首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. We used the freshwater alga Chlorella NC64A (Division Chlorophyta) and its virus Paramecium bursaria Chlorella virus‐1 (PBCV‐1) as a model system to test for potential stoichiometric constraints on a virus–host interaction. 2. Media phosphorus concentrations were manipulated to create Chlorella NC64A host cells with low (91 ± 23) or high (453 ± 246) C : P ratio. In contrast, the C : P ratio of PBCV‐1, calculated from its biochemical composition, was 17 : 1. 3. Stoichiometric theory predicts that infection success and postinfection viral production should be depressed in high C : P cultures due to insufficient intracellular P for production of P‐rich viral particles. 4. Consistent with this hypothesis, viral production was strongly affected by host C : P ratio. While host C : P ratio did not affect viral attachment or the percentage of new viral particles that were infectious, in the low C : P Chlorella NC64A treatment, nine times more viruses were produced per infected cell than in the high C : P treatment (158 ± 138 versus 18 ± 18), indicating that the low C : P cells were higher quality for PBCV‐1 proliferation. 5. This result implies that the stoichiometric quality of algal cells can have a major effect on host–virus population dynamics.  相似文献   

2.
Paramecium bursaria Chlorella viruses were observed by applying transmission electron microscopy in the native symbiotic system Paramecium bursaria (Ciliophora, Oligohymenophorea) and the green algae Chlorella (Chlorellaceae, Trebouxiophyceae). Virus particles were abundant and localized in the ciliary pits of the cortex and in the buccal cavity of P. bursaria. This was shown for two types of the symbiotic systems associated with two types of Chlorella viruses - Pbi or NC64A. A novel quantitative stereological approach was applied to test whether virus particles were distributed randomly on the Paramecium surface or preferentially occupied certain zones. The ability of the virus to form an association with the ciliate was investigated experimentally; virus particles were mixed with P. bursaria or with symbiont-free species P. caudatum. Our results confirmed that in the freshwater ecosystems two types of P. bursaria -Chlorella symbiotic systems exist, those without Chlorella viruses and those associated with a large amount of the viruses. The fate of Chlorella virus particles at the Paramecium surface was determined based on obtained statistical data and taking into account ciliate feeding currents and cortical reorganization during cell division. A life cycle of the viruses in the complete symbiotic system is proposed.  相似文献   

3.
应用透射电镜术显示了含小球藻绿草履虫和人工诱导获得的无小球藻绿草履虫细胞的超微结构特征,无小球藻绿草履虫细胞内有大量处于不同消化阶段的食物泡及膜性小泡,在细胞质内常见有线粒体聚集分布以及内质网分布其中,细胞大核内核仁数目增多,并聚集形成多个核仁区。含小球藻绿草履虫中细胞膜性结构较少见,细胞大核中核仁数目较少。结果表明,小球藻共生体可能影响了宿主草履虫细胞中所述细胞器的功能,数量和分布,并影响了核仁的功能,数量和分布。  相似文献   

4.
GDP-D-mannose 4,6 dehydratase is the first enzyme in the de novo biosynthetic pathway of GDP-L-fucose, the activated form of L-fucose, a monosaccharide found in organisms ranging from bacteria to mammals. We determined the three-dimensional structure of GDP-D-mannose 4,6 dehydratase from the Paramecium bursaria Chlorella virus at 3.8A resolution. Unlike other viruses that use the host protein machinery to glycosylate their proteins, P. bursaria Chlorella virus modifies its structural proteins using many glycosyltransferases, being the first virus known to encode enzymes involved in sugar metabolism. P. bursaria Chlorella virus GDP-D-mannose 4,6 dehydratase belongs to the short-chain dehydrogenase/reductase protein superfamily. Accordingly, the family fold and the specific Thr, Tyr, and Lys catalytic triad are well conserved in the viral enzyme.  相似文献   

5.
To clone the genes encoding lysis protein from a Chlorella virus, water samples were collected from 13 aquatic environments located in the Kanto area of Japan. Eight water samples contained plaque-forming viruses on Chlorella sp. NC64A, but no virus was detected in the other five samples. A novel Chlorella virus, CVN1, was isolated from the Inba-numa marsh sample. CVN1 genomic DNA was partially digested and shotgun cloned into pUC118 to identify the genomic region responsible for the lytic phenotype on Chlorella sp. NC64A. A DNA fragment which encoded two ORFs, ORF1 and ORF2, was obtained by antialgal assay. The ORF2 gene product, CL2, consisted of 333 amino acids showing antialgal activity not only on the original host of Chlorella sp. NC64A, but also on the heterogeneous hosts of Chlorella vulgaris C-27 and C. vulgaris C-207. CL2 showed a weak homology (19.8% amino acid identity) to mannuronate lyase SP2 from Turbo cornutus. CL2 in Escherichia coli cells was purified using a nickel chelate column. Lyase activity of purified CL2 on alginic acid was observed in an enzyme assay. The specific activity of purified CL2 was 2.1x10(-2) U mg(-1), the optimum pH for enzymatic activity was 10.5, and Ca(2+) was required for enzyme activity. This is the first report of a Chlorella virus protein with lyase activity.  相似文献   

6.
Kodama Y  Fujishima M 《Protist》2009,160(1):65-74
Each symbiotic Chlorella of the ciliate Paramecium bursaria is enclosed in a perialgal vacuole derived from the host digestive vacuole to protect from lysosomal fusion. To understand the timing of differentiation of the perialgal vacuole from the host digestive vacuole, algae-free P. bursaria cells were fed symbiotic C. vulgaris cells for 1.5min, washed, chased and fixed at various times after mixing. Acid phosphatase activity in the vacuoles enclosing the algae was detected by Gomori's staining. This activity appeared in 3-min-old vacuoles, and all algae-containing vacuoles demonstrated activity at 30min. Algal escape from these digestive vacuoles began at 30min by budding of the digestive vacuole membrane into the cytoplasm. In the budded membrane, each alga was surrounded by a Gomori's thin positive staining layer. The vacuoles containing a single algal cell moved quickly to and attached just beneath the host cell surface. Such vacuoles were Gomori's staining negative, indicating that the perialgal vacuole membrane differentiates soon after the algal escape from the host digestive vacuole. This is the first report demonstrating the timing of differentiation of the perialgal vacuole membrane during infection of P. bursaria with symbiotic Chlorella.  相似文献   

7.
Previous studies have established that chlorella viruses encode K(+) channels with different structural and functional properties. In the current study, we exploit the different sensitivities of these channels to Cs(+) to determine if the membrane depolarization observed during virus infection is caused by the activities of these channels. Infection of Chlorella NC64A with four viruses caused rapid membrane depolarization of similar amplitudes, but with different kinetics. Depolarization was fastest after infection with virus SC-1A (half time [t(1/2)], about 9 min) and slowest with virus NY-2A (t(1/2), about 12 min). Cs(+) inhibited membrane depolarization only in viruses that encode a Cs(+)-sensitive K(+) channel. Collectively, the results indicate that membrane depolarization is an early event in chlorella virus-host interactions and that it is correlated with viral-channel activity. This suggestion was supported by investigations of thin sections of Chlorella cells, which show that channel blockers inhibit virus DNA release into the host cell. Together, the data indicate that the channel is probably packaged in the virion, presumably in its internal membrane. We hypothesize that fusion of the virus internal membrane with the host plasma membrane results in an increase in K(+) conductance and membrane depolarization; this depolarization lowers the energy barrier for DNA release into the host.  相似文献   

8.
Ho CK  Gong C  Shuman S 《Journal of virology》2001,75(4):1744-1750
Paramecium bursaria chlorella virus 1 (PBCV-1) elicits a lytic infection of its unicellular green alga host. The 330-kbp viral genome has been sequenced, yet little is known about how viral mRNAs are synthesized and processed. PBCV-1 encodes its own mRNA guanylyltransferase, which catalyzes the addition of GMP to the 5' diphosphate end of RNA to form a GpppN cap structure. Here we report that PBCV-1 encodes a separate RNA triphosphatase (RTP) that catalyzes the initial step in cap synthesis: hydrolysis of the gamma-phosphate of triphosphate-terminated RNA to generate an RNA diphosphate end. We exploit a yeast-based genetic system to show that Chlorella virus RTP can function as a cap-forming enzyme in vivo. The 193-amino-acid Chlorella virus RTP is the smallest member of a family of metal-dependent phosphohydrolases that includes the RNA triphosphatases of fungi and other large eukaryotic DNA viruses (poxviruses, African swine fever virus, and baculoviruses). Chlorella virus RTP is more similar in structure to the yeast RNA triphosphatases than to the enzymes of metazoan DNA viruses. Indeed, PBCV-1 is unique among DNA viruses in that the triphosphatase and guanylyltransferase steps of cap formation are catalyzed by separate viral enzymes instead of a single viral polypeptide with multiple catalytic domains.  相似文献   

9.
The 331-kbp chlorovirus Paramecium bursaria chlorella virus 1 (PBCV-1) genome was resequenced and annotated to correct errors in the original 15-year-old sequence; 40 codons was considered the minimum protein size of an open reading frame. PBCV-1 has 416 predicted protein-encoding sequences and 11 tRNAs. A proteome analysis was also conducted on highly purified PBCV-1 virions using two mass spectrometry-based protocols. The mass spectrometry-derived data were compared to PBCV-1 and its host Chlorella variabilis NC64A predicted proteomes. Combined, these analyses revealed 148 unique virus-encoded proteins associated with the virion (about 35% of the coding capacity of the virus) and 1 host protein. Some of these proteins appear to be structural/architectural, whereas others have enzymatic, chromatin modification, and signal transduction functions. Most (106) of the proteins have no known function or homologs in the existing gene databases except as orthologs with proteins of other chloroviruses, phycodnaviruses, and nuclear-cytoplasmic large DNA viruses. The genes encoding these proteins are dispersed throughout the virus genome, and most are transcribed late or early-late in the infection cycle, which is consistent with virion morphogenesis.  相似文献   

10.
The ciliate Paramecium bursaria living in mutualistic relationship with the unicellular green alga Chlorella is known to be easily infected by various potential symbionts/parasites such as bacteria, yeasts and other algae. Permanent symbiosis, however, seems to be restricted to Chlorella taxa. To test the specificity of this association, we designed infection experiments with two aposymbiotic P. bursaria strains and Chlorella symbionts isolated from four Paramecium strains, seven other ciliate hosts and two Hydra strains, as well as three free-living Chlorella species. Paramecium bursaria established stable symbioses with all tested Chlorella symbionts of ciliates, but never with symbiotic Chlorella of Hydra viridissima or with free-living Chlorella. Furthermore, we tested the infection specificity of P. bursaria with a 1:1:1 mixture of three compatible Chlorella strains, including the native symbiont, and then identified the strain of the newly established symbiosis by sequencing the internal transcribed spacer region 1 of the 18S rRNA gene. The results indicated that P. bursaria established symbiosis with its native symbiont. We conclude that despite clear preferences for their native Chlorella, the host-symbiont relationship in P. bursaria is flexible.  相似文献   

11.
4-Hydroxyproline, the characteristic amino acid of collagens and collagen-like proteins in animals, is also found in certain proline-rich proteins in plants but has been believed to be absent from viral and bacterial proteins. We report here on the cloning and characterization from a eukaryotic algal virus, Paramecium bursaria Chlorella virus-1, of a 242-residue polypeptide, which shows distinct sequence similarity to the C-terminal half of the catalytic alpha subunits of animal prolyl 4-hydroxylases. The recombinant polypeptide, expressed in Escherichia coli, was found to be a soluble monomer and to hydroxylate both (Pro-Pro-Gly)(10) and poly(L-proline), the standard substrates of animal and plant prolyl 4-hydroxylases, respectively. Synthetic peptides such as (Pro-Ala-Pro-Lys)(n), (Ser-Pro-Lys-Pro-Pro)(5), and (Pro-Glu-Pro-Pro-Ala)(5) corresponding to proline-rich repeats coded by the viral genome also served as substrates. (Pro-Ala-Pro-Lys)(10) was a particularly good substrate, with a K(m) of 20 microM. The prolines in both positions in this repeat were hydroxylated, those preceding the alanines being hydroxylated more efficiently. The data strongly suggest that P. bursaria Chlorella virus-1 expresses proteins in which many prolines become hydroxylated to 4-hydroxyproline by a novel viral prolyl 4-hydroxylase.  相似文献   

12.
Paramecium bursaria chlorella virus 1 (PBCV-1) is the prototype of a family of large, double-stranded DNA, plaque-forming viruses that infect certain eukaryotic chlorella-like green algae from the genus Chlorovirus. PBCV-1 infection results in rapid host membrane depolarization and potassium ion release. One interesting feature of certain chloroviruses is that they code for functional potassium ion-selective channel proteins (Kcv) that are considered responsible for the host membrane depolarization and, as a consequence, the efflux of potassium ions. This report examines the relationship between cellular depolarization and solute uptake. Annotation of the virus host Chlorella strain NC64A genome revealed 482 putative transporter-encoding genes; 224 are secondary active transporters. Solute uptake experiments using seven radioactive compounds revealed that virus infection alters the transport of all the solutes. However, the degree of inhibition varied depending on the solute. Experiments with nystatin, a drug known to depolarize cell membranes, produced changes in solute uptake that are similar but not identical to those that occurred during virus infection. Therefore, these studies indicate that chlorovirus infection causes a rapid and sustained depolarization of the host plasma membrane and that this depolarization leads to the inhibition of secondary active transporters that changes solute uptake.  相似文献   

13.
小球藻病毒PBCV-1特异性溶壁酶(Lysin)的溶壁活性   总被引:3,自引:0,他引:3  
从PBCV-1感染小球藻NC64A的细胞裂解液中提取了Lysin的粗制剂,酶活底物范围分析表明,几丁质酶、壳聚糖酶的β-1,3-葡萄糖苷酶是Lysin活性的主要组成部分,并与小球藻细胞壁的组成甩分相吻合。其中几丁酯酶和壳聚糖酶,特别是几丁酯酶在裂解小球藻细胞壁的过程中发挥了重要的作用。Lysin粗制剂经FPLC分离纯化得到分子量分别为52kD、56kD的两个几丁质酶(Chil和Chi2)和一个分子量为36kD的壳聚糖酶。  相似文献   

14.
The K+ channel Kcv is encoded by the chlorella virus PBCV-1. There is evidence that this channel plays an essential role in the replication of the virus, because both PBCV-1 plaque formation and Kcv channel activity in Xenopus oocytes have similar sensitivities to inhibitors. Here we report circumstantial evidence that the Kcv channel is important during virus infection. Recordings of membrane voltage in the host cells Chlorella NC64A reveal a membrane depolarization within the first few minutes of infection. This depolarization displays the same sensitivity to cations as Kcv conductance; depolarization also requires the intact membrane of the virion. Together these data are consistent with the idea that the virus carries functional K+ channels in the virion and inserts them into the host cell plasma membrane during infection.  相似文献   

15.
Abstract. Paramecium bursaria , a freshwater protozoan, typically harbors hundreds of symbiotic algae ( Chlorella sp.) in its cytoplasm. The relationship between host paramecia and symbiotic algae is stable and mutually beneficial in natural environments. We recently collected an aposymbiotic strain of P. bursaria . Infection experiments revealed that the natural aposymbiotic strain (Ysa2) showed unstable symbiosis with Chlorella sp. The algae aggregated at the posterior region of the host, resulting in aposymbiotic cell production after cell division. Cross-breeding analyses were performed to determine the heritability of the aposymbiotic condition. In crosses of Ysa2 with symbiotic strains of P. bursaria , F1 progeny were able to form stable symbioses with Chlorella sp. However, unstable symbiosis, resembling Ysa2 infection, occurred in some F2 progeny of sibling crosses between symbiotic F1 clones. Infection experiments using aposymbiotic F2 cells showed that these F2 subclones have limited ability to reestablish the symbiosis. These results indicate that the maintenance of stable symbiosis is genetically controlled and heritable, and that Ysa2 is a mutant lacking the mechanisms to establish stable symbiosis with Chlorella sp.  相似文献   

16.
Although the formation of a covalent enzyme-cleaved DNA complex is a prerequisite for the essential functions of topoisomerase II, this reaction intermediate has the potential to destabilize the genome. Consequently, all known eukaryotic type II enzymes maintain this complex at a low steady-state level. Recently, however, a novel topoisomerase II was discovered in Paramecium bursaria chlorella virus-1 (PBCV-1) that has an exceptionally high DNA cleavage activity [Fortune et al. (2001) J. Biol. Chem. 276, 24401-24408]. If robust DNA cleavage is critical to the physiological functions of chlorella virus topoisomerase II, then this remarkable characteristic should be conserved throughout the viral family. Therefore, topoisomerase II from Chlorella virus Marburg-1 (CVM-1), a distant family member, was expressed in yeast, isolated, and characterized. CVM-1 topoisomerase II is 1058 amino acids in length, making it the smallest known type II enzyme. The viral topoisomerase II displayed a high DNA strand passage activity and a DNA cleavage activity that was approximately 50-fold greater than that of human topoisomerase IIalpha. High DNA cleavage appeared to result from a greater rate of scission rather than promiscuous DNA site utilization, inordinately tight DNA binding, or diminished religation rates. Despite the fact that CVM-1 and PBCV-1 topoisomerase II share approximately 67% amino acid sequence identity, the two enzymes displayed clear differences in their DNA cleavage specificity/site utilization. These findings suggest that robust DNA cleavage is intrinsic to the viral enzyme and imply that chlorella virus topoisomerase II plays a physiological role beyond the control of DNA topology.  相似文献   

17.
SYNOPSIS In a culture system of Paramecium bursaria , virus particles were found in large number. The particle was able to infect and multiply in certain cells of the zoochlorella, an intracellular symbiotic alga of P. bursaria. The infective particle, designated as zoochlorella cell virus (ZCV), was icosahedral and 120–180 nm in edge to edge diameter. The ZCV particle was found to differ from any of the already established viruses attacking the green and the blue-green algae. Within the system where P. bursaria cells were growing, ZCV particles were detected in the depression of the pellicle, among the cilia growing in the cytopharynx, and in the food vacuole of P. bursaria. ZCV particles were infective only for the zoochlorella cells which were recently released from the cytoplasm of P. bursaria. The multiplication process of ZCV comprised the adsorption of the particle to the cell wall of the zoochlorella, the penetration of nucleic acid into the host cell interior, the replication of viral constituents, the maturation of viral particles and their final release by the burst of the zoochlorella cell. ZCV particles appeared only in the cytoplasmic region of the zoochlorella cell in which many ribosomes were distributed. A possible ecosystem among the 3 members consisting of P. bursaria , zoochlorella and ZCV is discussed.  相似文献   

18.
SYNOPSIS. Twenty-one different stocks of Paramecittm bursaria , belonging t o 4 separate varieties (syngens), whose endosymbiotic chorellae had been removed, were tested for reinfection by several strains of Chorella , some previously isolated from P. bursaria , and others free-living. In addition, infection of P. bursaria by a single strain of the green alga Scenedesmus sp., and an unidentified strain of yeast was attempted. Most combinations involving Chlorella yielded infected paramecia, and all those with Scenedesmus or the yeast did so. The failures with Chlorella were attributed to low infectibility of the stocks of Paramecium concerned, rather than to inability of the Chlorella to survive inside the paramecia. Little evidence was found that the strains of P. bursaria differed genetically in ability to maintain the symbiotic organisms.  相似文献   

19.
The photosynthetic changes evaluated by oxygen evolution, chlorophyll fluorescence, photoacoustics, and delayed fluorescence (DF) were studied in leaves of grown in vitro for 8 weeks grapevine plants (Vitis vinifera) infected by grapevine leafroll-associated virus 3 (GLRaV-3). The infected leaves were characterized during the viral infection without visible disease symptoms. The symptomless infection led to a decrease in plant biomass. The non-photochemical fluorescence quenching, qN, declined, whereas the photochemical quenching, qP, and the Chl a/b ratio were not significantly affected. Photoacoustic and oxygen evolution measurements showed that the energy storage and oxygen evolution rate decreased in the infected leaves. Enhanced alternative electron sinks during the symptomless viral infection were also estimated. The changes in fluorescence and DF temperature curves demonstrated an enhanced stability of the thylakoid membranes in the infected leaves. This effect was clearly expressed at high actinic light intensities. The viral infected in vitro grown grapevine plants were used in the present study as a simplified model system that allow to avoid the involvement of different environmental factors that could interfere with the GLRaV infection and the virus-grapevine interactions. Thus, the 'pure' impact of the viral infection on photosynthesis could be investigated.  相似文献   

20.
Chlorella variabilis NC64A, a unicellular photosynthetic green alga (Trebouxiophyceae), is an intracellular photobiont of Paramecium bursaria and a model system for studying virus/algal interactions. We sequenced its 46-Mb nuclear genome, revealing an expansion of protein families that could have participated in adaptation to symbiosis. NC64A exhibits variations in GC content across its genome that correlate with global expression level, average intron size, and codon usage bias. Although Chlorella species have been assumed to be asexual and nonmotile, the NC64A genome encodes all the known meiosis-specific proteins and a subset of proteins found in flagella. We hypothesize that Chlorella might have retained a flagella-derived structure that could be involved in sexual reproduction. Furthermore, a survey of phytohormone pathways in chlorophyte algae identified algal orthologs of Arabidopsis thaliana genes involved in hormone biosynthesis and signaling, suggesting that these functions were established prior to the evolution of land plants. We show that the ability of Chlorella to produce chitinous cell walls likely resulted from the capture of metabolic genes by horizontal gene transfer from algal viruses, prokaryotes, or fungi. Analysis of the NC64A genome substantially advances our understanding of the green lineage evolution, including the genomic interplay with viruses and symbiosis between eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号