首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study deals with the topography of retinal ganglion cells (GCs) and spatial resolution in the smelt Hypomesus japonicus. The eyes and retinae were examined by light microscopy and computerized tomography. DAPI labelling was used to visualize cell nuclei in the ganglion cell and inner plexiform layers. Two zones of increased GC density in the nasal and temporal retina were bridged by a horizontal streak with the GC density ranging from 5600 to 8000 cells/mm2. The maximum cell density (area retinae temporalis) ranged from 9492 to 14,112 cells/mm2, and the total number of GCs varied from 286 x 103 to 326 x 103 cells in three individuals. The theoretical anatomical spatial resolution (the anatomical estimate of the upper limit of visual acuity) was minimum in the ventral periphery (smaller fish, 1.43 cpd; larger fish, 1.37 cpd) and maximum in area retinae temporalis (smaller fish, 2.83 cpd; larger fish, 2.41 cpd). The relatively high density of GCs and presence of the horizontal streak and area retinae temporalis in the H. japonicus are consistent with its highly visual behaviour. The present findings contribute to better understanding of the factors affecting the topography of retinal ganglion cells and mechanisms of visual adaptation in fish.  相似文献   

2.
The ocean sunfish, Mola mola, is the largest known bony fish. Based on prior studies of diet composition, it is considered to be a pelagic zooplanktivore. However, a recent study using acoustic telemetry revealed that they repeatedly dive to depths of >50 m during the day. We examined the distribution of cells within the retinal ganglion cell layer in the immature ocean sunfish (c.a. 50 cm total length) and estimated their visual acuity with respect to the main visual axis and visual fields. Visual acuity was between 3.37 and 4.41 cycles/degree. The region of highest cell density was located in the dorso-temporal retina, indicating that the main visual axis of ocean sunfish is directed towards the lower frontal portion of the visual field. This axis is considered beneficial for detecting prey items when the sunfish are migrating vertically through the water column, and in foraging behavior near the sea bottom.  相似文献   

3.
The morphological and functional density of the retinal ganglion cells of the Baikal Lake endemic seal Pusa sibirica was studied using cresyl-violet-stained whole-mounts. An area of the highest concentration of ganglion cells has been identified by drawing up a density map. This was an ellipsoid spot in the upper temporal part of the retina 6–7 mm from the visual nerve output. The maximum cell density in this area was 3800 cells/mm2. The retinal resolution estimated from the maximum density of ganglion cells and the posterior nodal distance (24 mm) was 2.4′ in the water and 3′ in the air, and this can be used as an estimation of the retina resolving power.  相似文献   

4.
Unlike all other New World (platyrrine) monkeys, both male and female howler monkeys (Alouatta sp.) are obligatory trichromats. In all other platyrrines, only females can be trichromats, while males are always dichromats, as determined by multiple behavioral, electrophysiological, and genetic studies. In addition to obligatory trichromacy, Alouatta has an unusual fovea, with substantially higher peak cone density in the foveal pit than every other diurnal anthropoid monkey (both platyrrhines and catarrhines) and great ape yet examined, including humans. In addition to documenting the general organization of the retinal ganglion cell layer in Alouatta, the distribution of cones is compared to retinal ganglion cells, to explore possible relationships between their atypical trichromacy and foveal specialization. The number and distribution of retinal ganglion cells and displaced amacrine cells were determined in six flat-mounted retinas from five Alouatta caraya. Ganglion cell density peaked at 0.5 mm between the fovea and optic nerve head, reaching 40,700–45,200 cells/mm2. Displaced amacrine cell density distribution peaked between 0.5–1.75 mm from the fovea, reaching mean values between 2,050–3,100 cells/mm2. The mean number of ganglion cells was 1,133,000±79,000 cells and the mean number of displaced amacrine cells was 537,000±61,800 cells, in retinas of mean area 641±62 mm2. Ganglion cell and displaced amacrine cell density distribution in the Alouatta retina was consistent with that observed among several species of diurnal Anthropoidea, both platyrrhines and catarrhines. The principal alteration in the Alouatta retina appears not to be in the number of any retinal cell class, but rather a marked gradient in cone density within the fovea, which could potentially support high chromatic acuity in a restricted central region.  相似文献   

5.
The temporal and spatial distribution of the genus Bacillus and Clostridium histolyticum group in swine manure composting was determined by fluorescent in situ hybridization using fluorescently labeled 16S rRNA-targeted oligonucleotide probes LGC353b and Chis150, respectively. The temporal distribution of total bacteria, Bacillus and C. histolyticum, detected in each layer of the composting pile was noticeable in that the number of them detected at the high-temperature stage was higher than that of the cooling stage. The number detected at the cooling stage was higher than that of the temperature-rising stage. The number of the total bacteria distributed in three locations achieved balance at the stage of cooling. The spatial distribution of the genus Bacillus cells was that the number and the relative abundance of Bacillus cells detected in the middle layer of composting pile were the lowest at each stage of composting. However, the minimum value of the relative abundance exceeded 8%. Compared with Bacillus spp., the C. histolyticum group displayed higher relative abundance in the same layer at different stages of composting except in the top layer at the stage of high temperature. However, the characteristic of the spatial distribution was not noticeable. The detected limits of the genus Bacillus and C. histolyticum group were both found to be the high cell density of 106 cells g−1 (wet weight). These results indicated that the genus Bacillus and C. histolyticum group were the predominant bacteria in the swine manure composting process and may play important role in this complex environment.  相似文献   

6.
Excitatory glutamatergic inputs from bipolar cells affect the physiological properties of ganglion cells in the mammalian retina. The spatial distribution of these excitatory synapses on the dendrites of retinal ganglion cells thus may shape their distinct functions. To visualize the spatial pattern of excitatory glutamatergic input into the ganglion cells in the mouse retina, particle-mediated gene transfer of plasmids expressing postsynaptic density 95-green fluorescent fusion protein (PSD95-GFP) was used to label the excitatory synapses. Despite wide variation in the size and morphology of the retinal ganglion cells, the expression of PSD95 puncta was found to follow two general rules. Firstly, the PSD95 puncta are regularly spaced, at 1–2 µm intervals, along the dendrites, whereby the presence of an excitatory synapse creates an exclusion zone that rules out the presence of other glutamatergic synaptic inputs. Secondly, the spatial distribution of PSD95 puncta on the dendrites of diverse retinal ganglion cells are similar in that the number of excitatory synapses appears to be less on primary dendrites and to increase to a plateau on higher branch order dendrites. These observations suggest that synaptogenesis is spatially regulated along the dendritic segments and that the number of synaptic contacts is relatively constant beyond the primary dendrites. Interestingly, we also found that the linear puncta density is slightly higher in large cells than in small cells. This may suggest that retinal ganglion cells with a large dendritic field tend to show an increased connectivity of excitatory synapses that makes up for their reduced dendrite density. Mapping the spatial distribution pattern of the excitatory synapses on retinal ganglion cells thus provides explicit structural information that is essential for our understanding of how excitatory glutamatergic inputs shape neuronal responses.  相似文献   

7.
To test the hypothesis that subtle differences in abiotic requirements can result in almost total spatial segregation, we sampled two species of diurnal frogs, Atelopus spumarius and Allobates sumtuosus, in a primary forest reserve in central Brazilian Amazonia. We conducted visual and acoustic surveys on three occasions over 2 months, in 40 streamside (riparian) plots distributed throughout the reserve's two major drainage basins, using a grid system that covers 64 km2. On average, drainages differed in the pH of stream water and the number of connected and isolated streamside pools. Differences in abiotic characteristics of drainages were associated with the spatial distribution of frog species. The occurrence and density of Allobates sumtuosus was negatively related to stream pH and discharge and positively related to the number of isolated pools in plots. The occurrence and density of Atelopus spumarius was associated with streams with high discharge and pH near neutral. These results indicate that although very large reserves will probably contain sufficient landscape heterogeneity to accommodate different species of diurnal frogs, due to strongly patchy distributions, in situ studies using fine‐scale species‐distribution models will be necessary to assess the adequacy of small reserves in Amazonia that cover hundreds of square kilometers or less for the conservation of some anuran species.  相似文献   

8.
Many ecological hypotheses have been widely used to explain species richness variation across the globe. We investigated lizard species richness patterns in China, and identified areas of high species richness. Furthermore, we tested hypotheses concerning the relationships between lizard richness and environmental variables. A large data including 30,902 records of point locality data for 151 lizard species occurring in China were retrieved from Herpetology museums of CIB/CAS and other museums through HerpNET, and published sources, and then predicted distributions maps were generated using ecological niche modeling. We overlaid all species prediction maps into a composite map to describe species richness patterns. A multiple regression analysis using eigenvector-based spatial filtering (SEVM) was performed to examine the best environmental predictors of species richness. Richness peaked mainly in southern China located in the Oriental realm. Our best multiple regression models explained a total of 80.1% variance of lizard richness (r2 = 0.801; F = 203.47; P < 0.001). Among related factors in shaping species richness distribution, the best environmental predictors of species richness were: frost-day frequency, elevation, vegetation, and wet-day frequency. Based on models selection, our results revealed that underlying mechanisms related to different ecological hypotheses might work together and best explain lizard richness in China. We are in an initial step to develop a large data set on species richness, and provide the necessary conservation implications from habitat loss. Additional studies that test species richness at different geographical scale are required to better understand the factors that may influence the species richness distribution in East Asia.  相似文献   

9.
This work presents unified analyses of spatial and temporal visual information processing in a feed-forward network of neurons that obey membrane, or shunting equations. The feed-forward shunting network possesses properties that make it well suited for processing of static, spatial information. However, it is shown here that those same properties of the shunting network that lead to good spatial processing imply poor temporal processing characteristics. This article presents an extension of the feed-forward shunting network model that solves this problem by means of preprocessing layers. The anatomical interpretation of the resulting model is structurally analogous to recently discovered data on a retinal circuit connecting cones to retinal ganglion cells through pairs of pushpull bipolar cells. Mathematical analysis of the lumped model leads to the hypothesis that X and Y retinal ganglion cells may consist of a single mechanism acting in different parameter ranges. This hypothesis is confirmed in the companion article, wherein the model in conjunction with a nonlinear temporal adaptation mechanism — is used to reproduce experimental data of both X and Y cells by simple changes in morphological and physiological parameters.  相似文献   

10.
This paper deals with the dendritic field structure of three large ganglion cell types in the retina of a marine teleost, Pholidapus dybowskii. Cells were retrograde labeled with horseradish peroxidase applied to lesioned fibers of the optic nerve. Their morphology was studied in wholemounted retinae. Dendritic fields of αab cells were more complex. Their structural complexity measured using Kolmogorov and information fractal dimensions exceeded significantly those of αa and biplexiform cells. The latter two types exhibited no significant differences in complexity and spatial heterogeneity of dendritic field. The cell types studied differed dramatically in the relationships between fractal and nonfractal parameters of their dendritic arbors. The functional and evolutionary implications of the dendritic field structure of retinal ganglion cells are discussed.  相似文献   

11.
Stand structure and spatial distribution of Picea jezoensis (Siebold et Zucc.) Carrière on Mt. Gyebang, Korea was investigated to provide information on the structural characteristics and the maintenance of P. jezoensis population in northern temperate mixed coniferous forests. Height and diameter at breast height (DBH) distribution, age, growth, and spatial distribution patterns of P. jezoensis were examined in thirty nine 100-400 m2 quadrats or circular plots. The overall stand structure attributes in the study sites are stem density of 709 trees ha−1, a mean DBH of 12.8 cm, and a mean height of 5.6 m, with reverse J shapes of DBH and height distributions. The stem density of P. jezoensis population was 81 trees ha−1, a mean DBH of 20.7 cm, and a mean height of 9.1 m, showing bimodal-like shapes in age and DBH distributions. Several growth release periods implied that P. jezoensis stands experienced small disturbances. The radius of patches of similar-sized P. jezoensis in the variogram was equivalent with the height of the tallest trees, indicating that patches were established following the fall of trees in the upper canopy layer. Small windthrows in this region contributed to the maintenance of the P. jezoensis stand by releasing sapling growth and providing nursing logs and space for seedlings.  相似文献   

12.
Li S  Huang M  Wang X  Wang X  Chen F  Lei H  Jiang F 《Neurochemical research》2011,36(12):2427-2433
This study aims to investigate the retinal metabolic processes in a rat axotomy model. Retinal metabolic changes in optic nerve transection (ONT) rat model were analyzed by 1H magnetic resonance spectroscopy (1H-MRS). Retinal ganglion cells (RGCs) densities were assessed from retinal whole mounts. The retina was stained immunohistochemically with glial fibrillary acidic protein (GFAP). The results showed that the retina in ONT rats had significantly decreased concentrations of γ-aminobutyric acid (GABA), N-acetylaspartate (NAA), taurine (Tau), creatine (Cr) and increased concentrations of alanine (Ala) compared with control. Examination of glutamate (Glu), glutamine (Gln) and Glx (Glu + Gln) concentrations disclosed no significant differences. The mean density of RGCs reduced from 2,249 ± 87 cells/mm2 in control group to 320 ± 56 cells/mm2 in ONT group. GFAP immunoreactivity was markedly higher in ONT group than that in control group. The retinal metabolism after ONT was associated with neurotransmitter recycling/production perturbation, as well as other metabolic disequilibrium.  相似文献   

13.
The spatial distribution and morphological diversity of virioplankton were determined in Lake Donghu which contains three trophic regions: hypertrophic, eutrophic and mesotrophic region. Virioplankton abundance measured by transmission electron microscope (TEM) ranged from 7.7 × 108 to 3.0 × 109 ml–1, being among the highest observed in any natural aquatic system examined so far. The spatial distribution of virioplankton was correlated significantly with chlorophyll a concentration (r = 0.847; P < 0.01) at the sampling sites in Lake Donghu. 76 morphotypes were observed. Most morphotypes have tails, belonging to Siphoviridae, Myoviridae and Podoviridae. The majority of tailed phages in the lake were Myoviridae. Morphotypes which were rarely reported, such as prolate-headed virus-like particles, lemon-shaped virus-like particle, and viruses resembling Tectiviridae and Corticoviridae were all observed in the lake. It is concluded that the high viral abundance might be associated with high density of phytoplankton including algae and cyanobacteria. There was high viral diversity in this eutrophic shallow lake. In addition, cyanophage represented an important fraction of the virioplankton community in Lake Donghu.  相似文献   

14.

Background  

Leber's congenital amaurosis (LCA) is a severe form of retinal dystrophy. Mutations in the RPE65 gene, which is abundantly expressed in retinal pigment epithelial (RPE) cells, account for approximately 10–15% of LCA cases. In this study we used the high turnover, and rapid breeding and maturation time of the Rpe65 -/- knockout mice to assess the efficacy of using rAAV-mediated gene therapy to replace the disrupted RPE65 gene. The potential for rAAV-mediated gene treatment of LCA was then analyzed by determining the pattern of RPE65 expression, the physiological and histological effects that it produced, and any improvement in visual function.  相似文献   

15.
The density of distribution and topographical features of small and large ganglion cells were investigated in total silver-impregnated preparations of the retina from two species of frogs (Rana ridibunda andR. temporaria). A horizontal band of increased density of ganglion cells was located in both species above the nasotemporal axis passing through the blind spot. Outside this band the density of the small cell population was maximal in the central zone of the retina, decreasing toward the periphery. In the upper halves of the retina the density of small cells was on average 26% greater than in the lower halves. Large ganglion cells, on the other hand, were more densely distributed in the lower half of the retina than in the upper half; this difference was particularly marked inR. temporaria (by 116%). The large cells were asymmetrically distributed relative to the dorsoventral axis also: In the nasal quadrants their density was 40–55% greater than in the temporal. Large cells were more densely distributed in the middle zone of the retina. Signs of asymmetry in the organization of the retinal output raster may be of adaptive ecologic importance and may determine the characteristics of formation of visually controlled food and avoidance behavioral reflexes.Research Institute of Applied Mathematics and Cybernetics, N. I. Lobachevskii State University, Gorkii. Translated from Neirofiziologiya, Vol. 17, No. 2, pp. 198–204, March–April, 1985.  相似文献   

16.
The dual reciprocal and antagonistic organization of B- and D-neurons of the afferent visual system is obtained using differentiation and integration as mathematical equivalents of visual information processing by an impulse frequency code. The spatial and temporal derivatives lead to the transient responses. A constant and a time-dependent term proportional to the luminance distribution describe the sustained response components and the shift-effect of retinal on- and off-center ganglion cells. Receptive field properties of lateral geniculate cells and their antagonistic shift-effect are obtained by passing the retinal output, i.e. the difference between B- and D-neurons' activity, once again through the same operations. However, the factor of proportionality is applied to the retina alone. The surprisingly small difference between retinal and geniculate receptive field properties on the one hand and the dramatic change from a synergistic to an antagonistic shift-effect on the other hand are thereby explained. The theory offers an understanding of a a possible functional significance of the shift-effect as a mechanism of transientrestoration of visual information, which prevents the system from total fading by means of shifts of the retinal image, normally produced by eye movements.  相似文献   

17.
18.
Relatively little is known about the physical structure and ecological adaptations of elasmobranch sensory systems. In particular, elasmobranch vision has been poorly studied compared to the other senses. Virtually nothing is known about whether elasmobranchs possess multiple cone types, and therefore the potential for colour vision, or how the spectral tuning of their visual pigments is adapted to their different lifestyles. In this study, we measured the spectral absorption of the rod and cone visual pigments of the blue-spotted maskray, Dasyatis kuhlii, using microspectrophotometry. D. kuhlii possesses a rod visual pigment with a wavelength of maximum absorbance (λmax) at 497 nm and three spectrally distinct cone types with λmax values at 476, 498 and 552 nm. Measurements of the spectral transmittance of the ocular media reveal that wavelengths below 380 nm do not reach the retina, indicating that D. kuhlii is relatively insensitive to ultraviolet radiation. Topographic analysis of retinal ganglion cell distribution reveals an area of increased neuronal density in the dorsal retina. Based on peak cell densities and using measurements of lens focal length made using laser ray tracing and sections of frozen eyes, the estimated spatial resolving power of D. kuhlii is 4.10 cycles per degree.  相似文献   

19.
Retinal ganglion cell (RGC) isodensity maps indicate important regions in an animal’s visual field. These maps can also be combined with measures of focal length to estimate the theoretical visual acuity. Here we present the RGC isodensity maps and anatomical spatial resolving power in three budgerigars (Melopsittacus undulatus) and two Bourke’s parrots (Neopsephotus bourkii). Because RGCs were stacked in several layers, we modified the Nissl staining procedure to assess the cell number in the whole-mounted and cross-sectioned tissue of the same retinal specimen. The retinal topography showed surprising variation; however, both parrot species had an area centralis without discernable fovea. Budgerigars also had a putative area nasalis never reported in birds before. The peak RGC density was 22,300–34,200 cells/mm2 in budgerigars and 18,100–38,000 cells/mm2 in Bourke’s parrots. The maximum visual acuity based on RGCs and focal length was 6.9 cyc/deg in budgerigars and 9.2 cyc/deg in Bourke’s parrots. These results are lower than earlier behavioural estimates. Our findings illustrate that retinal topography is not a very fixed trait and that theoretical visual acuity estimations based on RGC density can be lower than the behavioural performance of the bird.  相似文献   

20.
The initial stage of information processing by the visual system reduces the information contained in the continuous image on the retina into a discrete set of responses which are carried from the lateral geniculate nucleus (LGN) to the visual cortex.-1. The optimal sampling of the light intensity distribution in the visual environment is achieved only if each channel in the visual pathways carries undistorted information corresponding to an image element. The visual system approaches as closely as possible the scheme of optimal spatial sampling, retaining the full information on the low spatial frequency content of the object light intensity. The ideal receptive field of a sustained LGN cell is then of the form J 1 (Kr)/Kr.-2. The experimentally determined receptive fields of sustained LGN cells (and to some extent retinal ganglion cells as well) in cat closely resemble the functional form J 1 (Kr)/Kr. The centre-surround organization of the receptive fields is therefore understood as a scheme which leads to a maximal information flow through the visual pathways.-3. The optimal sampling scheme cannot be realized by the retina alone, because of restrictions on the size of neural networks. It is therefore constructed in two stages, ending at the LGN level. A recombination of ganglion cell signals into optimal receptive fields is a major role of the LGN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号