首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Before fertilization, ovulated mammalian oocytes are arrested at the metaphase of second meiosis (MII), which is maintained by the so-called cytostatic factor (CSF). It is well known that the continuous synthesis and accumulation of cyclin B is critical for maintaining the CSF-mediated MII arrest. Recent studies by us and others have shown that Ccnb3 is required for the metaphase-to-anaphase transition during the first meiosis of mouse oocytes, but whether Ccnb3 plays a role in MII arrest and exit remains unknown. Here, we showed that the protein level of Ccnb3 gradually decreased during oocyte meiotic maturation, and exogenous expression of Ccnb3 led to release of MII arrest, degradation of securin, separation of sister chromatids, extrusion of the second polar body (PB2), and finally entry into interphase. These phenotypes could be rescued by inhibition of Wee1B or CDK2. Our results indicate that Ccnb3 plays a critical regulatory role in MII arrest and exit in mouse oocytes.  相似文献   

2.
Li CJ  Fan BQ 《Theriogenology》1997,48(1):33-41
Mitochondrial reorganization during meiotic maturation and parthenogenetic activation was studied in mouse oocytes using a laser scanning confocal microscope and a transmission electron microscope. Mitochondria were mainly distributed perinuclearly in the germinal vesicle (GV) stage oocytes and were dispersed throughout ooplasm after germinal vesicle breakdown (GVBD), except for a slightly higher occurrence in one hemisphere of oocytes, from which the first polar body (PbI) would become extruded. Mitochondria reaggregated around the metaphae II (MII) spindle and pronuclear region after alcohol activatation at the MII stage. The mitochondrial distribution may correspond to the Ca(2+) changes during meiotic maturation and parthenogenetic activation.  相似文献   

3.
The oocytes of LT/Sv strain mice are unique in that a high proportion of them (∼40% in this study) are ovulated before reaching metaphase of the second meiotic division (metaphase II). The remaining oocytes of LT/Sv mice are ovulated at metaphase II, as in other strains of mice. When recently ovulated oocytes were cultured in vitro for 11–12 h, those ovulated at metaphase II remained at this stage, whereas those ovulated at metaphase of the first meiotic division (metaphase I) commonly resumed meiosis during in vitro aging. These oocytes extrude the polar body and form a diploid pronucleus. This oocyte activation is not coupled with cortical granule exocytosis. The oocytes ovulated at metaphase II are fully capable of normal fertilization, whereas those ovulated at metaphase I are not. Approximately 50% of metaphase I oocytes penetrated by spermatozoa remain at this stage, and sperm nuclei frequently undergo premature chromosome condensation. Only 13% of spermpenetrated metaphase I oocytes formed a diploid female pronucleus and a haploid male pronucleus by 4 h after insemination. These results demonstrate that the two types of ovulated LT/Sv oocytes have different potentials to undergo either spontaneous or sperm-induced activation.  相似文献   

4.
A series of experiments were designed to evaluate the meiotic competence of mouse oocyte germinal vesicle (GV) in rabbit ooplasm. In experiment 1, an isolated mouse GV was transferred into rabbit GV-stage cytoplast by electrofusion. It was shown that 71.8% and 63.3% of the reconstructed oocytes completed the first meiosis as indicated by the first polar body (PB1) emission when cultured in M199 and M199 + PMSG, respectively. Chromosomal analysis showed that 75% of matured oocytes contained the normal 20 mouse chromosomes. When mouse spermatozoa were microinjected into the cytoplasm of oocytes matured in M199 + PMSG and M199, as many as 59.4% and 48% finished the second meiosis as revealed by the second polar body (PB2) emission and a few fertilized eggs developed to the eight-cell stage. In experiment 2, a mouse GV was transferred into rabbit MII-stage cytoplast. Only 13.0-14.3% of the reconstructed oocytes underwent germinal vesicle breakdown (GVBD) and none proceeded past the MI stage. When two mouse GVs were transferred into an enucleated rabbit oocyte, only 8.7% went through GVBD. In experiment 3, a whole zona-free mouse GV oocyte was fused with a rabbit MII cytoplast. The GVBD rates were increased to 51.2% and 49.4% when cultured in M199 + PMSG and M199, respectively, but none reached the MII stage. In experiment 4, a mouse GV was transferred into a partial cytoplasm-removed rabbit MII oocyte in which the second meiotic apparatus was still present. GVBD occurred in nearly all the reconstructed oocytes when one or two GVs were transferred and two or three metaphase plates were observed in ooplasm after culturing in M199 + PMSG for 8 hr. These data suggest that cytoplasmic factors regulating the progression of the first and the second meioses are not species-specific in mammalian oocytes and that these factors are located in the meiotic apparatus and/or its surrounding cytoplasm at MII stage.  相似文献   

5.
The completion of meiosis requires the spatial and temporal coordination of cytokinesis and karyokinesis. During meiotic maturation, many events, such as formation, location, and rotation of the meiotic spindle as well as chromosomal movement, polar body extrusion, and pronuclear migration, are dependent on regulation of the cytoskeleton system. To study functions of microfilaments in meiosis, we induced metaphase II (MII) mouse oocytes to resume meiosis by in vitro fertilization or parthenogenetic activation, and we treated such oocytes with cytochalasin B (CB). The changes of the meiotic spindle, as visualized in preparations stained for beta-tubulin and chromatin, were observed by fluorescent confocal microscopy. The meiotic spindle of MII oocytes was observed to be parallel to the plasmalemma. After meiosis had resumed, the spindle rotated to the vertical position so that the second polar body could be extruded into the perivitelline space. When meiosis resumed and oocytes were treated with 10 micro g/ml of CB, the spindle rotation was inhibited. Consequently, the oocyte formed an extra pronucleus instead of extruding a second polar body. These results indicate that spindle rotation is essential for polar body extrusion; it is the microfilaments that play a crucial role in regulating rotation of the meiotic spindle.  相似文献   

6.
Calcium (Ca(2+))/calmodulin-dependent protein kinase kinase (CaMKK) is a novel member of Ca(2+)/calmodulin-dependent protein kinase (CaMK) family, whose physiological roles in regulating meiotic cell cycle needs to be determined. We showed by Western blot that CaMKK was expressed in pig oocytes at various maturation stages. Confocal microscopy was employed to observe CaMKK distribution. In oocytes at the germinal vesicle (GV) or prometaphase I (pro-MI) stage, CaMKK was distributed in the nucleus, around the condensed chromatin and the cortex of the cell. At metaphase I (MI) stage, CaMKK was concentrated in the cortex of the cell. After transition to anaphase I or telophase I stage, CaMKK was detected around the separating chromosomes and in the cortex of the cell. At metaphase II (MII) stage, CaMKK was localized to the cortex of the cell, with a thicker area near the first polar body (PB1). Treatment of pig cumulus-enclosed oocytes with STO-609, a membrane-permeable CaMKK inhibitor, resulted in the delay/inhibition of the meiotic resumption and the inhibition of first polar body emission. The correlation between CaMKK and microfilaments during meiotic maturation of pig oocytes was then studied. CaMKK and microfilaments were colocalized from MI to MII during porcine oocyte maturation. After oocytes were treated with STO-609, microfilaments were depolymerized, while in oocytes exposed to cytochalasin B (CB), a microfilament polymerization inhibitor, CaMKK became diffused evenly throughout the cell. These data suggest that CaMKK is involved in regulating the meiotic cell cycle probably by interacting with microfilaments in pig oocytes.  相似文献   

7.
To determine whether the nuclei of early growing stage porcine oocytes can mature to the MII stage, we examined meiotic competence of nuclei that had been fused with enucleated GV oocytes using the nuclear transfer method. In vitro matured oocytes were enucleated and then fused with early growing oocytes (30-40 μm in diameter) from 5 to 7-wk-old piglets using the hemagglutinating virus of Japan (HVJ). Reconstructed oocytes were cultured for 24 h to the MII stage. Although these oocytes extruded the first polar body, they did not contain normal haploid chromosomes, and the spindles were misaligned or absent at the metaphase II (MII) stage. Furthermore, maturation promoting factor (MPF) activity levels were low in oocytes reconstructed with early growing oocytes at metaphase I (MI) and MII. In contrast, mitogen-activated protein kinase (MAPK) activity was detected between the MI and MII stages, although at slightly lower levels. In conclusion, the nuclei of early growing oocytes did not accomplish normal meiotic division in matured oocytes due to misaligned or absent spindle formation.  相似文献   

8.
We investigated the effects of puromycin on mouse oocyte chromosomes during meiotic maturation in vitro. Puromycin treatment for 6 hr at 100 μg/ml almost completely, but reversibly, suppressed [35S]methionine incorporation into oocyte protein at all stages of maturation tested. Nevertheless, oocytes treated at the germinal vesicle stage underwent germinal vesicle breakdown (GVBD) and chromosome condensation. These oocytes completed nuclear maturation to metaphase II (MII) if the inhibitor was withdrawn. Prolonged (24-hr) treatment, however, caused the chromsomes to degenerate. The chromosomes of oocytes treated shortly after GVBD for 6 hr remained condensed, but the oocytes failed to form a polar body. However, 24-hr treatment caused the chromosomes to decondense to form an interphase nucleus. Oocytes treated near MI for 6 hr gave off a polar body during the treatment, and their chromosomes decondensed to form a nucleus, which remained as long as the treatment was continued. However, if the puromycin was withdrawn, the chromosomes recondensed to a state morphologically similar to that at MII. Thus, the chromosome decondensation induced by protein synthesis inhibition at MI was reversible. Oocytes treated at MII, several hours after first polar body formation, also underwent chromosome decondensation to form a nucleus. In the continuous presence of puromycin, the chromosomes remained decondensed, but neither DNA synthesis nor mitosis occurred. However, following puromycin withdrawal, these occytes synthesised DNA and underwent mitosis. Thus, protein synthesis inhibition at MII, by parthenogenetically activating the oocytes, caused irreversible chromosome decondensation. Based on these observations, we discussed the roles of protein synthesis in the regulation of oocyte chromosome behaviour during meiotic maturation.  相似文献   

9.
The aim of our study was to analyse the cytoskeletal organization of prepubertal goat oocytes. Microtubule and microfilament organization during in vitro maturation of prepubertal and adult goat oocytes and presumptive zygotes of in vitro matured-in vitro fertilized (IVM-IVF) prepubertal goat oocytes were analysed. Oocytes were matured in M-199 with hormones and serum and inseminated with frozen-thawed sermatozoa. Oocytes and presumptive zygotes were treated with anti-alpha-tubulin antibody and fluorescein isothiocyanate (FITC)-labelled goat anti-mouse antibody to stain the microtubules. Microfilaments were localized by means of phalloidin 5 microg/ml conjugated with fluorescein isothiocyanate (FITC-phalloidin). DNA was stained with propidium iodide. Stained oocytes were observed under a confocal laser scanning microscope. At the germinal vesicle nuclear stage, microfilaments were distributed at the cortex of the oocytes. After in vitro maturation, 91.7% of metaphase II (MII) oocytes from adult goats displayed microfilaments in the cortex and within the polar body and were characterized by the presence of a microfilament thickening at the cortical region over the meiotic spindle. In prepubertal goat MII oocytes only 5.7% of oocytes displayed microfilaments at the cortex and within the polar body. After insemination, most of the zygotes displayed microfilaments distributed at the cortex. An undefined microtubular network was observed in adult and prepubertal goat oocytes at the germinal vesicle stage. After in vitro maturation, 100% of MII oocytes from adult goats displayed microtubules on the meiotic spindle and within the polar body. This pattern of distribution was observed in 71.6% of prepubertal goat oocytes. Undefined microtubule networks were present in most of the zygotes analysed. In conclusion, cytoskeletal differences were found between prepubertal and adult goat MII oocytes. Furthermore, most of the zygotes from IVM-IVF prepubertal goat oocytes displayed cytoskeletal anomalies.  相似文献   

10.
In contrast to the majority of mammals, canine oocytes are ovulated at immature germinal vesicle (GV) stage and complete meiotic maturation to metaphase II during 48-72 hr within the oviducts. This study aims to characterize meiotic maturation process in bitch oocytes, with both morphological and biochemical approaches. The follow-up of chromatin and microtubules during maturation was described, and MPF and MAP kinase activities were quantified at different stages of maturation. Since bitch oocyte cytoplasm is darkly pigmented, the first step was to setup an appropriate staining method for DNA. We thus compared the efficiency of two visualization techniques and demonstrated that propidium iodide coupled to confocal microscopy was a better method than Hoechst/fluorescence microscopy for nuclear stage observation (determination rates: 98.6 vs. 69.5%, respectively; P < 0.01, n = 1622 oocytes). Microtubule organization, evaluated by tubulin immunodetection, revealed subcortical and perinuclear alpha-tubulin and asters in GV oocytes and a clear network of microtubules in GVBD oocytes. In MI and MII oocytes, a symmetrical, barrel-shaped, and radially located spindle was observed. MPF and MAP kinase activities were assayed concomitantly using histone H1 and MBP as substrates. Kinase activities were detected at low levels in oocytes at GV and GVBD stages and were significantly higher at MI and MII stages. In conclusion, despite the particular pattern of meiotic resumption in canine oocytes (ovulated at GV stage), cytoskeleton/chromatin organization and kinase activities follow a similar pattern to those observed in other mammalian species.  相似文献   

11.
Oocytes of wild-type mice are ovulated as the secondary oocytes arrested at metaphase of the second meiotic division. Their fertilization or parthenogenetic activation triggers the completion of the second meiotic division followed by the first embryonic interphase. Oocytes of the LT/Sv strain of mice are ovulated either at the first meiotic metaphase (M I) as primary oocytes or in the second meiotic metaphase (M II) as secondary oocytes. We show here that duringin vitromaturation a high proportion of LT/Sv oocytes progresses normally only until metaphase I. In these oocytes MAP kinase activates shortly after histone H1 kinase (MPF) activation and germinal vesicle breakdown. However, MAP kinase activation is slightly earlier than in oocytes from wild-type F1 (CBA/H × C57Bl/10) mice. The first meiotic spindle of these oocytes forms similarly to wild-type oocytes. During aging, however, it increases in size and finally degenerates. In those oocytes which do not remain in metaphase I the extrusion of first polar bodies is highly delayed and starts about 15 h after germinal vesicle breakdown. Most of the oocytes enter interphase directly after first polar body extrusion. Fusion between metaphase I LT/Sv oocytes and wild-type mitotic one-cell embryos results in prolonged M-phase arrest of hybrids in a proportion similar to control LT/Sv oocytes and control hybrids made by fusion of two M I LT/Sv oocytes. This indicates that LT/Sv oocytes develop cytostatic factor during metaphase I. Eventually, anaphase occurs spontaneously and the hybrids extrude the polar body and form pronuclei in a proportion similar as in controls. In hybrids between LT/Sv metaphase I oocytes and wild-type metaphase II oocytes (which contain cytostatic factor) anaphase I proceeds at the time observed in control LT/Sv oocytes and hybrids between two M I LT/Sv oocytes, and is followed by the parthenogenetic activation and formation of interphase nuclei. Also the great majority of hybrids between M I and M II wild-type oocytes undergoes the anaphase but further arrests in a subsequent M-phase. These observations suggest that an internally triggered anaphase I occurs despite the presence of the cytostatic activity both in LT/Sv and wild-type M I oocytes. Anaphase I triggering mechanism must therefore either inactivate or override the CSF activity. The comparison between spontaneous and induced activation of metaphase I LT/Sv oocytes shows that mechanisms involved in anaphase I triggering are altered in these oocytes. Thus, the prolongation of metaphase I in LT/Sv oocytes seems to be determined by delayed anaphase I triggering and not provoked directly by the cytostatic activity.  相似文献   

12.
This report examines in detail the metabolism of the cyclin protein B1 during meiotic maturation and following the activation of mature mouse oocytes using immunoprecipitation of the radiolabelled protein. The net synthesis of cyclin B increases progressively during meiotic maturation, reaching its maximum levels at least 1 h before oocytes exit into metaphase of meiosis II (MII). This increase correlates with the rise in cdc2 kinase activity reported previously and suggests an association between the length of the first meiotic M phase (MI) and the net synthesis of cyclin B, that seems to regulate the time required for the cdc2 kinase to reach its maximum activity. Moreover, no marked degradation of cyclin B was observed before the MI to MII transition and that which occurs does so independently of the presence of microtubules, which are essential for cyclin degradation during metaphase II arrest and exit of oocytes into interphase of the first mitotic cell cycle. Cyclin B is degraded rapidly during the transitions MI to MII, MII to the first mitotic interphase and MII to an abortive third metaphase state (MIII). However, whilst its degradation was incomplete during the MI to MII transition, virtually no cyclin B protein was detected following both the MII to interphase and MII to MIII transitions. Thus, the decision of oocytes to exit into MIII, or interphase is not controlled at the level of cyclin B degradation. Lastly, in aging, non-activated oocytes, the net synthesis of cyclin B declines. Whereas, in activated eggs cultured in parallel although the rate of net synthesis declines initially, it is effectively ‘rescued’ being two-fold greater than in non-activated oocytes of an equivalent age. This gradual fall in the net synthesis of cyclin B observed in aging oocytes may contribute to the increasing ease with which they become activated, compared to recently ovulated oocytes.  相似文献   

13.
Septin 7 is a conserved GTP-binding protein. In this study, we examined the localization and functions of Septin 7 during mouse oocyte meiotic maturation. Immunofluorescent analysis showed that intrinsic Septin 7 localized to the spindles from the pro-MI stage to the MII stage. Knockdown of Septin 7 by siRNA microinjection caused abnormal spindles and affected extrusion of the first polar body. Septin 7 mRNA tagged with myc was injected into GV stage oocytes to overexpress Septin 7. Overexpressed Myc-Septin 7 localized to the spindle and beneath the plasma membrane displaying long filaments. Fluorescence intensity of spindle α-tubulin in myc-Septin 7-injected oocytes was weaker than that of the control group, demonstrating that Septin 7 may influence recruitment of α-tubulin to spindles. MII oocytes injected with myc-Septin 7 exhibited abnormal chromosome alignment, and parthenogenetic activation failed to allow extrusion of the second polar body, suggesting that overexpression of Septin 7 may affect extrusion of the polar body by disturbing the alignment of chromosomes and regulating α-tubulin recruitment to spindles. In summary, Septin 7 may regulate meiotic cell cycle progression by affecting microtubule cytoskeletal dynamics in mouse oocytes.  相似文献   

14.
W Liu  J Yin  G Zhao  Y Yun  S Wu  KT Jones  A Lei 《Theriogenology》2012,78(6):1171-1181
During mammalian oocyte maturation, two consecutive meiotic divisions are required to form a haploid gamete. For each meiotic division, oocytes must transfer from metaphase to anaphase, but maturation promoting factor (cyclin-dependent kinase 1/cyclin B1) activity would keep the oocytes at metaphase. Therefore, inactivation of maturation promoting factor is needed to finish the transition and complete both these divisions; this is provided through anaphase-promoting complex/cyclosome-dependent degradation of cyclin B1. The objective of this study was to examine meiotic divisions in bovine oocytes after expression of a full length cyclin B1 and a nondegradable N-terminal 87 amino acid deletion, coupled with the fluorochrome Venus, by microinjecting their complementary RNA (cRNA). Overexpression of full-length cyclin B1-Venus inhibited homologue disjunction and first polar body formation in maturing oocytes (control 70% vs. overexpression 16%; P < 0.05). However at the same levels of expression, it did not block second meiotic metaphase and cleavage of eggs after parthenogenetic activation (control: 82% pronuclei and 79% cleaved; overexpression: 91% pronuclei and 89% cleaved). The full length cyclin B1 and a nondegradable N-terminal 87 amino acid deletion caused metaphase arrest in both meiotic divisions, whereas degradation of securin was unaffected. Roscovitine, a potent cyclin-dependent kinase 1 (CDK1) inhibitor, overcame this metaphase arrest in maturing oocytes at 140 μM, but higher doses (200 μM) were needed to overcome arrest in eggs. In conclusion, because metaphase I (MI) blocked by nondegradable cyclin B1 was distinct from metaphase II (MII) in their different sensitivities to trigger CDK1 inactivation, we concluded that mechanisms of MI arrest differed from MII arrest.  相似文献   

15.
Wang L  Li D  Li Z 《Bioscience reports》2009,29(5):315-320
The golden hamster is an attractive model organism for studying reproductive physiology, oncology, genetics and virology. In an effort to establish experimental protocols necessary for cloning golden hamsters, we examined changes in the reciprocal position of the FPB (first polar body) and chromosome set of MII (the second meiotic metaphase) oocytes of golden hamsters. Oocytes were collected under three different conditions: (i) oocyte direct recovery from the oviduct of hormonally treated donor; (ii) oocyte recovery from the oviduct of hormonally treated donor followed by 5 h/10 h in vitro culture; and (iii) oocyte recovery from ovaries of hormonally treated donors and in vitro maturation. Then oocyte recovery was performed from the oviduct of hormonally treated donors, followed by 5 h in vitro culture with colchicine and/or CB (cytochalasin B). Denuded oocytes were stained with Hoechst 33342 and propidium iodide and evaluated under a microscope. Our results demonstrate that the change in FPB position in relation to the MII oocyte chromosome set increases with age of in vivo-matured oocytes. Cumulus cells can protect the FPB of in vitro-cultured oocytes from degeneration but do not significantly affect its repositioning, and in vitro-matured oocytes age slower. The colchicine has a stronger effect on cytoplasmic protrusions of golden hamster oocytes when compared with CB. These results define conditions for changes in FPB position relative to the MII oocyte chromosome set. Early ovulated oocytes, in vitro-matured oocytes and oocytes treated with colchicine should improve the effectiveness of the cloning procedure in golden hamsters as an animal model for human diseases.  相似文献   

16.
Immature and ovulated hamster oocytes were studied with the scanning electron microscope. Immature oocytes at the germinal vesicle stage have their surface uniformly covered by microvilli. When meiosis has progressed to the first meiotic metaphase the overlying surface shows the differentiation of a circular area 19 μm in diameter with a low density of microvilli. Later, from this region the first polar body emerges, and the oocyte surface at the point from which it was extruded shows a cluster of cytoplasmic, conical projections. When the zona-free oocytes are cultured at 37°C for 5 minutes these projections disappear and the oocyte surface at that point becomes smooth. However, when the oocytes remain in the oviduct for several hours after ovulation these projections remain unchanged. The in vitro interactions of capacitated hamster sperm with the immature oocyte was always seen at microvillus surfaces and never associated with the differentiated regions.  相似文献   

17.
Septin 7 is a conserved GTP-binding protein. In this study, we examined the localization and functions of Septin 7 during mouse oocyte meiotic maturation. Immunofluorescent analysis showed that intrinsic Septin 7 localized to the spindles from the pro-MI stage to the MII stage. Knockdown of Septin 7 by siRNA microinjection caused abnormal spindles and affected extrusion of the first polar body. Septin 7 mRNA tagged with myc was injected into GV stage oocytes to overexpress Septin 7. Overexpressed Myc-Septin 7 localized to the spindle and beneath the plasma membrane displaying long filaments. Fluorescence intensity of spindle α-tubulin in myc-Septin 7-injected oocytes was weaker than that of the control group, demonstrating that Septin 7 may influence recruitment of α-tubulin to spindles. MII oocytes injected with myc-Septin 7 exhibited abnormal chromosome alignment, and parthenogenetic activation failed to allow extrusion of the second polar body, suggesting that overexpression of Septin 7 may affect extrusion of the polar body by disturbing the alignment of chromosomes and regulating α-tubulin recruitment to spindles. In summary, Septin 7 may regulate meiotic cell cycle progression by affecting microtubule cytoskeletal dynamics in mouse oocytes.  相似文献   

18.
To better understand the differences in cytoskeletal organization between in vivo (IVO) and in vitro (IVM) matured oocytes, we analyzed remodeling of the centrosome-microtubule complex in IVO and IVM mouse oocytes. Fluorescence imaging revealed dramatic differences in meiotic spindle assembly and organization between these two populations. Metaphase spindles at both meiosis I (M-I) and meiosis II (M-II) in IVO oocytes were compact, displayed focused spindle poles with distinct gamma-tubulin foci, and were composed of acetylated microtubules. In contrast, IVM oocytes exhibited barrel-shaped spindles with fewer acetylated microtubules and gamma-tubulin diffusely distributed throughout the spindle proper. With respect to meiotic progression, IVO oocytes were more synchronous in the rate and extent of anaphase to telophase of M-I and first polar body emission than were IVM counterparts. Furthermore, IVO oocytes showed a twofold increase in cytoplasmic microtubule organizing centers (MTOCs), and constitutive MTOC proteins (gamma-tubulin and pericentrin) were excluded from the first polar body. Inclusion of MTOC constitutive proteins in the polar body and diminished number of cytoplasmic MTOCs was observed in IVM oocytes. These findings were corroborated in IVO oocytes obtained from naturally ovulated and spontaneously cycling mice and highlight a fundamental distinction in the spatial and temporal regulation of microtubule dynamics between IVO and IVM oocytes  相似文献   

19.
The newly developed Pol-Scope allows imaging of spindle retardance, which is an optical property of organized macromolecular structures that can be observed in living cells without fixation or staining. Experiments were undertaken to examine changes in meiotic spindles during the initial stages of activation of living mouse oocytes using the Pol-Scope. Parthenogenetic activation of oocytes treated with calcium ionophore evoked a dynamic increase in meiotic spindle retardance, particularly of the midregion, before spindle rotation and second polar body extrusion. The pronounced increase in spindle retardance, which could, for the first time to our knowledge, be quantified in living oocytes, was maintained during polar body extrusion. Spindle retardance of newly in vivo fertilized oocytes was significantly higher than that of ovulated, metaphase II oocytes. Pol-Scope imaging of fertilized oocytes did not affect subsequent development. These results establish that increased spindle retardance precedes polar body extrusion and pronuclear formation. The increased birefringence in the spindle provides an early indicator of oocyte activation. Thus, noninvasive, quantitative imaging of the onset of activation in living oocytes might improve the efficiency of assisted fertilization and other embryo technologies.  相似文献   

20.
The process of resumption of the first meiotic division (RMI) in mammalian oocytes includes germinal vesicle breakdown (GVBD), spindle formation during first metaphase (MI), segregation of homologous chromosomes, extrusion of the first polar body (PBI) and an arrest at metaphase of the second meiotic division (MII). Previous studies suggest a role for Fyn, a non-receptor Src family tyrosine kinase, in the exit from MII arrest. In the current study we characterized the involvement of Fyn in RMI. Western blot analysis demonstrated a significant, proteasome independent, degradation of Fyn during GVBD. Immunostaining of fixed oocytes and confocal imaging of live oocytes microinjected with Fyn complementary RNA (cRNA) demonstrated Fyn localization to the oocyte cortex and to the spindle poles. Fyn was recruited during telophase to the cortical area surrounding the midzone of the spindle and was then translocated to the contractile ring during extrusion of PBI. GVBD, exit from MI and PBI extrusion were inhibited in oocytes exposed to the chemical inhibitor SU6656 or microinjected with dominant negative Fyn cRNA. None of the microinjected oocytes showed misaligned or lagging chromosomes during chromosomes segregation and the spindle migration and anchoring were not affected. However, the extruded PBI was of large size. Altogether, a role for Fyn in regulating several key pathways during the first meiotic division in mammalian oocytes is suggested, particularly at the GV and metaphase checkpoints and in signaling the ingression of the cleavage furrow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号