首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanical and frictional properties of different parts of the elytra of five species of beetle were measured using a nano-indenter and a micro-tribometer. The surface microstructures of the elytra were observed by optical microscopy and scanning white light interferometry. The surface microstructures of the elytra of all five species are characterized as non-smooth concavo-convex although specific morphological differences demonstrate the diversity of beetle elytra. Young's modulus and the hardness of the elytral materials vary with the species of beetle and the sampling locations, ranging from 1.80 GPa to 12.44 GPa, and from 0.24 GPa to 0.75 GPa, respectively. In general, both the Young's modulus and the hardness are lower in samples taken from the center of the elytra than those taken from other regions, which reflects the functional heterogeneity of biological material in the process of biological evolution. The elytra have very low friction coefficient, ranging from 0.037 to 0.079, which is related to their composition and morphology. Our measurements indicate that the surface texture and its microstructural size of beetle elytra contribute to anti-friction effects.  相似文献   

2.
Analysis of the passive mechanical properties of rat carotid arteries   总被引:5,自引:1,他引:4  
The passive mechanical properties of rat carotid arteries were studied in vitro. Using a tensile testing machine and a piston pump, intact segments of carotid arteries were subjected to large deformations both in the longitudinal and circumferential directions. Internal pressure, external diameter, length and longitudinal force were measured during the experiment and compared with the in vivo dimensions of the segments prior to excision. The anisotropic mechanical properties of the vessel wall material were analyzed using incremental elastic moduli and incremental Poisson's ratios. The results suggest that there is a characteristic deformation pattern common to all vessels investigated which is highly correlated with the conditions of loading that occur in vivo. That is, under average physiological deformation of the vessel, the longitudinal force is nearly independent of internal pressure. In this range of loading the circumferential incremental elastic modulus is nearly independent of longitudinal strain. However, the longitudinal and radial incremental elastic moduli vary significantly with deformation in this direction. The values of the moduli in all three directions increase with raising internal pressure. The weak coupling between circumferential and longitudinal direction in the wall material of carotid arteries is shown by the small value of the corresponding incremental Poisson's ratios.  相似文献   

3.
Folding of the airway mucosal membrane provides a mechanical load that impedes airway smooth muscle contraction. Mechanical testing of rabbit tracheal mucosal membrane showed that the membrane is stiffer in the longitudinal than in the circumferential direction of the airway. To explain this difference in the mechanical properties, we studied the morphological structure of the rabbit tracheal mucosal membrane in both longitudinal and circumferential directions. The collagen fibers were found to form a random meshwork, which would not account for differences in stiffness in the longitudinal and circumferential directions. The volume fraction of the elastic fibers was measured using a point-counting technique. The orientation of the elastic fibers in the tissue samples was measured using a new method based on simple geometry and probability. The results showed that the volume fraction of the elastic fibers in the rabbit tracheal mucosal membrane was approximately 5% and that the elastic fibers were mainly oriented in the longitudinal direction. Age had no statistically significant effect on either the volume fraction or the orientation of the elastic fibers. Linear correlations were found between the steady-state stiffness and the quantity of the elastic fibers oriented in the direction of testing.  相似文献   

4.
The whole thigh muscles are covered with the fascia lata, which could have morphological and mechanical features that match the underlying muscles’ functions. In this study, we investigated the morphological and elastic properties of the human fascia lata taken from four (anterior, medial, lateral, and posterior) sites on the thigh of 17 legs of 12 cadavers (6 males and 6 females, 75–92 years). The thickness of the fascia lata was determined with a caliper. The interwoven collagen fiber’s directions were measured and classified into longitudinal, transverse, and diagonal in two opposing directions, relative to the thigh. Tensile strength test along the longitudinal and transverse directions was performed, and the stiffness, Young’s modulus, and hysteresis were determined. Fascia lata at the lateral site (0.8 ± 0.2 mm) was significantly thicker compared to other sites (0.2–0.3 mm). Fiber’s directions showed substantial variability among sites, and longitudinally directed fibers were higher in proportion (28–32%) than those in other directions (20–27%) at all sites except for the posterior site. The stiffness and Young’s modulus in the longitudinal direction (20–283 N/mm; 71.6–275.9 MPa, highest at the lateral site) were significantly higher than in the transverse direction (3–16 N/mm; 3.2–41.9 MPa, lowest at the lateral site). At the medial site, the proportion of the transversely directed fibers was higher in females than males, with higher stiffness and Young’s modulus thereof. The present study shows that the fascia lata possesses site- and gender-dependence of the morphological characteristics and elastic properties.  相似文献   

5.
On the basis of first-principles simulation, the structure, formation enthalpy and mechanical properties (elastic constant, bulk and shear modulus and hardness) of five Nb-doped Ni systems are systematically studied. The calculated equilibrium volume increases with the Nb concentration increasing. The computational elastic constants and formation enthalpy indicate that all Nb-doped Ni systems are mechanically and thermodynamically stable in our research. The hardness of these systems was predicted after the bulk modulus and shear modulus had been accurately calculated. The results show that the hardness increases with the Nb concentration increasing when the Nb concentration was below 4.9%, beyond which the hardness will decrease; this is within the scope of our study.  相似文献   

6.
We studied the elastic properties of bone to analyze its mechanical behavior. The basic principles of ultrasonic methods are now well established for varying isotropic media, particularly in the field of biomedical engineering. However, little progress has been made in its application to anisotropic materials. This is largely due to the complex nature of wave propagation in these media. In the present study, the theory of elastic waves is essential because it relates the elastic moduli of a material to the velocity of propagation of these waves along arbitrary directions in a solid. Transducers are generally placed in contact with the samples which are often cubes with parallel faces that are difficult to prepare. The ultrasonic method used here is original, a rough preparation of the bone is sufficient and the sample is rotated. Moreover, to analyze heterogeneity of the structure we measure velocities in different points on the sample. The aim of the present study was to determine in vitro the anisotropic elastic properties of cortical bones. For this purpose, our method allowed measurement of longitudinal and transverse velocities (C(L) and C(T)) in longitudinal (fiber direction) and the radial directions (orthogonal to the fiber direction) of compact bones. Young's modulus E and Poisson's ratio nu, were then deduced from the velocities measured considering the compact bone as transversely isotropic or orthotropic. The results are in line with those of other methods.  相似文献   

7.
This study uses a nanoindentation technique to examine variations in the local mechanical properties of porcine femoral cortical bone under hydrated conditions. Bone specimens from three age groups (6, 12 and 42 months), representing developing bone, ranging from young to mature animals, were tested on the longitudinal and transverse cross-sectional surfaces. Elastic modulus and hardness of individual lamellae within bone's microstructure: laminar bone, interstitial bone, and osteons, were measured. Both the elastic modulus and hardness increased with age. However, the magnitudes of these increases were different for each microstructural component. The longitudinal moduli were higher than the transverse moduli. Dehydrated samples were also tested to allow a comparison with hydrated samples and these resulted in higher moduli and hardness than the hydrated samples. Again, the degree of variation was different for each microstructural component. These results indicate that the developmental changes in bone have different rates of mechanical change within each microstructural component.  相似文献   

8.
A crucial step of food contamination inspection is identifying the species of beetle fragments found in the sample, since the presence of some storage beetles is a good indicator of insanitation or potential food safety hazards. The current pratice, visual examination by human analysts, is time consuming and requires several years of experience. Here we developed a species identification algorithm which utilizes images of microscopic elytra fragments. The elytra, or hardened forewings, occupy a large portion of the body, and contain distinctive patterns. In addition, elytra fragments are more commonly recovered from processed food products than other body parts due to their hardness. As a preliminary effort, we chose 15 storage product beetle species frequently detected in food inspection. The elytra were then separated from the specimens and imaged under a microscope. Both global and local characteristics were quantified and used as feature inputs to artificial neural networks for species classification. With leave-one-out cross validation, we achieved overall accuracy of 80% through the proposed global and local features, which indicates that our proposed features could differentiate these species. Through examining the overall and per species accuracies, we further demonstrated that the local features are better suited than the global features for species identification. Future work will include robust testing with more beetle species and algorithm refinement for a higher accuracy.  相似文献   

9.
Plantar fascia (PF) is a heterogeneous thickness structure across plantar foot. It is important significance to investigate the biomechanical behavior of the medial, middle and lateral PF regions. To investigate the non-uniform macro/micro structures of the different PF regions, the uniaxial tensile test of PF strips were performed to assess the mechanical behavior of PF. A scanning electron microscope (SEM) was used to visualize and measure the micro morphology of PF associated with collagen fibers. A three-dimensional foot finite element (FE) model was developed to quantify the tensile behavior of the internal PF. The elastic modulus of the lateral PF component (1560 MPa) was observed, followed by the medial (701 MPa), the central (1100 MPa) and the lateral (714 MPa) portions in the central component. Elongation of the central portion (0.192) was lower than the medial (0.223) and the lateral (0.227) portions. The corresponding SEM images showed that the fibers of the central portion were more densely packed and thicker compared to the ambilateral portions in the central component. While the FE model prediction also suggested that the greater elastic modulus of the central PF portion had lower strain (0.192) versus the ambilateral portions. Therefore, the lower elongation and greater elastic modulus at the central portion of PF would probably have a high risk of PF injury. The findings showed a relation between the mechanical tension and fibrous morphology of PF. This information would have a better understanding of the PF pathophysiology diseases related to tear and injury of PF.  相似文献   

10.
Multi-scale experimental work was carried out to characterize cortical bone as a heterogeneous material with hierarchical structure, which spans from nanoscale (mineralized collagen fibril), sub-microscale (single lamella), microscale (lamellar structures), to mesoscale (cortical bone) levels. Sections from femoral cortical bone from 6, 12, and 42 months old swine were studied to quantify the age-related changes in bone structure, chemical composition, and mechanical properties. The structural changes with age from sub-microscale to mesoscale levels were investigated with scanning electron microscopy and micro-computed tomography. The chemical compositions at mesoscale were studied by ash content method and dual energy X-ray absorptiometry, and at microscale by Fourier transform infrared microspectroscopy. The mechanical properties at mesoscale were measured by tensile testing, and elastic modulus and hardness at sub-microscale were obtained using nanoindentation. The experimental results showed age-related changes in the structure and chemical composition of cortical bone. Lamellar bone was a prevalent structure in 6 months and 12 months old animals, resorption sites were most pronounced in 6 months old animals, while secondary osteons were the dominant features in 42 months old animals. Mineral content and mineral-to-organic ratio increased with age. The structural and chemical changes with age corresponded to an increase in local elastic modulus, and overall elastic modulus and ultimate tensile strength as bone matured.  相似文献   

11.
The microstructure, composition and mechanical properties of the rostrum in Cyrtotrachelus longimanus (JHC Fabre) were studied utilizing light, fluorescent, scanning electron microscopy (SEM) and energy-dispersive spectroscopy. SEM images show the morphological characteristics of rostrum’s cross section; it is a typical lightweight multilayer structure – one rigid exocuticle layer and dense endocuticle layers, which construct unevenly overlapping fiber structures. The composition analysis of the rostrum shows that it is mainly composed of C, H, N, O, as well as some metal elements and microelements, such as Mg, Si, Zn, Ca and Na, which contribute to its mechanical performance. The mechanical properties of the rostrum were tested by the electronic universal testing machine, which shows it has high-specific strength and is almost the same as that of the stainless steel. The results may provide a biological template to inspire biomimetic lightweight structure design.  相似文献   

12.
Microtubules in living cells are very important component for various cellular functions as well as to maintain the cell shape. Mechanical properties of microtubules play a vital role in their functions and structure. To understand the mechanical properties of microtubules in living cells, we developed an orthotropic-Pasternak model and investigated the vibrational behavior when microtubules are embedded in surrounding elastic medium. We considered microtubules as orthotropic elastic shell and its surrounding elastic matrix as Pasternak foundation. We found that due to mechanical coupling of microtubules with elastic medium, the flexural vibration is increased with the stiffening of elastic medium. We noticed that foundation modulus (H) and shear modulus (G) have more effect on radial vibrational mode as compared to longitudinal vibrational mode and torsional vibrational mode.  相似文献   

13.
In trabecular bone, each remodeling event results in the resorption and/or formation of discrete structural units called ‘packets’. These remodeling packets represent a fundamental level of bone’s structural hierarchy at which to investigate composition and mechanical behaviors. The objective of this study was to apply the complementary techniques of quantitative backscattered electron microscopy (qBSEM) and nanoindentation to investigate inter-relationships between packet mineralization, elastic modulus, contact hardness and plastic deformation resistance. Indentation arrays were performed across nine trabecular spicules from 3 human donors; these spicules were then imaged using qBSEM, and discretized into their composite remodeling packets (127 in total). Packets were classified spatially as peripheral or central, and mean contact hardness, plastic deformation resistance, elastic modulus and calcium content calculated for each. Inter-relationships between measured parameters were analysed using linear regression analyses, and dependence on location assessed using Student’s t-tests. Significant positive correlations were found between all mechanical parameters and calcium content. Elastic modulus and contact hardness were significantly correlated, however elastic modulus and plastic deformation resistance were not. Calcium content, contact hardness and elastic modulus were all significantly higher for central packets than for peripheral, confirming that packet mineral content contributes to micromechanical heterogeneity within individual trabecular spicules. Plastic deformation resistance, however, showed no such regional dependence, indicating that the plastic deformation properties in particular, are determined not only by mineral content, but also by the organic matrix and interactions between these two components.  相似文献   

14.
Oyen ML 《Journal of biomechanics》2006,39(14):2699-2702
A series elastic and plastic deformation model [Sakai, M., 1999. The Meyer hardness: a measure for plasticity? Journal of Materials Research 14(9), 3630–3639] is used to deconvolute the resistance to plastic deformation from the plane strain modulus and contact hardness parameters obtained in a nanoindentation test. Different functional dependencies of contact hardness on the plane strain modulus are examined. Plastic deformation resistance values are computed from the modulus and contact hardness for engineering materials and mineralized tissues. Elastic modulus and plastic deformation resistance parameters are used to calculate elastic and plastic deformation components, and to examine the partitioning of indentation deformation between elastic and plastic. Both the numerical values of plastic deformation resistance and the direct computation of deformation partitioning reveal the intermediate mechanical responses of mineralized composites when compared with homogeneous engineering materials.  相似文献   

15.
In many muscles, the tendinous structures include both an extramuscular free tendon as well as a sheet-like aponeurosis. In both free tendons and aponeuroses the collagen fascicles are oriented primarily longitudinally, along the muscle's line of action. It is generally assumed that this axis represents the direction of loading for these structures. This assumption is well founded for free tendons, but aponeuroses undergo a more complex loading regime. Unlike free tendons, aponeuroses surround a substantial portion of the muscle belly and are therefore loaded both parallel (longitudinal) and perpendicular (transverse) to a muscle's line of action when contracting muscles bulge to maintain a constant volume. Given this biaxial loading pattern, it is critical to understand the mechanical properties of aponeuroses in both the longitudinal and transverse directions. In this study, we use uniaxial testing of isolated tissue samples from the aponeurosis of the lateral gastrocnemius of wild turkeys to determine mechanical properties of samples loaded longitudinally (along the muscle's line of action) and transversely (orthogonal to the line of action). We find that the aponeurosis has a significantly higher Young's modulus in the longitudinal than in the transverse direction. Our results also show that aponeuroses can behave as efficient springs in both the longitudinal and transverse directions, losing little energy to hysteresis. We also test the failure properties of aponeuroses to quantify the likely safety factor with which these structures operate during muscular force production. These results provide an essential foundation for understanding the mechanical function of aponeuroses as biaxially loaded biological springs.  相似文献   

16.
Mechanical properties of metaphyseal bone in the proximal femur   总被引:4,自引:1,他引:3  
We used a three-point bending test to investigate the structural behavior of 123 rectangular flat plate specimens harvested from the metaphyseal shell of the cervical and intertrochanteric regions of five fresh/frozen human proximal femora. For comparison purposes, 36 specimens of similar geometry were also fabricated from bone of the femoral diaphysis. All specimens were oriented in either the local longitudinal or transverse directions. The mean longitudinal elastic modulus was 9650 +/- 2410 (SD) MPa and demonstrated a 24% decrease from that measured for the diaphysis (12500 +/- 2140 MPa) using the same testing technique. However, the transverse elastic moduli did not differ significantly between the proximal (5470 +/- 1720 MPa) and diaphyseal (5990 +/- 1520 MPa) specimens. The globally averaged values for the ultimate tensile strengths of the metaphyseal shell were 101 +/- 26 MPa in the longitudinal and 50 +/- 12 MPa in the transverse directions. These compared with diaphyseal values of 128 +/- 16 MPa and 47 +/- 12 MPa, respectively. While these differences were largely due to the reduced density of the proximal specimens, a slight decrease in transverse anisotropy for the proximal specimens was also noted by comparing the ratio of longitudinal to transverse moduli (1.76) and tensile strength (2.02) to the diaphyseal values (2.09 and 2.71, respectively). Use of these data should lead to improved performance of analytical models for the proximal femur, and thus help focus increased attention on the structural contribution of trabecular bone to the strength and rigidity of the proximal femur.  相似文献   

17.
18.
Elastic constants, including the elastic modulus, the shear modulus, and Poisson's ratio, were measured on human craniofacial bone specimens obtained from the supraorbital region and the buccal surfaces of the mandibles of unembalmed cadavers. Constants were determined using an ultrasonic wave technique in three directions relative to the surface of each sample: 1) normal, 2) tangential, and 3) longitudinal. Statistical analysis of these elastic constants indicated that significant differences in the relative proportions of elastic properties existed between the regions. Bone from the mandible along its longitudinal axis was stiffer than bone from the supraorbital region. Directional differences in both locations demonstrated that cranial bone was not elastically isotropic. It is suggested that differences in elastic properties correspond to regional differences in function. © 1993 Wiley-Liss, Inc.  相似文献   

19.
The morphology, ultrastrucure, effective elastic modulus, and adhesive properties of two different smooth-type attachment pads were studied in two orthopteran species. Tettigonia viridissima (Ensifera) and Locusta migratoria (Caelifera) have a similar structural organization of their attachment pads. They both possess a flexible exocuticle, where the cuticular fibrils are fused into relatively large rods oriented at an angle to the surface. The compliant material of the pad contributes to the contact formation with the substrate. However, the pad material structure was found to be different in these two species. L. migratoria pads bear a thick sub-superficial layer, as well as a higher density of rods. The indentation experiments showed a higher effective elastic modulus and a lower work of adhesion for L. migratoria pads. When the indentations were made at different depths, a higher effective elastic modulus was revealed at lower indentation depths in both species. This effect is explained by the higher stiffness of the superficial pad layer. The obtained results demonstrate a clear correlation between density of the fibres, thickness of the superficial layer, compliance of the pad, and its adhesive properties. Such material structures and properties may be dependent on the preferred environment of each species.  相似文献   

20.
The mechanical properties of periosteum are not well characterized. An understanding of these properties is critical to predict the environment of pluripotent and osteochondroprogenitor cells that reside within the periosteum and that have been shown recently to exhibit a remarkably rapid capacity to generate bone de novo. Furthermore, the effects of cryopreservation on periosteal mechanical properties are currently unknown. We hypothesized that the periosteum is pre-stressed in situ and that the periosteum exhibits anisotropic material properties, e.g. the elastic modulus of the periosteum depends significantly on the direction of loading. We measured the change in area, axial length, and circumferential length of anterior, posterior, medial, and lateral fresh periosteal samples removed from underlying bone (t=0-16 h) as well as the average strain in axially and circumferentially oriented anterior periosteal samples subjected to tensile strain (0.004 mm/s) until failure. The elastic modulus was calculated from the resulting stress-strain curves. Tensile testing was repeated with axially aligned samples that had been slowly cryopreserved for comparison to fresh samples. Periosteal samples from all aspects shrank 44-54%, 33-47%, and 9-19% in area, axial length, and circumferential length, respectively. At any given time, the periosteum shrank significantly more in the axial direction than the circumferential direction. Tensile testing showed that the periosteum is highly anisotropic. When loaded axially, a compliant toe region of the stress-strain curve (1.93±0.14 MPa) is followed by a stiffer region until failure (25.67±6.87 MPa). When loaded circumferentially, no toe region is observable and the periosteum remained compliant until failure (4.41±1.21 MPa). Cryopreservation had no significant effect on the elastic modulus of the periosteum. As the periosteum serves as the bounding envelope of the femur, anisotropy in periosteal properties may play a key role in modulating bone growth, healing and adaptation, in health, disease, and trauma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号