首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The environment of tryptophan in castor bean hemagglutinin (CBH) was analyzed by fluorescence spectroscopy with regard to saccharide binding. Upon binding of specific saccharides, the fluorescence maximum of 333 nm of CBH shifted to a wavelength 2 nm shorter, owing to the change in the environment of tryptophan at the saccharide-binding site. By analyzing the change in the fluorescence intensity at 320 nm as a function of concentration of saccharides, the association constants for binding of saccharides to CBH were determined. The results suggest that the saccharide-binding site on each B-chain is actually composed of a subsite with which the saccharide residue linked to galactopyranoside at the non-reducing end can interact, and another site which recognizes the galactopyranoside moiety. Quenching data indicated that five out of 22 tryptophans in CBH are surface-localized and are available for quenching with both KI and acrylamide, and three other tryptophans are buried and are available only to acrylamide. Binding of raffinose to CBH decreased by 2 the number of tryptophan residues accessible to quenchers in the CBH molecule. We speculate that raffinose binds to CBH in such a manner as to shield the tryptophan located at the subsite from quenching by KI and acrylamide. The results also suggest that the tryptophan residue at the saccharide-binding site on each B-chain is localized near the surface, and present in the positively charged environment.  相似文献   

2.
The states of tryptophan residues in Abrus precatorius agglutinin (APA) were analyzed by chemical modification and solvent perturbation UV-difference spectroscopy. The number of tryptophan residues available for N-bromosuccinimide (NBS) oxidation increased with lowering pH, and 20 out of the 24 tryptophans in APA were modified at pH 3.0, while 2 tryptophans were eventually oxidized at pH 5.0. Modification of tryptophan greatly decreased the binding of APA with saccharides, and only 4% of the hemagglutinating activity was retained after modification of 4 tryptophan residues/molecule. When the modification was done in the presence of lactose or galactose, 2 tryptophan residues/molecule remained unmodified with a retention of a fairly high hemagglutinating activity. The data from solvent perturbation UV-difference spectroscopy indicated that 6 tryptophans were on the surface of the APA molecule, and 4 tryptophan residues/molecule were shielded from the perturbing effect of the solvent upon binding with lactose.

Based on these results, we proposed that in the saccharide-binding site on each B-chain of APA there exists one tryptophan residue directly involved in saccharide binding, and near the binding site there is another tryptophan residue whose state is also changeable upon binding with saccharide.  相似文献   

3.
The saccharide binding ability of the low affinity (LA-) binding site of ricin D was abrogated by N-bromosuccinimide (NBS)-oxidation, while in the presence of lactose the number of tryptophan residues eventually oxidized decreased by 1 mol/mol and the saccharide binding ability was retained (Hatakeyama et al., (1986) J. Biochem. 99, 1049-1056). Based on these findings, the tryptophan residue located at the LA-binding site of ricin D was identified. Two derivatives of ricin D which were modified with NBS in the presence and absence of lactose were separated into their constituent polypeptide chains (A- and B-chains), respectively. The modified tryptophan residue or residues was/were found to be contained in the B-chain, but not in the A-chain. From lysylendopeptidase and chymotryptic digests, peptides containing oxidized tryptophan residues were isolated by gel filtration on Bio-Gel P-30 and HPLC. Analysis of the peptides containing oxidized tryptophan revealed that three tryptophan residues at positions 37, 93, and 160 on the B-chain were oxidized in the inactive derivative of ricin D, in which the saccharide binding ability of the LA-binding site was abrogated by NBS-oxidation. On the other hand, the modified residues were determined to be tryptophans at positions 93 and 160 in the active derivative of ricin D which was modified in the presence of lactose, indicating that upon binding with lactose, the tryptophan residue at position 37 of the B-chain was protected from NBS-oxidation. From these results, it is suggested that tryptophan at position 37 on the B-chain is the essential residue for saccharide binding at the LA-binding site of ricin D.  相似文献   

4.
The nature of the saccharide-binding site of ricin D, which is a galactose- and N-acetylgalactosamine-specific lectin, was studied by chemical modification and spectroscopy. With excitation at 290 nm, ricin D displayed a fluorescence spectrum with a maximum at 335 nm. Upon binding of the specific saccharides, the spectrum shifted to shorter wavelength by 3 nm. However, binding of galactosamine and N-acetylgalactosamine failed to induce such a change in the fluorescence spectrum. The interaction of ricin D with its specific saccharides was analyzed in terms of the variation of the intensity at 320 nm as a function of saccharide concentration. The results indicate that the change in the fluorescence spectrum induced by saccharide binding is attributable to the binding of saccharide to the low-affinity (LA-) binding site of ricin D. The cytoagglutinating activity of ricin D decreased to 2% upon modification of two tryptophan residues/mol with N-bromosuccinimide at pH 4.0, but in the presence of galactose or lactose one tryptophan residue/mol remained unmodified, and a fairly high cytoagglutinating activity was retained. Galactosamine and N-acetylgalactosamine did not show such a protective effect. Spectroscopic analyses indicate that the decrease in the cytoagglutinating activity of ricin D upon tryptophan modification is principally due to the loss of the saccharide binding activity of the LA-binding site. The results suggest that one tryptophan residue is essential for saccharide binding at the LA-binding site, which can bind galactose and lactose but lacks the ability to bind N-acetylgalactosamine and galactosamine.  相似文献   

5.
Fluorescence quenching studies on the PII isoenzyme of yeast hexokinase have been performed using charged as well as polar uncharged quenchers. In both 'open' (i.e. in the absence of glucose) and 'closed' (i.e. in the presence of glucose) forms of the enzyme, bimolecular quenching rate constant (kq) for acrylamide is significantly larger than that of KI, indicating that all the tryptophans are not fully exposed to the solvent. Overall accessibility of tryptophans towards KI was greater in the presence of glucose than in the absence of glucose. At high ionic strength, the value of bimolecular quenching rate constant (kq) for KI did not change suggesting that the average environment of the accessible tryptophan residue(s) is almost neutral. Quenching by KI is dynamic in nature. Accessibility of tryptophans towards acrylamide at concentration > or = 0.2 M was more in the 'open' form of the enzyme than that observed in the 'closed' form whereas at concentration < or = 0.2 M no significant difference in the extent of quenching was observed. It is reasonable to conclude that glucose induced conformational change leads some tryptophan residue(s) to be more exposed and at the same time some tryptophan residue(s) in the hydrophobic region become more buried. Dimeric and monomeric forms of the enzyme behave similarly towards the quenching by acrylamide. In the unfolded state, the accessibility of tryptophans was considerably higher for both the quenchers. Temperature dependent study and the fluorescence lifetime data indicate that the mechanism of quenching by acrylamide is primarily dynamic in nature.  相似文献   

6.
EcoRI DNA methyltransferase contains tryptophans at positions 183 and 225. Tryptophan 225 is adjacent to residues previously implicated in S-adenosylmethionine (AdoMet) binding and to cysteine 223, previously shown to be the site of N-ethyl maleimide-mediated inactivation of the enzyme (Reich, N. O., and Everett, E. (1990) J. Biol. Chem. 265, 8929-8934; Everett, E. A., Falick, A. M., and Reich, N. O. (1990) J. Biol. Chem. 265, 17713-17719). The fluorescence spectra of the wild-type enzyme is centered at 338 nm indicating partial tryptophan solvent accessibility. Substitution of tryptophan 183 with phenylalanine results in a 45% drop in fluorescence intensity, but no shift in lambda max. DNA binding to the wild-type methyltransferase caused an increase in the fluorescence intensity, while binding to the tryptophan 183 mutant had a quenching effect, suggesting that DNA binding induces a conformational change near both tryptophans. Binding of AdoMet and various AdoMet analogs to the wild-type methyltransferase results in no change in the fluorescence spectrum when excitation occurs at 295 nm, suggesting that no conformational change occurs, and AdoMet does not interact with either tryptophan. In contrast, quenching was observed when excitation occurred at 280 nm, suggesting that AdoMet and its analogs may be quenching tyrosine to tryptophan energy transfer. Protein-ligand complexes were titrated with acrylamide, and the data also implicate conformational changes upon DNA binding but not upon AdoMet binding, consistent with previous limited proteolysis results (Reich, N. O., Maegley, K. A., Shoemaker, D.D., and Everett, E. (1991) Biochemistry 30, 2940-2946).  相似文献   

7.
Chemical modification of tryptophan residues in ricin E was investigated with regard to saccharide-binding. Two out of ten tryptophan residues in ricin E were modified with N- bromosuccinimide at pH 4.5 in the absence of specific saccharide accompanied by a marked decrease in the cytoagglutinating activity. Such a loss of the cytoagglutinating activity was found to be principally due to the oxidation of one tryptophan residue per B-chain. In the presence of lactose, one tryptophan residue/mol was protected from the modification with retention of a fairly high cytoagglutinating activity. However, G a IN Ac did not show such a protective effect. The binding of lactose to ricin E altered the environment of the tryptophan residue at the low affinity binding site of ricin E, leading to a blue shift of the fluorescence spectrum and an UV-difference spectrum with a maximum at 290 nm and a trough at 300 nm. The ability to generate such spectroscopic changes induced by lactose was retained in the derivative in which one tryptophan residue/mol was oxidized in the presence of lactose, but not in the derivative in which two tryptophan residues/mol were oxidized in the absence of lactose. Based on these results, it is suggested that one of the two surface-localized tryptophan residues is responsible for saccharide binding at the low affinity binding site of ricin E, which can bind lactose but lacks the ability to bind GalNAc.  相似文献   

8.
Biotin binding reduces the tryptophan fluorescence emissions of streptavidin by 39%, blue shifts the emission peak from 333 to 329 nm, and reduces the bandwidth at half height from 53 to 46 nm. The biotin-induced emission difference spectrum resembles that of a moderately polar tryptophan. Streptavidin fluorescence can be described by two lifetime classes: 2.6 nsec (34%) and 1.3 nsec (66%). With biotin bound, lifetimes are 1.3 nsec (26%) and 0.8 nsec (74%). Biotin binding reduces the average fluorescence lifetime from 1.54 to 0.88 nsec. Biotin does not quench the fluorescence of indoles. The fluorescence changes are consistent with biotin binding causing a conformational change which moves tryptophans into proximity to portions of streptavidin which reduce the quantum yield and lifetimes. Fluorescence quenching by acrylamide revealed two classes of fluorophores. Analysis indicated a shielded component comprising 20–28% of the initial fluorescence with (KSV+V)0.55 M–1. The more accessible component has a predominance of static quenching. Measurements of fluorescence lifetimes at different acrylamide concentrations confirmed the strong static quenching. Since static quenching could be due to acrylamide binding to streptavidin, a dye displacement assay for acrylamide binding was constructed. Acrylamide does bind to streptavidin (Ka=5 M–1), and probably binds within the biotin-binding site. In the absence of biotin, none of streptavidin's fluorescence is particularly accessible to iodide. In the presence of biotin, iodide neither quenches fluorescence nor alters emission spectra, and acrylamide access is dramatically reduced. We propose that the three tryptophans which always line the biotin site are sufficiently close to the surface of the binding site to be quenched by bound acrylamide. These tryptophans are shielded from iodide, most probably due to steric or ionic hindrances against diffusion into the binding site. Most of the shielding conferred by biotin binding can be attributed to the direct shielding of these residues and of a fourth tryptophan which moves into the binding site when biotin binds, as shown by X-ray studies (Weberet al., 1989).  相似文献   

9.
Recent characterization of spinach phosphoribulokinase has revealed that the homodimeric molecule contains only two tryptophans per 44-kDa subunit. We have performed steady-state and frequency domain studies of the intrinsic fluorescence of this protein. The fluorescence properties reflect contributions from both types of tryptophan residues. One of these appears to be relatively exposed to solvent and the quencher, acrylamide; fluoresce with a lambda max of 345 nm; decay with a fluorescence lifetime of 6.3 ns; have a relatively red-shifted absorption spectrum; and have a certain degree of independent motional freedom, with respect to the protein. The other tryptophan residue appears to be more buried; fluoresce with lambda max of 325 nm; have a lifetime of 1.7 ns; have a relatively blue-shifted absorption spectrum; and not to enjoy independent motional freedom. On comparison of phase-resolved spectral data and solute quenching data, we suggest that resonance energy transfer between the blue and red tryptophan residues may occur. We also describe the strategy of simultaneously fitting Stern-Volmer quenching data collected at two emission wavelengths.  相似文献   

10.
The intrinsic fluorescence of lauryl maltoside solubilized bovine heart cytochrome c oxidase has been determined to arise from tryptophan residues of the oxidase complex. The magnitude of the fluorescence is approximately 34% of that from n-acetyltryptophanamide (NATA). This level of fluorescence is consistent with an average heme to tryptophan distance of 30 A. The majority of the fluorescent tryptophan residues are in a hydrophobic environment as indicated by the fluorescence emission maximum at 328 nm and the differing effectiveness of the quenching agents: Cs+, I-, and acrylamide. Cesium was ineffective up to a concentration of 0.7 M, whereas quenching by the other surface quenching agent, iodide, was complex. Below 0.2 M, KI was ineffective whereas between 0.2 and 0.7 M 15% of the tryptophan fluorescence was found to be accessible to iodide. This pattern indicates that protein structural changes were induced by iodide and may be related to the chaotropic character of KI. Acrylamide was moderately effective as a quenching agent of the oxidase fluorescence with a Stern-Volmer constant of 2 M-1 compared with acrylamide quenching of NATA and the water-soluble enzyme aldolase having Stern-Volmer constants of 12 M-1 and 0.3 M-1, respectively. There was no effect of cytochrome c on the tryptophan emission intensity from cytochrome c oxidase under conditions where the two proteins form a tight, 1:1 complex, implying that the tryptophan residues near the cytochrome c binding site are already quenched by energy transfer to the homes of the oxidase. The lauryl maltoside concentration used to solubilize the enzyme did not affect the fluorescence of NATA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The nature of the binding of saccharides to arbin-b, a toxic lectin isolated from Abrus precatorius seeds, was studied by equilibrium dialysis and fluorescence spectroscopy. Equilibrium dialysis data indicate that abrin-b has two saccharide-binding sites, a high affinity site (HA-site) and a low affinity site (LA-site), to which both galactopyranosides and N-acetylgalactosamine can bind. With excitation at 290 nm, abrin-b displayed a fluorescence spectrum with an emission maximum at 345 nm. Upon binding with specific saccharides, this spectrum shifted to a wavelength shorter by 5 nm, suggesting that saccharides bind to abrin-b in such a manner as to induce a change in the environment of the tryptophan residue or residues at or near the respective binding sites. From the variation of fluorescence at 320 nm with saccharide concentrations, the association constants for binding of saccharides to the respective sites were measured. The results suggest that the HA-site has a subsite favorable for saccharides having β-1,4 linked galactopyranoside at the non-reducing end like lactose in addition to the galactose-recognition site, while the LA-site may not have such a subsite.  相似文献   

12.
The states of tryptophan residues in castor bean hemagglutinin (CBH) were analyzed by solvent perturbation studies employing ultraviolet difference spectroscopy. Eight out of 22 tryptophan residues in CBH were exposed to ethylene glycol and glycerol, suggesting that the remaining 14 tryptophan residues are buried in the interior of the CBH molecule. The fraction of tryptophan residues accessible to the perturbant decreased with increase in the molecular size of the perturbant, and only 2 tryptophan residues were exposed to polyethylene glycol 600. Upon binding with raffinose, 2 tryptophan residues were shielded from the perturbing effect of the solvent, and binding of lactose reduced the number of tryptophan residues accessible to the perturbant by 1 mol per mol of protein. Binding of galactose, however, did not change the accessibility of tryptophan to the perturbant. On the other hand, the accessibility of tyrosine to the perturbant remained unchanged after binding with raffinose and lactose, suggesting that tyrosine is not directly involved in the saccharide binding of CBH. Based on these results, it is proposed that one tryptophan residue at the saccharide-binding site on each B-chain of CBH lies on the surface of the protein molecule and is located at a subsite which is accessible to a glucopyranoside moiety in the lactose molecule or a glycopyranosyl-fructofuranosyl moiety in the raffinose molecule, whereas such a residue is not present at the galactopyranoside-recognition site.  相似文献   

13.
The Myb oncoprotein specifically binds DNA by a domain composed of three imperfect repeats, R1, R2, and R3, each containing 3 tryptophans. The tryptophan fluorescence of the minimal binding domain, R2R3, of c-Myb was used to monitor structural flexibility changes occurring upon DNA binding to R2R3. The quenching of the Trp fluorescence by DNA titration shows that four out of the six tryptophans are involved in the formation of the specific R2R3-DNA complex and the environment of the tryptophan residues becomes more hydrophobic in the complex. The fluorescence intensity quenching of the tryptophans by binding of R2R3 to DNA is consistent with the decrease of the decay time: 1.46 ns for free R2R3 to 0.71 ns for the complexed protein. In the free R2R3, the six tryptophans are equally accessible to the iodide and acrylamide quenchers with a high collisional rate constant (4 x 10(9) and 3 x 10(9) M-1 s-1, respectively), indicating that R2R3 in solution is very flexible. In the R2R3-DNA complex, no Trp fluorescence quenching is observed with iodide whereas all tryptophan residues remain accessible to acrylamide with a collisional rate constant slightly slower than that in the free state. These results indicate that (i) a protein structural change occurs and (ii) the R2R3 molecule keeps a high mobility in the complex.The complex formation presents a two-step kinetics: a fast step corresponding to the R2R3-DNA association (7 x 10(5) M-1 s-1) and a slower one (0.004 s-1), which should correspond to a structural reorganization of the protein including a reordering of the water molecules at the protein-DNA interface.  相似文献   

14.
The nature of the binding of saccharides to Ricinus communis agglutinin was studied by ultraviolet difference spectroscopy. Upon binding of galactose and galactose-containing saccharides, R. communis agglutinin displayed difference spectra with an extreme maximum at 291-293 nm and a smaller maximum at 284-285 nm. Such difference spectra suggest that the environment of a tryptophan residue located at or near the saccharide-binding site of R. communis agglutinin is being changed by an interaction between a tryptophan residue and the bound saccharides. The value of the difference spectra (delta epsilon) increased upon progressive addition of saccharide until the saccharide binding site was saturated with ligand. From the increase in delta epsilon at 291-293 nm, the association constants were obtained for the R. communis agglutinin-saccharide interaction over the temperature range 5-35 degrees C and various pH values. The results clearly demonstrate that the association constants are nearly equal in the range of pH 5-8, but decrease beyond the above pH range and with elevation of temperature. From the thermodynamic parameters for the binding of various saccharides to R. communis agglutinin, we suggest that there exists a subsite structure in the saccharide-binding site of the R. communis agglutinin molecule.  相似文献   

15.
The interaction of ricin D with specific saccharides was investigated by ultraviolet difference spectroscopy. Upon binding to saccharides, ricin D displayed ultraviolet difference spectra with maxima at 280 nm and 288 nm. Such difference spectra suggest that the environment of a tyrosine residue(s) located at or near the saccharide-binding site is changed by the binding of saccharide. In addition to the two positive peaks, a small trough was observed around 300 nm in the complexes with galactose-containing saccharides but not in the complex with N-acetylgalactosamine or galactosamine, suggesting the participation of tryptophan in the binding with galactose-containing saccharides. The magnitude of the difference maxima increased with increasing concentration of saccharides until the binding site was saturated. From the variation of the maximum at 288 nm as a function of saccharide concentration, the association constants were obtained for the binding of saccharides to ricin D at various temperatures and pH's. The saccharide binding of ricin D decreased with increasing temperature and with decreasing pH below pH 6.0. It was suggested that difference maximum at 288 nm observed in the ricin D-saccharide interaction reflects the binding of saccharides to the high-affinity saccharide-binding site of ricin D.  相似文献   

16.
A frequency-domain fluorescence study of calcium-binding metalloproteinase from Staphylococcus aureus has shown that this two-tryptophan-containing protein exhibits a double-exponential fluorescence decay. At 10 degrees C in 0.05 M Tris-HCl buffer (pH 9.0) containing 10 mM CaCl2, fluorescence lifetimes of 1.2 and 5.1 ns are observed. Steady-state and frequency-domain solute-quenching studies are consistent with the assignment of the two lifetimes to the two tryptophan residues. The tryptophan residue characterized by a shorter lifetime has a maximum of fluorescence emission at about 317 nm and the second one exhibits a maximum of its emission at 350 nm. These two residues contribute almost equally to the protein's fluorescence. These results, as well as fluorescence-quenching studies using KI and acrylamide as a quencher, indicate that in calcium-loaded metalloproteinase, the tryptophan residue characterized by the shorter lifetime is extensively buried within the protein. The second residue is exposed on the surface of the protein. The tryptophan residues of metalloproteinase have acrylamide dynamic-quenching rate constants, kq values, of 2.3 and 0.26 X 10(9) M-1 X s-1 for the exposed and buried residue, respectively. A study of the temperature dependence of the fluorescence lifetime for the two tryptophan components gives activation energies, Ea values, for thermal quenching of 1.8 and 2.2 kcal/mol for the buried and the exposed residue, respectively. Dissociation of Ca2+ from the protein causes a change in the protein's structure, as can be judged from dramatic changes which occur in the fluorescence properties of the buried tryptophan residue. These changes include an approx. 13 nm red-shift in the maximum of the fluorescence emission and an increase in the acrylamide-quenching rate constant, and they indicate that the removal of Ca2+ results in an increase in the exposure and the polarity of the microenvironment of this 'blue' residue.  相似文献   

17.
Exposure of pigeon liver malic enzyme [S)-malate:NADP+ oxidoreductase (oxaloacetate-decarboxylating), EC 1.1.1.40) in medium concentrations of guanidine-HCl at 25 degrees C and pH 7.45 caused biphasic conformational changes of the enzyme molecule. Molecular weight determination confirmed that the enzyme tetramers were dissociated to monomers in phase I transition. Enzymatic activity was completely lost in this phase. Recovery of the enzyme activity was only possible in the early stages of the phase I transition. Phase II was due to enzyme unfolding, as judged by circular dichroism and the fluorescence parameters of the enzyme. The steps of the transformation of native malic enzyme into a completely denatured state were in the following sequence: tetramer----monomer----random coil. Extensive denaturation of the enzyme molecule resulted in irreversible aggregation. Dissociation and denaturation were accompanied by a red-shift of the fluorescence spectrum (328----368 nm). Fluorescence quenching studies indicated that tryptophan residues of the enzyme molecule were buried deeply in the interior of the molecule. The tryptophan residues were only partially accessible by acrylamide and almost inaccessible by KI. Dissociation and denaturation were accompanied by exposure of the tryptophan residues, as manifested by the accessibility of the enzyme molecule toward KI or acrylamide.  相似文献   

18.
Fluorescence spectra of native pennisetin resulted in a single emission peak at 335 nm at excitation wavelength of 274 and 295 nm with quantum yield values for tyrosine and tryptophan as 0.086 and 0.097, respectively. These results indicate the presence of tryptophan residues in a polar environment and quenching of tyrosine residues in the native state of pennisetin. In the presence of an increasing concentration of guanidine hydrochloride (Gdn · HCl), changes such as red shift in emission peak from 335 to 344 nm, decrease in relative fluorescence intensity and increase in quantum yield value were observed, suggesting unfolding of the pennisetin molecule during denaturation. The quenching of tryptophanyl fluorescence by acrylamide and iodide further showed the presence of a single kind of tryptophanyl residue and its polar environment in pennisetin molecule.  相似文献   

19.
The binding of saccharides to ricin E isolated from small castor beans was studied by equilibrium dialysis and spectroscopy. Equilibrium dialysis data indicate that ricin E has two galactose-binding sites, a high affinity site (HA-site) and a low affinity site (LA-site). The binding of specific saccharides to ricin E induces a shift of the fluorescence spectrum to shorter wavelength by 3 nm and UV-difference spectra with a maximum at 290 nm and a negative intensity around 300 nm. The interaction of ricin E with its specific saccharides was analyzed in terms of the variation of the intensity at 320 nm in the fluorescence spectrum and the magnitude of the negative intensity at 300 nm in the UV-difference spectra as functions of saccharide concentration. The results indicate that these spectroscopic changes are representative of the binding of saccharides to the LA-site, which contains a tryptophan residue. By comparing the association constants of saccharides for ricin E with those for ricin D, isolated from the large castor beans, it was found that the HA of ricin E binds saccharides with an affinity of less than one-half that of ricin D, while the saccharide-binding abilities of the LA-site of the two ricins were about the same.  相似文献   

20.
We have monitored the membrane-bound channel and nonchannel conformations of gramicidin utilizing red-edge excitation shift (REES), and related fluorescence parameters. In particular, we have used fluorescence lifetime, polarization, quenching, chemical modification, and membrane penetration depth analysis in addition to REES measurements to distinguish these two conformations. Our results show that REES of gramicidin tryptophans can be effectively used to distinguish conformations of membrane-bound gramicidin. The interfacially localized tryptophans in the channel conformation display REES of 7 nm whereas the tryptophans in the nonchannel conformation exhibit REES of 2 nm which highlights the difference in their average environments in terms of localization in the membrane. This is supported by tryptophan penetration depth measurements using the parallax method and fluorescence lifetime and polarization measurements. Further differences in the average tryptophan microenvironments in the two conformations are brought out by fluorescence quenching experiments using acrylamide and chemical modification of the tryptophans by N-bromosuccinimide. In summary, we report novel fluorescence-based approaches to monitor conformations of this important ion channel peptide. Our results offer vital information on the organization and dynamics of the functionally important tryptophan residues in gramicidin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号