity S-layers represent unique systems for studying the structure, morphogenesis, and function of layered supramolecular assemblies. Isolated S-layer subunits of numerous organisms are able to assemble into monomolecular arrays either in suspension, at air/water interfaces, on planar mono- and bilayer lipid films, on liposomes and on solid supports (e.g. silicon wafers). Detailed studies on composite S-layer/lipid structures have been performed with Langmuir films, freestanding bilayer lipid membranes, solid supported lipid membranes, and liposomes. Lipid molecules in planar films and liposomes interact via their head groups with defined domains on the S-layer lattice. Electrostatic interactions are the most prevalent forces. The hydrophobic chains of the lipid monolayers are almost unaffected by the attachment of the S-layer and no impact on the hydrophobic thickness of the membranes has been observed. Upon crystallization of a coherent S-layer lattice on planar and vesicular lipid membranes, an increase in molecular order is observed, which is reflected in a decrease of the membrane tension and an enhanced mobility of probe molecules within an S-layer-supported bilayer. Thus, the terminology 'semifluid membrane' has been introduced for describing S-layer-supported lipid membranes. The most important feature of composite S-layer/lipid membranes is an enhanced stability in comparison to unsupported membranes.  相似文献   

17.
18.
When polarized internal reflection infrared spectroscopy is used to determine molecular order in supported lipid membranes, the results are critically dependent on the accuracy of assumptions made about the evanescent electric field amplitudes in the membrane. In this work, we examine several expressions used for calculating evanescent electric field amplitudes in supported lipid monolayers and bilayers, and test their validity by measuring the infrared dichroism of poly-gamma-benzyl-L-glutamate and poly-beta-benzyl-L-aspartate under conditions in which their molecular order is known. Our results indicate that treating such systems as a simple single interface between two semi-infinite bulk phases is more accurate than the commonly employed thin-film approximation. This implies that earlier conclusions about molecular order in supported lipid membranes may require substantial revision.  相似文献   

19.
The interaction between the cell-penetrating peptide, penetratin, and solid-supported lipid bilayer membranes consisting of either egg phosphatidylcholine (PC) or a 75/25 mol% mixture of egg PC and palmitoyloleylphosphatidylglycerol has been studied by simultaneously measuring plasmon-waveguide resonance (PWR) spectra and impedance spectra of lipid-peptide mixtures. When penetratin was incorporated into an egg PC + palmitoyloleylphosphatidylglycerol bilayer, PWR measurements showed a hyperbolic increase in the average refractive index and the refractive index anisotropy, with no change in membrane thickness, over a concentration range between 0 and 2 micro M peptide. In the case of an egg PC bilayer, a biphasic dependence was observed, with a decrease in average refractive index and anisotropy and no thickness change occurring between 0 and 5 micro M peptide, and an increase in membrane thickness occurring between 5 and 15 micro M peptide with no further change in the refractive index parameters. For both membranes, the impedance spectroscopy measurements demonstrated that the electrical resistance was not altered by peptide incorporation, whereas a decrease in membrane capacitance occurred with the same concentration dependence as observed in the PWR experiments, although for the PC membrane no further changes in electrical properties were observed in the higher concentration range. A structural interpretation of these results is described, in which the peptide binds electrostatically within the headgroup region of the bilayer and influences the headgroup conformation, amount of bound water, and the lipid-packing density, without perturbing the hydrocarbon core of the bilayer.  相似文献   

20.
Spherical lipid bilayer membranes   总被引:2,自引:0,他引:2  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号