首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of human platelets with 162 nM 12-O-tetradecanoylphorbol-13-acetate (TPA) resulted in phosphorylation of a number of peptides, including myosin heavy chain and the 20-kDa myosin light chain. The site phosphorylated on the myosin heavy chain was localized by two-dimensional peptide mapping to a serine residue(s) in a single major tryptic phosphopeptide. This phosphopeptide co-migrated with a tryptic peptide that was produced following in vitro phosphorylation of platelet myosin heavy chain using protein kinase C. The sites phosphorylated in the 20-kDa myosin light chain in intact cells were analyzed by two-dimensional mapping of tryptic peptides and found to correspond to Ser1 and Ser2 in the turkey gizzard myosin light chain. In vitro phosphorylation of purified human platelet myosin by protein kinase C showed that in addition to Ser1 and Ser2, a third site corresponding to Thr9 in turkey gizzard myosin light chain is also phosphorylated. The phosphorylatable myosin light chains from human platelets were found to consist of two major isoforms present in approximately equal amounts, but differing in their molecular weights and isoelectric points. A third, minor isoform was also visualized by two-dimensional gel electrophoresis. Following treatment with TPA, both the mono- and diphosphorylated forms of each isoform could be visualized, and the sites of phosphorylation were identified. The phosphate content rose from negligible amounts found prior to treatment with TPA to 1.2 mol of phosphate/mol of myosin light chain and 0.7 mol of phosphate/mol of myosin heavy chain following treatment. These results suggest that TPA mediates phosphorylation of both myosin light and heavy chains in intact platelets by activation of protein kinase C.  相似文献   

2.
Myosin purified from rabbit alveolar macrophages has been shown previously to be phosphorylated on the rod portion of the heavy chain and on the 20-kDa light chains (Trotter, J.A. (1982) Biochem Biophys. Res. Commun. 106, 1071-1077). Phosphorylation of the 20-kDa light chains by endogenous kinase activity is associated with a significant enhancement of the actin-activated MgATPase activity (Trotter, J.A., and Adelstein, R.S. (1979) J. Biol. Chem. 254, 8781-8785), whereas the function of heavy-chain phosphorylation is unknown. The isolated heavy chains of myosin purified from freshly harvested cells contain between 0.4 and 1.5 mol of PO4/mol of heavy chain, all esterified to serine residues. Using myosin phosphorylated by incubating living unstimulated macrophages in the presence of 32Pi, two-dimensional thin-layer mapping of tryptic peptides derived from heavy chains yields four phosphopeptides, which are phosphorylated to different extents. Limited trypsin digestion of similar radioactive myosin removes all radioactivity from the heavy chain while reducing its apparent molecular mass by less than 10 kDa. It is concluded that the heavy chain of macrophage myosin is phosphorylated on as many as four serines within 10 kDa of the tip of the tail.  相似文献   

3.
Protein kinase C phosphorylated both the 19/21-kDa regulatory light chains and heavy chains of bovine brain myosin. The major phosphorylation sites of the light chains were on their threonyl residues, while those for myosin light chain kinase were on their seryl residues. Whereas several non-muscle regular myosins have been reported to be phosphorylated by different types of protein kinases at the non-helical small segments at the tail ends of the heavy chains, the phosphorylation sites for protein kinase C were localized on the head portion of the heavy chains of brain myosin. The possible role of phosphorylation of brain myosin by protein kinase C in the regulation of motility of neural cells is discussed.  相似文献   

4.
In Dictyostelium cells, myosin II is found as cytosolic nonassembled monomers and cytoskeletal bipolar filaments. It is thought that the phosphorylation state of three threonine residues in the tail of myosin II heavy chain regulates the molecular motor's assembly state and localization. Phosphorylation of the myosin heavy chain at threonine residues 1823, 1833 and 2029 is responsible for maintaining myosin in the nonassembled state, and subsequent dephosphorylation of these residues is a prerequisite for assembly into the cytoskeleton. We report here the characterization of myosin heavy-chain phosphatase activities in Dictyostelium utilizing myosin II phosphorylated by myosin heavy-chain kinase A as a substrate. One of the myosin heavy-chain phosphatase activities was identified as protein phosphatase 2A and the purified holoenzyme was composed of a 37-kDa catalytic subunit, a 65-kDa A subunit and a 55-kDa B subunit. The protein phosphatase 2A holoenzyme displays two orders of magnitude higher activity towards myosin phosphorylated on the heavy chains than it does towards myosin phosphorylated on the regulatory light chains, consistent with a role in the control of filament assembly. The purified myosin heavy-chain phosphatase activity promotes bipolar filament assembly in vitro via dephosphorylation of the myosin heavy chain. This system should provide a valuable model for studying the regulation and localization of protein phosphatase 2A in the context of cytoskeletal reorganization.  相似文献   

5.
The heavy chain of smooth muscle myosin was found to be phosphorylated following immunoprecipitation from cultured bovine aortic smooth muscle cells. Of a variety of serine/threonine kinases assayed, only casein kinase II and calcium/calmodulin-dependent protein kinase II phosphorylated the smooth muscle myosin heavy chain to a significant extent in vitro. Two-dimensional maps of tryptic peptides derived from heavy chains phosphorylated in cultured cells revealed one major and one minor phosphopeptide. Identical tryptic peptide maps were obtained from heavy chains phosphorylated in vitro with casein kinase II but not with calcium/calmodulin-dependent protein kinase II. Of note, the 204-kDa smooth muscle myosin heavy chain but not the 200-kDa heavy chain isoform was phosphorylated by casein kinase II. Partial sequence of the tryptic phosphopeptides generated following phosphorylation by casein kinase II yielded Val-Ile-Glu-Asn-Ala-Asp-Gly-Ser*-Glu-Glu-Glu-Val. The Ser* represents the Ser(PO4) which is in an acidic environment, as is typical for casein kinase II phosphorylation sites. By comparison with the deduced amino acid sequence for rabbit uterine smooth muscle myosin (Nagai, R., Kuro-o, M., Babij, P., and Periasamy, M. (1989) J. Biol. Chem. 264, 9734-9737), we have localized the phosphorylated serine residue to the non-helical tail of the 204-kDa isoform of the smooth muscle myosin heavy chain. The ability of the 204-kDa isoform, but not the 200-kDa isoform, to serve as a substrate for casein kinase II suggests that these two isoforms can be regulated differentially.  相似文献   

6.
A number of different protein kinases phosphorylate purified heavy chains or the 20-kDa light chain of smooth muscle myosin. The physiological significance of these phosphorylation reactions has been examined in intact smooth muscle. Myosin heavy chain was slightly phosphorylated (0.08 mol of phosphate/mol) under control conditions in bovine tracheal tissue. Treatment with carbachol, isoproterenol, or phorbol 12,13-dibutyrate resulted in no significant change. In contrast, heavy chain was phosphorylated to 0.30 mol of phosphate/mol of heavy chain in tracheal smooth muscle cells in culture. This value increased significantly with ionomycin treatment. In control tissues, 9% of the light chain was monophosphorylated with 32P in the serine site phosphorylated by myosin light chain kinase. Carbachol (0.1 microM) alone resulted in contraction and 42% monophosphorylated light chain with 32P only in the serine site phosphorylated by myosin light chain kinase. Similarly, stimulation with histamine, 5-hydroxytryptamine, or KCl resulted in 32P incorporation into only the myosin light chain kinase serine site. Phorbol 12,13-dibutyrate (1 microM) alone resulted in 22% monophosphorylated light chain. However, only 25% of the 32P was in the myosin light chain kinase serine site, whereas 75% was in a serine site phosphorylated by protein kinase C. Phorbol 12,13-dibutyrate plus carbachol resulted in 27% monophosphorylated light chain; 75% of the 32P was in the myosin light chain kinase serine site, with the remainder in the protein kinase C serine site. These results indicate that phorbol esters act to increase phosphorylation of myosin light chain by protein kinase C. However, receptor-mediated stimulation or depolarization leading to tracheal smooth muscle contraction results in phosphorylation of myosin light chain by myosin light chain kinase alone.  相似文献   

7.
J P Rieker  J H Collins 《FEBS letters》1987,223(2):262-266
Calmodulin-dependent myosin light chain kinase isolated from chicken intestinal brush border phosphorylates brush border myosin at an apparently single serine identical to that phosphorylated by smooth muscle myosin light chain kinase. Phosphorylation to 1.8 mol phosphate/mol myosin activated the myosin actin-activated ATPase about 10-fold, to about 50 nmol/min per mg. Myosin phosphorylated on its light chains could then be further phosphorylated to a total of 3.2 mol phosphate per mol by brush border calmodulin-dependent heavy chain kinase. Heavy chain phosphorylation did not alter the actin-activated ATPase of either myosin prephosphorylated on its light chains or of unphosphorylated myosin.  相似文献   

8.
IgE-mediated stimulation of rat basophilic leukemia (RBL-2H3) cells results in the secretion of histamine. Myosin immunoprecipitated from these cells shows an increase in the amount of radioactive phosphate incorporated into its heavy (200 kDa) and light (20 kDa) chains. In unstimulated cells two-dimensional mapping of tryptic peptides of the myosin light chain reveals one phosphopeptide containing the serine residue phosphorylated by myosin light chain kinase. Following stimulation a second phosphopeptide appears containing a serine residue phosphorylated by protein kinase C. Tryptic phosphopeptide maps derived from myosin heavy chains show that unstimulated cells contain three major phosphopeptides. Following stimulation a new tryptic phosphopeptide appears containing a serine site phosphorylated by protein kinase C. The stoichiometry of phosphorylation of the myosin light and heavy chains was determined before and after antigenic stimulation. Before stimulation, myosin light chains contained 0.4 mol of phosphate/mol of light chain all confined to a serine not phosphorylated by protein kinase C. Cells that secreted 44% of their total histamine in 10 min exhibited an increase in phosphate content at sites phosphorylated by protein kinase C from 0 mol of phosphate/mol of myosin subunit to 0.7 mol of phosphate/mol of light chain and to 1 mol of phosphate/mol of heavy chain. When RBL-2H3 cells were made permeable with streptolysin O they still showed a qualitatively similar pattern of secretion and phosphorylation. Our results show that the time course of histamine secretion from stimulated RBL-2H3 cells parallels that of myosin heavy and light chain phosphorylation by protein kinase C.  相似文献   

9.
In this article we review the various amino acids present in vertebrate nonmuscle and smooth muscle myosin that can undergo phosphorylation. The sites for phosphorylation in the 20 kD myosin light chain include serine-19 and threonine-18 which are substrates for myosin light chain kinase and serine-1 and/or-2 and threonine-9 which are substrates for protein kinase C. The sites in vertebrate smooth muscle and nonmuscle myosin heavy chains that can be phosphorylated by protein kinase C and casein kinase II are also summarized.Original data indicating that treatment of human T-lymphocytes (Jurkat cell line) with phorbol 12-myristate 13-acetate results in phosphorylation of both the 20 kD myosin light chain as well as the 200 kD myosin heavy chain is presented. We identified the amino acids phosphorylated in the human T-lymphocytes myosin light chains as serine-1 or serine-2 and in the myosin heavy chains as serine-1917 by 1-dimensional isoelectric focusing of tryptic phosphopeptides. Untreated T-lymphocytes contain phosphate in the serine-19 residue of teh myosin light chain and in a residue tentatively identified as serine-1944 in the myosin heavy chain.Abbreviations MLC myosin light chain - MHC myosin heavy chain - Tris tris(hydroxymethyl)aminomethane - EGTA [ethylenebis(oxyethylenenitrilo)]tetraacetic acid - EDTA ethylenediaminetetraacetate - TPCK N-tosyl-L-phenylalanine chloromethyl ketone - PMA phorbol 12-myristate 13-acetate  相似文献   

10.
Regulation of embryonic smooth muscle myosin by protein kinase C   总被引:2,自引:0,他引:2  
Phosphorylation of the 20-kDa light chain regulates adult smooth muscle myosin; phosphorylation by the Ca2+/calmodulin-dependent enzyme myosin light chain kinase stimulates the actomyosin ATPase activity of adult smooth muscle myosin; the simultaneous phosphorylation of a separate site on the 20-kDa light chain by the Ca2+/phospholipid-dependent enzyme protein kinase C attenuates the myosin light chain kinase-induced increase in the actomyosin ATPase activity of adult myosin. Fetal smooth muscle myosin, purified from 12-day-old fertilized chicken eggs, is structurally different from adult smooth muscle myosin. Nevertheless, phosphorylation of a single site on the 20-kDa light chain of fetal myosin by myosin light chain kinase results in stimulation of the actomyosin ATPase activity of this myosin. Protein kinase C, in contrast, phosphorylates three sites on the fetal myosin 20-kDa light chain including a serine or threonine residue on the same peptide phosphorylated by myosin light chain kinase. Interestingly, phosphorylation by protein kinase C stimulates the actomyosin ATPase activity of fetal myosin. Moreover, unlike adult myosin, there is no attenuation of the actomyosin ATPase activity when fetal myosin is simultaneously phosphorylated by myosin light chain kinase and protein kinase C. These data demonstrate, for the first time, the in vitro activation of a smooth muscle myosin by another enzyme besides myosin light chain kinase and raise the possibility of alternate pathways for regulating smooth muscle myosin in vivo.  相似文献   

11.
We have previously isolated two Ca2+, calmodulin-dependent protein kinases with molecular weights of 120,000 (120K enzyme) and 640,000 (640K enzyme), respectively, by gel filtration analysis from rat brain. Chicken gizzard myosin light-chain kinase and the 120K enzyme phosphorylated two light chains of brain myosin, whereas the 640K enzyme phosphorylated both the two light chains and the heavy chain. The phosphopeptides of the light chains digested by Staphylococcus aureus V8 protease were similar among chicken gizzard myosin light-chain kinase, the 120K enzyme, and the 640K enzyme. Only the seryl residue in the light chains and the heavy chain was phosphorylated by the enzymes. The phosphorylation of brain myosin by any of these enzymes led to an increase in actin-activated Mg-ATPase activity. The results suggest that brain myosin is regulated by brain Ca2+, calmodulin-dependent protein kinases in a similar but distinct mechanism in comparison with that of smooth muscle myosin.  相似文献   

12.
With large amounts of gizzard Mr 135,000 calmodulin-binding protein (myosin light chain kinase), the phosphate incorporation into myosin light chains was determined to be 2 mol/mol of myosin light chain. The actin-activated ATPase activity was dramatically enhanced when myosin light chains were phosphorylated by more than 1 mol of phosphate incorporated/mol of myosin light chain.  相似文献   

13.
The limited chymotryptic digestion of unphosphorylated gizzard myosin in 0.15 M NaCl converted a papain-insensitive myosin in ATP to a papain-sensitive one. This conversion without phosphorylation of its 20-kDa light chain was accompanied with truncation of a 200-kDa heavy chain to a 195-kDa fragment and with the degradation of a 20-kDa light chain. Papain also yielded the 195-kDa fragment from the heavy chain, irrespective of the presence or absence of ATP. However, the ATP-induced protection of unphosphorylated myosin from the papain-digestion disappeared concurrently with degradation of the 20-kDa light chain by papain rather than the truncation of heavy chain. Papers from two laboratories [Onishi, H. & Watanabe, S. (1984) J. Biochem. (Tokyo) 95, 903-905; Kumon, A., Yasuda, S., Murakami, N., and Matsumura, S. (1984) Eur. J. Biochem. 140, 265-271] have reported that the ATP-protection of unphosphorylated myosin against papain is not observed after the 20-kDa light chain has been phosphorylated. The present results might indicate that the ATP-induced protection is also abolished through the chymotryptic degradation of the 20-kDa light chain.  相似文献   

14.
A high salt extract of bovine brain was found to contain a protein kinase which catalyzed the phosphorylation of heavy chain of brain myosin. The protein kinase, designated as myosin heavy chain kinase, has been purified by column chromatography on phosphocellulose, Sephacryl S-300, and hydroxylapatite. During the purification, the myosin heavy chain kinase was found to co-purify with casein kinase II. Furthermore, upon polyacrylamide gel electrophoresis of the purified enzyme under non-denaturing conditions, both the heavy chain kinase and casein kinase activities were found to comigrate. The purified enzyme phosphorylated casein, phosvitin, troponin T, and isolated 20,000-dalton light chain of gizzard myosin, but not histone or protamine. The kinase did not require Ca2+-calmodulin, or cyclic AMP for activity. Heparin, which is known to be a specific inhibitor of casein kinase II, inhibited the heavy chain kinase activity. These results indicate that the myosin heavy chain kinase is identical to casein kinase II. The myosin heavy chain kinase catalyzed the phosphorylation of the heavy chains in intact brain myosin. The heavy chains in intact gizzard myosin were also phosphorylated, but to a much lesser extent. The heavy chains of skeletal muscle and cardiac muscle myosins were not phosphorylated to an appreciable extent. Although the light chains isolated from brain and gizzard myosins were efficiently phosphorylated by the same enzyme, the rates of phosphorylation of these light chains in the intact myosins were very small. From these results it is suggested that casein kinase II plays a role as a myosin heavy chain kinase for brain myosin rather than as a myosin light chain kinase.  相似文献   

15.
Phosphorylation-dependent regulation of Limulus myosin   总被引:12,自引:0,他引:12  
Myosin from Limulus, the horseshoe crab, is shown to be regulated by a calcium-calmodulin-dependent phosphorylation of its regulatory light chains. Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis of a Limulus myosin preparation reveals three light chain bands. Two of these light chains have been termed regulatory light chains based on their ability to bind to light chain-denuded scallop myofibrils (Sellers, J. R., Chantler, P. D., and Szent-Gy?rgyi, A. G. (1980) J. Mol. Biol. 144, 223-245). Ths other light chain does not bind to these myofibrils and is thus termed the essential light chain. Both Limulus regulatory light chains can be phosphorylated with a highly purified turkey gizzard myosin light chain kinase or with a partially purified myosin light chain kinase which can be isolated from Limulus muscle by affinity chromatography on a calmodulin-Sepharose column. Phosphorylation with both of these enzymes requires calcium and calmodulin. Limulus myosin is isolated in an unphosphorylated form. The MgATPase of this unphosphorylated myosin is only slightly activated by rabbit skeletal muscle actin plus tropomyosin. The calcium-dependent phosphorylation of the myosin results in an increase in the actin-activated MgATPase rate. Once phosphorylated, the actin-activated MgATPase rate is only slightly modified by calcium. This suggests that calcium operates mainly at the level of the myosin kinase-calmodulin system.  相似文献   

16.
The heavy chains and the 19-kDa and 20-kDa light chains of bovine brain myosin can by phosphorylated. To localise the site of heavy-chain phosphorylation, the myosin was initially subjected to digestion with chymotrypsin and papain under a variety of conditions and the fragments thus produced were identified. Irrespective of the ionic strength, i.e. whether the myosin was monomeric or filamentous, chymotryptic digestion produced two major fragments of 68 kDa and 140 kDa; the 140-kDa fragment was further digested by papain to yield a 120-kDa and a 23-kDa fragment. These fragments were characterised by (a) a gel overlay technique using 125I-labelled light chains, which showed that the 140-kDa and 23-kDa polypeptides contain the light-chain-binding sites; (b) using myosin photoaffinity labelled at the active site with [3H]UTP, which showed that the 68-kDa fragment contained the catalytic site, and (c) electron microscopy, using rotary shadowing and negative-staining techniques, which demonstrated that after chymotryptic digestion the myosin head remains attached to the tail whereas on papain digestion isolated heads and tails were observed. Thus the 120-kDa polypeptide derived from the 140-kDa fragment is the tail of the myosin, and the 68-kDa fragment containing the catalytic site and the 23-kDa fragment, with the light-chain-binding sites, form the head (S1) portion of the myosin. When [32P]-phosphorylated brain myosin was digested with chymotrypsin and papain it was shown that the heavy-chain phosphorylation site is located in a 5-kDa peptide at the C-terminal end of the heavy chain, i.e. the end of the myosin tail. Using hydrodynamic and electron microscopic techniques, no significant effect of either light-chain or heavy-chain phosphorylation on the stability of brain myosin filaments was observed, even in the presence of MgATP. Brain myosin filaments appear to be more stable than those of other non-muscle myosins. Light-chain phosphorylation did, however, have an effect on the conformation of brain myosin, for example in the presence of MgATP non-phosphorylated myosin molecules were induced to fold into a very compact folded state.  相似文献   

17.
1. The myosin molecule from Ehrlich ascites tumour cells consists of heavy chains of about 200 kDa and three species of light chains of 20, 19 and 15 kDa. 2. The heavy chain can be phosphorylated in vitro either by endogenous Ca2+-independent kinase or by casein kinase II. 3. The 20 and 19 kDa light chains can be phosphorylated either by an endogenous kinase or by myosin light chain kinase from chicken gizzard. 4. The Ca2+-ATPase activity of the purified myosin was 0.3 mumol/min mg protein. The Mg2+-ATPase activity was activated 14-fold by actin upon the light chain phosphorylation.  相似文献   

18.
Myosin was isolated from extracts of a clonal cell line of pheochromocytoma (PC12) cells by ammonium sulfate fractionation and gel filtration. This myosin consisted of heavy chains and two light chains (20 and 17 kDa). The 20 kDa light chain could be phosphorylated by a protein kinase which was also present in the extracts and which eluted after myosin from the gel filtration column. Myosin phosphorylation was partly inhibited by EGTA and by the calmodulin-inhibiting drug trifluoperazine. The Mg2+-ATPase of phosphorylated myosin, but not of unphosphorylated myosin, was activated by skeletal muscle actin. Ca2+ did not affect the Mg2+-ATPase activity of either myosin preparation at low ionic strength. The phosphorylation of myosin may activate a contractile mechanism controlling the Ca2+-dependent secretion of norepinephrine from the cells.  相似文献   

19.
A phosphatase that is active in dephosphorylating the isolated 20,000-Da light chain of myosin, as well as the enzyme myosin light chain kinase, has been purified to apparent homogeneity from turkey gizzards. The enzyme has a molecular weight of 165,000 by sedimentation-equilibrium centrifugation under nondenaturing conditions and is composed of three subunits (Mr = 60,000, 55,000, and 38,000) in a 1:1:1 molar ratio. The properties of the holoenzyme, as well as the purified catalytic subunit (Mr = 38,000) were compared using myosin light chains, intact myosin, and myosin light chain kinase as substrates. Although the holoenzyme is active in dephosphorylating the isolated myosin light chains and the enzyme myosin light chain kinase, the holoenzyme does not dephosphorylate myosin. On the other hand, the catalytic subunit of the holoenzyme dephosphorylates all three substrates. When myosin light chain kinase, which has been phosphorylated at two sites is used as substrate, both sites are rapidly dephosphorylated by the phosphatase in the absence of bound calmodulin. If calmodulin is bound to the diphosphorylated kinase, only one site is dephosphorylated. Interestingly, the single site dephosphorylated when calmodulin is bound to myosin light chain kinase is the site that is not phosphorylated when the calmodulin-myosin kinase complex is phosphorylated by cAMP-dependent protein kinase.  相似文献   

20.
At relatively high concentrations of myosin light chain kinase, a second site on the 20,000-dalton light chain of smooth muscle myosin is phosphorylated (Ikebe, M., and Hartshorne, D. J. (1985) J. Biol. Chem. 260, 10027-10031). In this communication the site is identified and kinetics associated with its phosphorylation and dephosphorylation are described. The doubly phosphorylated 20,000-dalton light chain from turkey gizzard myosin was hydrolyzed with alpha-chymotrypsin and the phosphorylated peptide was isolated by reverse phase chromatography. Following amino acid analyses and partial sequence determinations the second site of phosphorylation is shown to be threonine 18. This site is distinct from the threonine residue phosphorylated by protein kinase C. The time courses of phosphorylation of serine 19 and threonine 18 in isolated light chains follow a single exponential indicating a random process, although the phosphorylation rates differ considerably. The values of kcat/Km for serine 19 and threonine 18 for isolated light chains are 550 and 0.2 min-1 microM-1, respectively. With intact myosin, phosphorylation of serine 19 is biphasic; kcat/Km values are 22.5 and 7.5 min-1 microM-1 for the fast and slow phases, respectively. In contrast, phosphorylation of threonine 18 in intact myosin is a random, but markedly slower process, kcat/Km = 0.44 min-1 microM-1. Dephosphorylation of doubly phosphorylated myosin (approximately 4 mol of phosphate/mol of myosin) and isolated light chains (approximately 2 mol of phosphate/mol of light chain) follows a random process and dephosphorylation of the serine 19 and threonine 18 sites occurs at similar rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号