首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bivalve molluscs concentrate Cryptosporidium oocysts from fecal-contaminated aquatic environments and are therefore useful in monitoring water quality. A real-time TaqMan polymerase chain reaction (PCR) system was developed to allow for large scale quantitative detection of Cryptosporidium spp. in mussels (Mytilus californianus). The TaqMan sensitivity and specificity were compared to conventional PCR and direct immunofluorescent antibody (DFA) assays, with and without immunomagnetic separation (IMS), to identify the best method for parasite detection in mussel hemolymph, gill washings and digestive glands. TaqMan PCR and two conventional PCR systems all detected 1 or more oocysts spiked into 1 ml hemolymph samples. The minimum oocyst detection limit in spiked 5 ml gill wash and 1 g digestive gland samples tested by TaqMan PCR and DFA was 100 oocysts, with a 1 log(10) improvement when samples were first processed by IMS. For tank exposed mussels, TaqMan and conventional PCR methods detected C. parvum in <5% of hemolymph samples. No gill washings from these same mussels tested positive by TaqMan PCR or DFA analysis even with IMS concentration. All methods detected the highest prevalence of C. parvum-positive samples in digestive gland tissues of exposed mussels. In conclusion, the most sensitive method for the detection of C. parvum in oocyst-exposed mussels was IMS concentration with DFA detection: 80% of individual and 100% of pooled digestive gland samples tested positive. TaqMan PCR was comparable to conventional PCR for detection of C. parvum oocysts in mussels and additionally allowed for automated testing, high throughput, and semi-quantitative results.  相似文献   

2.
A rapid detection method that is both quantitative and specific for the water-borne human parasite Cryptosporidium parvum is reported. Real-time polymerase chain reaction (PCR) combined with fluorescent TaqMan technology was used to develop this sensitive and accurate assay. The selected primer-probe set identified a 138-bp section specific to a C. parvum genomic DNA sequence. The method was optimized on a cloned section of the target DNA sequence, then evaluated on C. parvum oocyst dilutions. Quantification was accomplished by comparing the fluorescence signals obtained from test samples of C. parvum oocysts with those obtained from standard dilutions of C. parvum oocysts. This real-time PCR assay allowed reliable quantification of C. parvum oocysts over six orders of magnitude with a baseline sensitivity of six oocysts in 2 h.  相似文献   

3.
A PCR method for the quantitation of Cryptosporidium parvum oocysts in municipal drinking water samples was investigated. Quantitative PCR uses an internal standard (IS) template with unknown target numbers to compare to standards of known concentrations in a standard curve. The IS template was amplified using the same primers used to amplify a portion of a 358 bp gene fragment that encodes a repetitive oocyst wall protein in C. parvum. Municipal water samples spiked with known numbers of C. parvum oocysts were tested by quantitative PCR using the IS and the Digene SHARP Signal System Assay for PCR product detection. The absorbance readings for target DNA and IS templates versus the number of molecules of the target DNA were plotted to generate standard curves for estimating oocyst numbers. The method allowed the quantitation of oocysts from log 3 to log 5 spiked into municipal water samples.  相似文献   

4.
5.
Concurrent with recent advances seen with Cryptosporidium parvum detection in both treated and untreated water is the need to properly evaluate these advances. A micromanipulation method by which known numbers of C. parvum oocysts, even a single oocyst, can be delivered to a test matrix for detection sensitivity is presented. Using newly developed nested PCR-restriction fragment length polymorphism primers, PCR sensitivity was evaluated with 1, 2, 3, 4, 5, 7, or 10 oocysts. PCR detection rates (50 samples for each number of oocysts) ranged from 38% for single oocysts to 92% for 5 oocysts, while 10 oocysts were needed to achieve 100% detection. The nested PCR conditions amplified products from C. parvum, Cryptosporidium baileyi, and Cryptosporidium serpentis but no other Cryptosporidium sp. or protozoan tested. Restriction enzyme digestion with VspI distinguished between C. parvum genotypes 1 and 2. Restriction enzyme digestion with DraII distinguished C. parvum from C. baileyi and C. serpentis. Use of known numbers of whole oocysts encompasses the difficulty of liberating DNA from the oocyst and eliminates the standard deviation inherent within a dilution series. To our knowledge this is the first report in which singly isolated C. parvum oocysts were used to evaluate PCR sensitivity. This achievement illustrates that PCR amplification of a single oocyst is feasible, yet sensitivity remains an issue, thereby illustrating the difficulty of dealing with low oocyst numbers when working with environmental water samples.  相似文献   

6.
Cryptosporidium parvum and C. hominis have been the cause of large and serious outbreaks of waterborne cryptosporidiosis. A specific and sensitive recovery-detection method is required for control of this pathogen in drinking water. In the present study, nested PCR-restriction fragment length polymorphism (RFLP), which targets the divergent Cpgp40/15 gene, was developed. This nested PCR detected only the gene derived from C. parvum and C. hominis strains, and RFLP was able to discriminate between the PCR products from C. parvum and C. hominis. To evaluate the sensitivity of nested PCR, C. parvum oocysts inoculated in water samples of two different turbidities were recovered by immunomagnetic separation (IMS) and detected by nested PCR and fluorescent antibody assay (FA). Genetic detection by nested PCR and oocyst number confirmed by FA were compared, and the results suggested that detection by nested PCR depends on the confirmed oocyst number and that nested PCR in combination with IMS has the ability to detect a single oocyst in a water sample. We applied an agitation procedure with river water solids to which oocysts were added to evaluate the recovery and detection by the procedure in environmental samples and found some decrease in the rate of detection by IMS.  相似文献   

7.
The protozoan pathogens Giardia lamblia and Cryptosporidium parvum are major causes of waterborne enteric disease throughout the world. Improved detection methods that are very sensitive and rapid are urgently needed. This is especially the case for analysis of environmental water samples in which the densities of Giardia and Cryptosporidium are very low. Primers and TaqMan probes based on the beta-giardin gene of G. lamblia and the COWP gene of C. parvum were developed and used to detect DNA concentrations over a range of 7 orders of magnitude. It was possible to detect DNA to the equivalent of a single cyst of G. lamblia and one oocyst of C. parvum. A multiplex real-time PCR (qPCR) assay for simultaneous detection of G. lamblia and C. parvum resulted in comparable levels of detection. Comparison of DNA extraction methodologies to maximize DNA yield from cysts and oocysts determined that a combination of freeze-thaw, sonication, and purification using the DNeasy kit (Qiagen) provided a highly efficient method. Sampling of four environmental water bodies revealed variation in qPCR inhibitors in 2-liter concentrates. A methodology for dealing with qPCR inhibitors that involved the use of Chelex 100 and PVP 360 was developed. It was possible to detect and quantify G. lamblia in sewage using qPCR when applying the procedure for extraction of DNA from 1-liter sewage samples. Numbers obtained from the qPCR assay were comparable to those obtained with immunofluorescence microscopy. The qPCR analysis revealed both assemblage A and assemblage B genotypes of G. lamblia in the sewage. No Cryptosporidium was detected in these samples by either method.  相似文献   

8.
A new strategy for the detection of infectious Cryptosporidium parvum oocysts in water samples, which combines immunomagnetic separation (IMS) for recovery of oocysts with in vitro cell culturing and PCR (CC-PCR), was field tested with a total of 122 raw source water samples and 121 filter backwash water grab samples obtained from 25 sites in the United States. In addition, samples were processed by Percoll-sucrose flotation and oocysts were detected by an immunofluorescence assay (IFA) as a baseline method. Samples of different water quality were seeded with viable C. parvum to evaluate oocyst recovery efficiencies and the performance of the CC-PCR protocol. Mean method oocyst recoveries, including concentration of seeded 10-liter samples, from raw water were 26.1% for IMS and 16.6% for flotation, while recoveries from seeded filter backwash water were 9.1 and 5.8%, respectively. There was full agreement between IFA oocyst counts of IMS-purified seeded samples and CC-PCR results. In natural samples, CC-PCR detected infectious C. parvum in 4.9% (6) of the raw water samples and 7.4% (9) of the filter backwash water samples, while IFA detected oocysts in 13.1% (16) of the raw water samples and 5.8% (7) of the filter backwash water samples. All CC-PCR products were confirmed by cloning and DNA sequence analysis and were greater than 98% homologous to the C. parvum KSU-1 hsp70 gene product. DNA sequence analysis also revealed reproducible nucleotide substitutions among the hsp70 fragments, suggesting that several different strains of infectious C. parvum were detected.  相似文献   

9.
AIMS: To evaluate four types of filtration cartridges for their capacities, efficiency for capture and release of Cryptosporidium parvum oocysts for detection. METHODS AND RESULTS: Filtration cartridges included in this evaluation were IDEXX Filta-Max, Gelman Envirochek HV, Corning CrypTest, and Filterite Sigma+. Various dosages of C. parvum oocysts were spiked into water samples with a wide range of turbidity (10-50 NTU). Electrochemiluminescence assays were employed to enumerate viable or total number of C. parvum oocysts in these eluates. Among the cartridges tested, Filta-Max consistently showed higher oocyst recovery efficiency, especially with large volume, highly turbid water samples. CONCLUSIONS: Filta-Max filter is the best performer because of its higher oocyst recovery efficiency. SIGNIFICANCE AND IMPACT OF THE STUDY: The overall sensitivities of various C. parvum oocyst detection assays in water samples can be improved if highly efficient oocyst recovery filtration cartridges such as Filta-Max are incorporated in sample preparation.  相似文献   

10.
AIMS: Evaluation of three flocculation methods for the purification of Cryptosporidium parvum oocysts from tap water. METHODS AND RESULTS: Ferric sulphate, aluminium sulphate and calcium carbonate were compared for their recovery efficiency of C. parvum oocysts from tap water. Lower mean recovery was achieved by calcium carbonate (38.8%) compared with ferric sulphate (61.5%) and aluminium sulphate (58.1%) for the recovery of 2.5 x 10(5) oocysts l(-1); 2.5 oocysts l(-1) and 1 oocyst l(-1) were adequately purified using ferric sulphate flocculation. In vitro excystation experiments showed that ferric sulphate flocculation does not markedly reduce the viability of oocysts. CONCLUSIONS: Ferric sulphate flocculation is a simple and effective tool for the purification of C. parvum oocysts from tap water. SIGNIFICANCE AND IMPACT OF THE STUDY: The high recovery rates and low impact on oocyst viability provided by ferric sulphate flocculation might be useful for the detection of Cryptosporidium oocysts in environmental water samples.  相似文献   

11.
Numerous studies have documented the presence of Cryptosporidium parvum, an anthropozoonotic enteric parasite, in molluscan shellfish harvested for commercial purposes. Getting accurate estimates of Cryptosporidium contamination levels in molluscan shellfish is difficult because recovery efficiencies are dependent on the isolation method used. Such estimates are important for determining the human health risks posed by consumption of contaminated shellfish. In the present study, oocyst recovery was compared for multiple methods used to isolate Cryptosporidium parvum oocysts from oysters (Crassostrea virginica) after exposure to contaminated water for 24 h. The immunomagnetic separation (IMS) and immunofluorescent antibody procedures from Environmental Protection Agency method 1623 were adapted for these purposes. Recovery efficiencies for the different methods were also determined using oyster tissue homogenate and hemolymph spiked with oocysts. There were significant differences in recovery efficiency among the different treatment groups (P < 0.05). We observed the highest recovery efficiency (i.e., 51%) from spiked samples when hemolymph was kept separate during the homogenization of the whole oyster meat but was then added to the pellet following diethyl ether extraction of the homogenate, prior to IMS. Using this processing method, as few as 10 oocysts could be detected in a spiked homogenate sample by nested PCR. In the absence of water quality indicators that correlate with Cryptosporidium contamination levels, assessment of shellfish safety may rely on accurate quantification of oocyst loads, necessitating the use of processing methods that maximize oocyst recovery. The results from this study have important implications for regulatory agencies charged with determining the safety of molluscan shellfish for human consumption.  相似文献   

12.
Cryptosporidium parvum can be found in both source and drinking water and has been reported to cause serious waterborne outbreaks which threaten public health safety. The U.S. Environmental Protection Agency has developed method 1622 for detection of Cryptosporidium oocysts present in water. Method 1622 involves four key processing steps: filtration, immunomagnetic separation (IMS), fluorescent-antibody (FA) staining, and microscopic evaluation. The individual performance of each of these four steps was evaluated in this study. We found that the levels of recovery of C. parvum oocysts at the IMS-FA and FA staining stages were high, averaging more than 95%. In contrast, the level of recovery declined significantly, to 14.4%, when the filtration step was incorporated with tap water as a spiking medium. This observation suggested that a significant fraction of C. parvum oocysts was lost during the filtration step. When C. parvum oocysts were spiked into reclaimed water, tap water, microfiltration filtrate, and reservoir water, the highest mean level of recovery of (85.0% +/- 5.2% [mean +/- standard deviation]) was obtained for the relatively turbid reservoir water. Further studies indicated that it was the suspended particles present in the reservoir water that contributed to the enhanced C. parvum oocyst recovery. The levels of C. parvum oocyst recovery from spiked reservoir water with different turbidities indicated that particle size and concentration could affect oocyst recovery. Similar observations were also made when silica particles of different sizes and masses were added to seeded tap water. The optimal particle size was determined to be in the range from 5 to 40 micro m, and the corresponding optimal concentration of suspended particles was 1.42 g for 10 liters of tap water.  相似文献   

13.
Previously, the cellulose acetate membrane filter dissolution method was reported to yield Cryptosporidium parvum oocyst recoveries of 70.5%, with recovered oocysts retaining their infectivity. In contrast, high spike doses (approximately 1 x 10(5) Cryptosporidium parvum oocysts and Giardia intestinalis cysts) yielded recoveries ranging from 0.4% to 83.9%, and 3.2% to 90.3%, respectively, in this study. Recoveries with low spike doses (approximately 100 (oo)cysts) continued to demonstrate high variability also. Efforts to optimize the method included increased centrifugation speeds, suspension of the final concentrate in deionized water for organism detection on well slides, and analysis of the entire concentrate. A comparison of two monoclonal antibodies was also conducted to identify potential differences between antibodies in detection of organisms. Archived source and finished water samples were spiked, yielding variable recoveries of C. parvum oocysts (11.8% to 71.4%) and G. intestinalis cysts (7.4% to 42.3%). Effects of organic solvents used in the membrane dissolution procedure on the viability of recovered (oo)cysts was determined using a fluorogenic vital dyes assay in conjunction with (oo)cyst morphology, which indicated > 99% inactivation. These data indicate that the membrane dissolution procedure yields poor and highly variable (oo)cyst recoveries, and also renders the majority of recovered organisms non-viable.  相似文献   

14.
The purpose of this study was to characterize the viral symbiont (CPV) of Cryptosporidium parvum sporozoites and evaluate the CPV capsid protein (CPV40) as a target for sensitive detection of the parasite. Recombinant CPV40 was produced in Escherichia coli, purified by affinity chromatography, and used to prepare polyclonal rabbit sera specific for the viral capsid protein. Anti-rCPV40 recognized a 40 kDa and a 30 kDa protein in C. parvum oocysts and appeared to localize to the apical end of the parasite. Anti-rCPV40 serum was capable of detecting as few as 1 C. parvum oocyst in a dot blot assay, the sensitivity being at least 1000-fold greater than sera reactive with total native C. parvum oocyst protein or specific for the 41 kDa oocyst surface antigen. Water samples were seeded with C. parvum oocysts and incubated at 4, 20, or 25 degrees C for greater than 3 months to determine if CPV levels were correlated with oocyst infectivity. Samples were removed monthly and subjected to mouse and cell culture infectivity, as well as PCR analysis for infectivity and viral particle presence. While sporozoite infectivity declined by more than 75% after 1 month at 25 degrees C, the CPV signal was similar to that of control samples at 4 degrees C. By 3 months at 20 degrees C, the C. parvum oocysts were found to be non-infectious, but retained a high CPV signal. This study indicates that CPV is an excellent target for sensitive detection of C. parvum oocysts in water, but may persist for an indefinite time after oocysts become non-infectious.  相似文献   

15.
This study evaluated clams as bioindicators of fecal protozoan contamination using three approaches: (i) clam tissue spiking experiments to compare several detection techniques; (ii) clam tank exposure experiments to evaluate clams that had filtered Cryptosporidium oocysts from inoculated water under a range of simulated environmental conditions; (iii) sentinel clam outplanting to assess the distribution and magnitude of fecal contamination in three riverine systems in California. Our spiking and tank experiments showed that direct fluorescent antibody (DFA), immunomagnetic separation (IMS) in combination with DFA, and PCR techniques could be used to detect Cryptosporidium in clam tissues. The most analytically sensitive technique was IMS concentration with DFA detection of oocysts in clam digestive gland tissues, which detected 10 oocysts spiked into a clam digestive gland 83% of the time. In the tank experiment, oocyst dose and clam collection time were significant predictors for detecting Cryptosporidium parvum oocysts in clams. In the wild clam study, Cryptosporidium and Giardia were detected in clams from all three study regions by IMS-DFA analysis of clam digestive glands, with significant variation by sampling year and season. The presence of C. parvum DNA in clams from riverine ecosystems was confirmed with PCR and DNA sequence analysis.  相似文献   

16.
We describe a rapid method for extracting and concentrating Cryptosporidium oocysts from human faecal samples with subsequent DNA preparation for mainstream PCR applications. This method consists of extracting faecal lipids using a modified water-ether treatment and releasing DNA from semi-purified oocysts by freeze thawing in lysis buffer. Following immunomagnetisable separation (IMS), recovery rates of 29.5%, 43.2% and 49.8% were obtained from oocyst-negative solid, semi-solid and liquid faeces, respectively, seeded with 100 +/- 2 C. parvum oocysts, which were enumerated by flow cytometry. A retrospective analysis was conducted on 92 positive human faecal samples including 78 oocyst-positive cases from 2 UK cryptosporidiosis outbreaks (outbreak A = 34 samples, outbreak B = 44 samples) and 14 oocyst-positive, sporadic cases. We used primers targeting the Cryptosporidium oocyst wall protein gene (COWP; STN-COWP), the 18S rRNA (direct PCR) and the dihydrofolate reductase gene (dhfr, MAS-PCR) fragments to evaluate extracted DNA by PCR. PCR inhibitors were present in 20 samples when template was co-amplified with the 18S rRNA gene primers and an internal control. Template dilution (1/5) in polyvinylpyrrolidone (10 mg ml(-1), pH 8.0) transformed four PCR-negative samples to PCR-positive and increased amplicon intensity in previously positive samples. Eighteen of 20 PCR-negative samples produced visible amplicons when Taq polymerase concentration in the STN-COWP PCR was increased from 2.5 to 5 U. The STN-COWP PCR assay amplified 90 of 92 samples (97.8%) and the MAS-PCR assay amplified 70 of 92 samples (76.1%) tested. In the absence of inhibitors, DNA equivalent to 3 C. parvum oocysts was amplified.  相似文献   

17.
Microbial contamination of public water supplies is of significant concern, as numerous outbreaks, including Cryptosporidium, have been reported worldwide. Detection and enumeration of Cryptosporidium parvum oocysts in water supplies is important for the prevention of future cryptosporidiosis outbreaks. In addition to not identifying the oocyst species, the U.S. EPA Method 1622 does not provide information on oocyst viability or infectivity. As such, current detection strategies have been coupled with in vitro culture methods to assess oocyst infectivity. In this study, a most probable number (MPN) method was coupled with PCR (MPN-PCR) to quantify the number of infectious oocysts recovered from seeded raw water concentrates. The frequency of positive MPN-PCR results decreased as the oocyst numbers decreased. Similar results were observed when MPN was coupled to the foci detection method (MPN-FDM), which was done for comparison. For both methods, infectious oocysts were not detected below 10(3) seeded oocysts and the MPN-PCR and MPN-FDM estimates for each seed dose were generally within one-log unit of directly enumerated foci of infection. MPN-PCR estimates were 0.25, 0.54, 0 and 0.66 log(10) units higher than MPN-FDM estimates for the positive control, 10(5), 10(4) and 10(3) seed doses, respectively. The results show the MPN-PCR was the better method for the detection of infectious C. parvum oocysts in environmental water samples.  相似文献   

18.
The protozoan parasite Cryptosporidium parvum is known to occur widely in both source and drinking water and has caused waterborne outbreaks of gastroenteritis. To improve monitoring, the U.S. Environmental Protection Agency developed method 1622 for isolation and detection of Cryptosporidium oocysts in water. Method 1622 is performance based and involves filtration, concentration, immunomagnetic separation, fluorescent-antibody staining and 4',6-diamidino-2-phenylindole (DAPI) counterstaining, and microscopic evaluation. The capsule filter system currently recommended for method 1622 was compared to a hollow-fiber ultrafilter system for primary concentration of C. parvum oocysts in seeded reagent water and untreated surface waters. Samples were otherwise processed according to method 1622. Rates of C. parvum oocyst recovery from seeded 10-liter volumes of reagent water in precision and recovery experiments with filter pairs were 42% (standard deviation [SD], 24%) and 46% (SD, 18%) for hollow-fiber ultrafilters and capsule filters, respectively. Mean oocyst recovery rates in experiments testing both filters on seeded surface water samples were 42% (SD, 27%) and 15% (SD, 12%) for hollow-fiber ultrafilters and capsule filters, respectively. Although C. parvum oocysts were recovered from surface waters by using the approved filter of method 1622, the recovery rates were significantly lower and more variable than those from reagent grade water. In contrast, the disposable hollow-fiber ultrafilter system was compatible with subsequent method 1622 processing steps, and it recovered C. parvum oocysts from seeded surface waters with significantly greater efficiency and reliability than the filter suggested for use in the version of method 1622 tested.  相似文献   

19.
A sensitive and rapid method was developed to detect Cryptosporidium parvum oocysts in drinking water. This molecular assay combined immunomagnetic separation with polymerase chain reaction amplification to detect very low levels of C. parvum oocysts. Magnetic beads coated with anti-cryptosporidium were used to capture oocysts directly from drinking water membrane filter concentrates, at the same time removing polymerase chain reaction inhibitory substances. The DNA was then extracted by the freeze-boil Chelex-100 treatment, followed by polymerase chain reaction. The immunomagnetic separation-polymerase chain reaction product was identified by non-radioactive hybridization using an internal oligonucleotide probe labelled with digoxigenin. This immunomagnetic separation-polymerase chain reaction assay can detect the presence of a single seeded oocyst in 5-100-1 samples of drinking water, thereby assuring the absence of C. parvum contamination in the sample under analysis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号