首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The autoplastic surgery by intestine tissue has been used for reconstructive therapy of the urinary tract since the middle of the last century; however, cell mechanisms of the urothelium engraftment are still obscure. Intestine stem cells possess plasticity and presumably enable after the autoplastic surgery to transdifferentiate into mature cells of urinary tract. Using the preliminary developed in vivo model for evaluation of somatic cells transdifferentiation into urothelium, we have found that the epithelial intestine cells producing Gfp transdifferentiate into the cryoinjured bladder urothelium of the syngenetic C57BL mice. Gfp was detected in the bladder tissue of mice-recipients using reverted polymerase chain reaction, primary fluorescence and immunofluorescence, while colocalization of the Gfp and Her-4 revealing similar to urothelium staining pattern was demonstrated in a few urothelium cells by double immunohistochemical staining of the bladder tissue with specific antibodies. The results obtained suggest that epithelial intestine cells enable to transdifferentiate into bladder urothelium, however the transdifferentiation level is low and presumably can not provide full functional urothelium engraftment in the case of autoplastic bladder surgery by intestine tissue.  相似文献   

2.
The present study tests the hypothesis that heterotypic stromal-epithelial interactions cause phenotypic changes in urothelium. The rational for the experimental design is to simulate heterotypic stromal-epithelial interactions that are created at the anastomotic site of intestinal-bladder augmentations and internal urinary diversions where the urothelium is in direct contact with the gastro-intestinal tract tissues. Tissue recombination experiments were performed by combining 14-day embryonic rat and mouse rectal mesenchyme with urothelium from embryonic, newborn, and adult mice or rats. All tissue recombinants were grown beneath the renal capsule of athymic mouse hosts for 6-16 weeks. Analyses were performed to detect expression of uroplakins, cytokeratin 7, 14, 19 and mucin secreting epithelial cells via Periodic Acid-Schiff (PAS). The phenotype of both mouse and rat urothelium was changed to a glandular morphology under the influence of rectal mesenchyme. Immunohistochemical staining revealed a loss of the urothelial specific uroplakins and cytokeratins 7, 14, and 19 (characteristic of urothelium). Histologic analysis revealed the presence of mucin secreting glandular structures which stained positive for PAS. The urothelial transdifferentiation into glandular epithelium was not a function of epithelial age and occurred in the embryonic, newborn and adult urothelium. Likewise, rectal mesenchyme from embryonic, neonatal, and adult animals was able to induce glandular differentiation in bladder epithelium. Urothelium exhibits the plasticity to change into an intestinal like epithelium as a result of mesenchymal/stromal stimulation from the gastro-intestinal tract. This experimental result is germane to heterotypic stromal-epithelial interactions that are created in patients with urinary tract reconstructions (intestinal augmentations, de-mucosalized urothelial lined bladder patches, and internal urinary diversion such as ureterosigmoidostomies). We propose that heterotypic stromal-epithelial interactions may play a role in determining histodifferentiation of urothelial cells at the anastomotic site between bowel and bladder tissue in patients with gastro-intestinal urothelial reconstructions.  相似文献   

3.
The development of reconstructive therapy of the urinary tract using pluripotent and somatic stem cells, e.g., mesenchymal stem cells (MSC), is currently in the stage of experimental studies. These studies include the investigation of the main functions of MSC and the urothelium lining the organs of the urinary tract. An important role in the regulation of proliferation and differentiation of urothelium belongs to EGF and Wnt/β-catenin signaling pathways, the activity of which may be evaluated by the level of Her-4 and Tcf-3, 4, respectively. We found that MSC labeled by transgenic green fluorescence protein (GFP) did not pro-duce Her-4 and Tcf3, 4 in vitro, but activated their production after cell grafting into the cryoinjured bladders of the syngenic mice. In mice transplanted with these MSC GFP was detected by RT-PCR in the bladder. GFP colocalization with Her-4 or Tcf3, 4 in a few urothelial cells was detected by immunohistochemical staining with specific antibodies. These results suggest that MSC labeled with GFP an be used as a proper model to study the transdifferentiation of somatic cells into urothelium.  相似文献   

4.
Uropathogenic Escherichia coli (UPEC) strains cause urinary tract infections and employ type 1 and P pili in colonization of the bladder and kidney, respectively. Most intestinal and extra-intestinal E. coli strains produce a pilus called E. coli common pilus (ECP) involved in cell adherence and biofilm formation. However, the contribution of ECP to the interaction of UPEC with uroepithelial cells remains to be elucidated. Here, we report that prototypic UPEC strains CFT073 and F11 mutated in the major pilin structural gene ecpA are significantly deficient in adherence to cultured HeLa (cervix) and HTB-4 (bladder) epithelial cells in vitro as compared to their parental strains. Complementation of the ecpA mutant restored adherence to wild-type levels. UPEC strains produce ECP upon growth in Luria-Bertani broth or DMEM tissue culture medium preferentially at 26°C, during incubation with cultured epithelial cells in vitro at 37°C, and upon colonization of mouse bladder urothelium ex vivo. ECP was demonstrated on and inside exfoliated bladder epithelial cells present in the urine of urinary tract infection patients. The ability of the CFT073 ecpA mutant to invade the mouse tissue was significantly reduced. The presence of ECP correlated with the architecture of the biofilms produced by UPEC strains on inert surfaces. These data suggest that ECP can potentially be produced in the bladder environment and contribute to the adhesive and invasive capabilities of UPEC during its interaction with the host bladder. We propose that along with other known adhesins, ECP plays a synergistic role in the multi-step infection of the urinary tract.  相似文献   

5.
Urinary bladder malfunction and disorders are caused by congenital diseases, trauma, inflammation, radiation, and nerve injuries. Loss of normal bladder function results in urinary tract infection, incontinence, renal failure, and end-stage renal dysfunction. In severe cases, bladder augmentation is required using segments of the gastrointestinal tract. However, use of gastrointestinal mucosa can result in complications such as electrolyte imbalance, stone formation, urinary tract infection, mucous production, and malignancy. Recent tissue engineering techniques use acellular grafts, cultured cells combined with biodegradable scaffolds, and cell sheets. These techniques are not all currently applicable for human bladder reconstruction. However, new avenues for bladder reconstruction maybe facilitated by a better understanding of urogenital development, the cellular and molecular biology of urothelium, and cell-cell interactions, which modulate tissue repair, homeostasis, and disease progression.  相似文献   

6.
Development of reconstructive therapy of the urinary tract using pluripotent and somatic stem cells, for example mesenchymal stem cell (MSCs), recently goes through the stage of experimental studies. These studies include investigation of the main functions of MSCs and urothelium lining from inside the organs of the urinary tract. An important role in the regulation of proliferation and differentiation of urothelium belongs to EGF and Wnt-beta-catenin signaling pathways which activity may be accessed by the level of Her-4 and Tcf3,4, accordingly. We found here that MSCs labeled by transgenic green fluorescence protein (GFP) did not produce in vitro Her-4 and Tcf3,4 but activated their production after transfer into cryoinjured bladder of the syngenic mouse. After MSCs transplantation, GFP was detected in the bladder by RT-PCR and was colocalized with Her-4 or Tcf3,4 in a few urothelium cells detected by immunohistichemical staining with specific antibodies. These results suggest that MSCs labeled by GFP may be used as a good model to study transdifferentiation of somatic cells into urothelium.  相似文献   

7.
Mesenchymal stem cells (MSC) are able to transdifferentiate into cells with different functional phenotypes and considered as a promising resource for regenerative therapy. MSC derived from different tissues vary in their differentiation potential and in some cases express tissue specific markers indicating a kinship between mesenchymal and parenchymal phenotypes in the same tissue. It is possible that homorganic MSC can be more effectively induced to tissue specific differentiation and preferable for cell therapy of this organ as compared with bone marrow derived cells being commonly used for this purpose. Using bladder tissue explants, we prepared primary MSC cultures from the fetal (MSC-BF) and adult syngenic BALB/c mice and characterized their abilities during long-term passaging. In contrast to the cells from adult mice, the MSC-BF cells have the ability for a sustained growth in vitro, clonogenicity and differentiation into adipose and bone cells. Similar to the bone marrow MSC, MSC-BF express the mesenchymal markers CD29, CD44, CD49f, CD90, CD105 but not the leukocyte common antigen CD45. In normal conditions, MSC-BF produce such urothelial markers as CK14 and FOXA1 although their expression level is by far lower than in the bladder tissue. The hypomethylating agent, 5-azacytidine, induces in MSC-BF the expression of the urothelial differentiation activator PPARγ and the functional urothelium markers UP1a, UP1b, UP3a, UP3b. The data obtained suggest that MSC-BF can be epigenetically reprogrammed into urothelium by the 5-azacytidine treatment, and this may offer the novel strategy for cell therapy of bladder diseases.  相似文献   

8.
Although the epithelial lining of much of the mammalian urinary tract is known simply as the urothelium, this epithelium can be divided into at least three lineages of renal pelvis/ureter, bladder/trigone, and proximal urethra based on their embryonic origin, uroplakin content, keratin expression pattern, in vitro growth potential, and propensity to keratinize during vitamin A deficiency. Moreover, these cells remain phenotypically distinct even after they have been serially passaged under identical culture conditions, thus ruling out local mesenchymal influence as the sole cause of their in vivo differences. During vitamin A deficiency, mouse urothelium form multiple keratinized foci in proximal urethra probably originating from scattered K14-positive basal cells, and the keratinized epithelium expands horizontally to replace the surrounding normal urothelium. These data suggest that the urothelium consists of multiple cell lineages, that trigone urothelium is closely related to the urothelium covering the rest of the bladder, and that lineage heterogeneity coupled with cell migration/replacement form the cellular basis for urothelial squamous metaplasia.  相似文献   

9.
Beta defensins (BDs) are cationic peptides with antimicrobial activity that defend epithelial surfaces including the skin, gastrointestinal, and respiratory tracts. However, BD expression and function in the urinary tract are incompletely characterized. The purpose of this study was to describe Beta Defensin-1 (BD-1) expression in the lower urinary tract, regulation by cystitis, and antimicrobial activity toward uropathogenic Escherichia coli (UPEC) in vivo. Human DEFB1 and orthologous mouse Defb1 mRNA are detectable in bladder and ureter homogenates, and human BD-1 protein localizes to the urothelium. To determine the relevance of BD-1 to lower urinary tract defense in vivo, we evaluated clearance of UPEC by Defb1 knockout (Defb1 -/-) mice. At 6, 18, and 48 hours following transurethral UPEC inoculation, no significant differences were observed in bacterial burden in bladders or kidneys of Defb1 -/- and wild type C57BL/6 mice. In wild type mice, bladder Defb1 mRNA levels decreased as early as two hours post-infection and reached a nadir by six hours. RT-PCR profiling of BDs identified expression of Defb3 and Defb14 mRNA in murine bladder and ureter, which encode for mBD-3 and mBD-14 protein, respectively. MBD-14 protein expression was observed in bladder urothelium following UPEC infection, and both mBD-3 and mBD-14 displayed dose-dependent bactericidal activity toward UPEC in vitro. Thus, whereas mBD-1 deficiency does not alter bladder UPEC burden in vivo, we have identified mBD-3 and mBD-14 as potential mediators of mucosal immunity in the lower urinary tract.  相似文献   

10.
Plenary Symposia     
Studies of the urothelium, the specialized epithelial lining of the urinary bladder, are critical for understanding diseases affecting the lower urinary tract, including interstitial cystitis, urinary tract infections and cancer. However, our understanding of urothelial pathophysiology has been hampered by a lack of appropriate model systems. Here, we describe the isolation and characterization of a non-transformed urothelial cell line (TRT-HU1), originally explanted from normal tissue and immortalized with hTERT, the catalytic subunit of telomerase. We demonstrate responsiveness of the cells to anti-proliferative factor (APF), a glycopeptide implicated in the pathogenesis of interstitial cystitis. TRT-HU1 carries a deletion on the short arm of chromosome 9, an early genetic lesion in development of bladder cancer. TRT-HU1 urothelial cells displayed growth and migration characteristics similar to the low-grade papilloma cell line RT4. In contrast, we observed marked differences in both phenotype and gene expression profiles between TRT-HU1 and the highly malignant T24 cell line. Together, these findings provide the first demonstration of a non-transformed, continuous urothelial cell line that responds to APF. This cell line will be valuable for studies of both benign and malignant urothelial cell biology.  相似文献   

11.
A replacement material for autologous grafts for urinary tract reconstruction would dramatically reduce the complications of surgery for these procedures. However, acellular materials have not proven to work sufficiently well, and cell‐seeded materials are technically challenging and time consuming to generate. An important function of the urinary tract is to prevent urine leakage into the surrounding tissue—a function usually performed by the urothelium. We hypothesize that by providing an impermeable barrier in the acellular graft material, urine leakage would be minimized, as the urothelium forms in vivo. However, since urothelial cells require access to nutrients from the supporting vasculature, the impermeable barrier must degrade over time. Here we present the development of a novel biomaterial composed of the common degradable polymers, poly(ε‐caprolactone) and poly(L ‐lactic acid) and generated by electrospinning directly onto spin‐coated thin films. The composite scaffolds with thin films on the luminal surface were compared to their electrospun counterparts and commercially available small intestinal submucosa by surface analysis using scanning electron microscopy and by analysis of permeability to small molecules. In addition, the materials were examined for their ability to support urothelial cell adhesion, proliferation, and multilayered urothelium formation. We provide evidence that these unique composite scaffolds provide significant benefit over commonly used acellular materials in vitro and suggest that they be further examined in vivo. Biotechnol. Bioeng. 2011; 108:207–215. © 2010 Wiley Periodicals, Inc.  相似文献   

12.
Human bladder urothelium is able to secrete tissue-type plasminogen activator (tPA). The aim of our study was to analyse localisation of tPA antigen in comparison to differentiation state of cells in samples of histologically normal urothelium and non-invasive tumours of the human urinary bladder. Twenty-five samples of normal urothelium and 31 non-invasive papillary tumours from 36 patients were examined. The presence of tPA antigen was evaluated immunohistochemically. Differentiation of superficial cells was assessed by the presence of urothelial cell differentiation markers, uroplakins (UPs; immunohistochemistry) and cell's apical surface architecture (scanning electron microscopy). All tissue samples stained anti-tPA positive. In normal urothelium, the intensity of anti-tPA staining was the strongest in superficial cells, which were well-differentiated. In tumours, all cell layers stained anti-tPA positive. The intensity of anti-tPA positive reaction in the upper cell layer correlated with the percentage of anti-UP positive superficial cells. Superficial cells showed various differentiation states. The localisation of tPA antigen in human in vivo tissue is not confined to the well-differentiated superficial cells. Our results suggest a positive correlation between tPA secretion and cell differentiation.  相似文献   

13.
Urinary bladder voiding is a complex mechanism depending upon interplay among detrusor, urothelium, sensory and motor neurons and connective tissue cells. The identity of some of the latter cells is still controversial. We presently attempted to clarify their phenotype(s) in the human urinary bladder by transmission electron microscopy (TEM) and immunohistochemistry. At this latter aim, we used CD34, PDGFRα, αSMA, c‐Kit and calreticulin antibodies. Both, TEM and immunohistochemistry, showed cells that, sharing several telocyte (TC) characteristics, we identified as TC; these cells, however, differed from each other in some ultrastructural features and immunolabelling according to their location. PDGFRα/calret‐positive, CD34/c‐Kit‐negative TC were located in the sub‐urothelium and distinct in two subtypes whether, similarly to myofibroblasts, they were αSMA‐positive and had attachment plaques. The sub‐urothelial TC formed a mixed network with myofibroblasts and were close to numerous nerve endings, many of which nNOS‐positive. A third TC subtype, PDGFRα/αSMA/c‐Kit‐negative, CD34/calret‐positive, ultrastructurally typical, was located in the submucosa and detrusor. Briefly, in the human bladder, we found three TC subtypes. Each subtype likely forms a network building a 3‐D scaffold able to follow the bladder wall distension and relaxation and avoiding anomalous wall deformation. The TC located in the sub‐urothelium, a region considered a sort of sensory system for the micturition reflex, as forming a network with myofibroblasts, possessing specialized junctions with extracellular matrix and being close to nerve endings, might have a role in bladder reflexes. In conclusions, the urinary bladder contains peculiar TC able to adapt their morphology to the organ activity.  相似文献   

14.
Urothelial cells are specialized epithelial cells in the bladder that serve as a barrier toward excreted urine. The urothelium consists of superficial cells (most differentiated cells), intermediate cells, and basal cells; the latter have been considered as urothelium progenitor cells. In this study, BrdU or EdU was administrated to pregnant mice during E8–E13 for 2 consecutive days when bladder development occurs. The presence of label retaining cells was investigated in bladders from offspring. In 6 months old mice ~1% of bladder cells retained labeling. Stem cell markers as defined for other tissues (e.g., p63, CD44, CD117, trop2) co-localized or were in close vicinity to label retaining cells, but they were not uniquely limited to these cells. Remarkably, label retaining cells were distributed in all three cell layers (p63+, CK7+, and CK20+) of the urothelium and concentrated in the bladder trigone. This study demonstrates that bladder progenitor cells are present in all cell layers and reside mostly in the trigone. Understanding the geographic location of slow cycling cells provides crucial information for tissue regenerative purposes in the future.  相似文献   

15.
The urothelium lines all urinary passages, with exception of the distal portions of the urethra. For the first time the structure of the human bladder was described by Leonardo Da Vinci in 15th century, however, the exact ultrastructure and function of the bladder’s epithelium have not been fully understood. The aim of our study was to investigate the structure of normal human urinary bladder epithelium with methods of classical histology, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). We obtained biopsies from non-tumor areas from the human urinary bladder of tumor-bearing patients during transurethral resections of these tumours in general or spinal anaesthesia. Totally we investigated biopsies from 20 patients, 16 males and 4 females. The mean age of this group of patients was averaged 66.5 years. The urothelium is comprised of three cell types including polyhedral basal cells, piriform intermediate cells, and superficial umbrella cells. In human urinary bladder epithelium we found a direct connection between intermediate cells and the basement membrane. These thin cytoplasmic projections are detectable not only on slides for light microscopy (semi-thin sections), but also in transmission electron-micrographs. In semi-thin sections we found also direct connections between superficial umbrella cells and basement membrane. These connections we were not able to verify via transmission electron-microscopy. Nevertheless our results show that the human urinary bladder urothelium is a special type of pseudostratified epithelium and each cell has a thin cytoplasmic projection with a direct contact with basement membrane.  相似文献   

16.
Distribution of phosphodiesterase I in normal human tissues   总被引:1,自引:0,他引:1  
Phosphodiesterase I (PDE I) is an exonuclease capable of hydrolyzing a variety of phosphate ester and pyrophosphate bonds. Cell fractionation and histochemical studies in animal tissues have localized PDE I in the plasma membrane of various epithelia. This suggests a role for the enzyme in active transport. Distribution of PDE I in human tissues has not previously been studied. We have produced a polyclonal antiserum to bovine intestinal PDE I and have demonstrated crossreactivity with the human intestinal enzyme. This polyclonal antiserum was used in PAP immunocytochemistry to localize immunoreactive PDE I in a variety of human tissues. Localization was prominent in the gastrointestinal tract, including the cytoplasm of gastric mucosa parietal cells, cytoplasm of surface epithelium and isolated crypt cells in small intestine, and the colonic epithelial cytoplasm and brush border. Parotid gland acinar cells and scattered ductal cells showed positive cytoplasmic staining. Acinar and scattered pancreatic islet cells contained immunoreactive PDE I, as did Kupffer cells of the liver sinusoids. Immunoreactive PDE I was found in all vascular endothelia. The epithelium of the urinary tract showed extensive immunoreactivity. This included the distal convoluted and collecting tubules of the kidney, and ureteral and bladder urothelium. In previous histochemical studies of animal tissues, no evidence of PDE I activity was noted in male or female reproductive tract. In this study, immunoreactive PDE I was localized to human Sertoli cells and to basal epithelium of the epididymis and prostate acini. Fallopian tube epithelium of female reproductive tract also demonstrated immunoreactive PDI I, as did several cell types in term placenta. Our immunocytochemical results with human tissues differ significantly from previous histochemical studies in animal tissues, principally in the genitourinary system. This may be due in part to the different detection systems employed as well as the higher sensitivity of the immunoperoxidase technique. This underscores the importance of adjunct techniques in tissue surveys. The widespread epithelial distribution of immunoreactive PDE I detected by this polyclonal antibody implies an integral role in cell function, probably in active transport.  相似文献   

17.
Lower urinary tract diseases are emotionally and financially burdensome to the individual and society. Current treatments are ineffective or symptomatic. Conversely, stem cells (SCs) are regenerative and may offer long-term solutions. Among the different types of SCs, bone marrow SCs (BMSCs) and skeletal muscle-derived SCs (SkMSCs) have received the most attention in pre-clinical and clinical trial studies concerning the lower urinary tract. In particular, clinical trials with SkMSCs for stress urinary incontinence have demonstrated impressive efficacy. However, both SkMSCs and BMSCs are difficult to obtain in quantity and therefore neither is optimal for the eventual implementation of SC therapy. On the other hand, adipose tissue-derived SCs (ADSCs) can be easily and abundantly obtained from "discarded" adipose tissue. Moreover, in several head-on comparison studies, ADSCs have demonstrated equal or superior therapeutic potential compared to BMSCs. Therefore, across several different medical disciplines, including urology, ADSC research is gaining wide attention. For the regeneration of bladder tissues, possible differentiation of ADSCs into bladder smooth muscle and epithelial cells has been demonstrated. For the treatment of bladder diseases, specifically hyperlipidemia and associated overactive bladder, ADSCs have also demonstrated efficacy. For the treatment of urethral sphincter dysfunction associated with birth trauma and hormonal deficiency, ADSC therapy was also beneficial. Finally, ADSCs were able to restore erectile function in various types of erectile dysfunction (ED), including those associated with diabetes, hyperlipidemia, and nerve injuries. Thus, ADSCs have demonstrated remarkable therapeutic potentials for the lower urinary tract.  相似文献   

18.
The urothelium is a sensory structure that contributes to mechanosensation in the urinary bladder. Here, we provide evidence for a critical role for the Piezo1 channel, a newly identified mechanosensory molecule, in the mouse bladder urothelium. We performed a systematic analysis of the molecular and functional expression of Piezo1 channels in the urothelium. Immunofluorescence examination demonstrated abundant expression of Piezo1 in the mouse and human urothelium. Urothelial cells isolated from mice exhibited a Piezo1-dependent increase in cytosolic Ca2+ concentrations in response to mechanical stretch stimuli, leading to potent ATP release; this response was suppressed in Piezo1-knockdown cells. In addition, Piezo1 and TRPV4 distinguished different intensities of mechanical stimulus. Moreover, GsMTx4, an inhibitor of stretch-activated channels, attenuated the Ca2+ influx into urothelial cells and decreased ATP release from them upon stretch stimulation. These results suggest that Piezo1 senses extension of the bladder urothelium, leading to production of an ATP signal. Thus, inhibition of Piezo1 might provide a promising means of treating bladder dysfunction.  相似文献   

19.
20.
Interstitial cystitis/bladder pain syndrome (IC/BPS) is characterized by several symptoms of higher sensitivity of the lower urinary tract, such as bladder pain/discomfort, urgency, urinary frequency, pelvic pain and nocturia. Although the pathophysiology of IC/BPS is not fully understood, the hypothesis suggests that mast cell activation, glycosaminoglycan (GAG) layer defects, urothelium permeability disruption, inflammation, autoimmune disorder and infection are potential mechanisms. Mesenchymal stem cells (MSCs) have been proven to protect against tissue injury in IC/BPS by migrating into bladders, differentiating into key bladder cells, inhibiting mast cell accumulation and cellular apoptosis, inhibiting inflammation and oxidative stress, alleviating collagen fibre accumulation and enhancing tissue regeneration in bladder tissues. In addition, MSCs can protect against tissue injury in IC/BPS by secreting various soluble factors, including exosomes and other soluble factors, with antiapoptotic, anti‐inflammatory, angiogenic and immunomodulatory properties in a cell‐to‐cell independent manner. In this review, we comprehensively summarized the current potential pathophysiological mechanisms and standard treatments of IC/BPS, and we discussed the potential mechanisms and therapeutic effects of MSCs and MSC‐derived exosomes in alleviating tissue injury in IC/BPS models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号