首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Estrogen receptor (ER) toxicity has hampered the development of vertebrate cell lines stably expressing substantial levels of recombinant wild-type ER. To isolate clonal lines of HeLa cells stably expressing epitope-tagged ER, we used a construction encoding a single bicistronic mRNA, in which FLAG-epitope-tagged human ER alpha (fER) was translated from a 5'-translation initiation site and fused to the neomycin resistance gene, which was translated from an internal ribosome entry site. One stable HeLa-ER-positive cell line (HeLa-ER1) produces 1,300,000 molecules of fER/cell (approximately 20-fold more ER than MCF-7 cells). The HeLa fER is biologically active in vivo, as judged by rapid death of the cells in the presence of either 17 beta-estradiol or trans-hydroxytamoxifen and the ability of the cell line to activate a transfected estrogen response element (ERE)-containing reporter gene. The FLAG-tagged ER was purified to near homogeneity in a single step by immunoaffinity chromatography with anti-FLAG monoclonal antibody. Purified fER exhibited a distribution constant (KD) for 17 beta-estradiol of 0.45 nM. Purified HeLa fER and HeLa fER in crude nuclear extracts exhibit similar KD values for the ERE (0.8 nM and 1 nM, respectively), which are approximately 10 times lower than the KD of 10 nM we determined for purified ER expressed using the baculovirus system. HMG-1 strongly stimulated binding of both crude and purified HeLa fER to the ERE (KD of 0.25 nM). In transfected HeLa cells, HMG-1 exhibited a dose-dependent stimulation of 17 beta-estradiol-dependent transactivation. At high levels of transfected HMG-1 expression plasmid, transactivation by ER became partially ligand-independent, and transactivation by trans-hydroxytamoxifen was increased by more than 25-fold. These data describe a system in which ER, stably expressed in HeLa cells and easily purified, exhibits extremely high affinity for the ERE, and suggest that intracellular levels of HMG-1 may be limiting for ER action.  相似文献   

2.
The consensus estrogen response element (cERE) contains a palindromic sequence of two 6-base pair (bp) half-sites separated by a spacer size of 3bp. This study investigates the extent to which estrogen receptors, ERalpha and ERbeta can bind target sequences not considered as conventional EREs. We determined the effect of spacer size (n=0-4) on the binding affinity and conformation of ERalpha and ERbeta in these complexes and the effect of HMGB1 on the complexation. We find (1) both receptors bind similarly and with progressively reduced affinity to cEREn, as n differs from 3; (2) however, both receptors bind as strongly to the cERE with no spacer (cERE0) as to cERE3; (3) HMGB1 enhances ER binding affinity in all complexes, resulting in strong and comparable binding affinities in all complexes examined; (4) the full-length ER binding differs strikingly from similar binding studies for the ER DNA binding domain (ERDBD), with the full-length ER dimer exhibiting strong binding affinity, enormous plasticity and retaining binding cooperativity as the spacer size varies; (5) both protease digestion profiles and monoclonal antibody binding assays indicate the conformation of the receptor in the ER/ERE complex is sensitive to the spacer size; (6) the ER/cERE0 complex appears to be singularly different than the other ER/cEREn complexes in binding and conformation. This multifaceted approach reinforces the notion of the plasticity in ER binding and leads to the hypothesis that in most cases, the minimum requirement for estrogen receptor binding is the ERE half-site, in which one or more cofactors, such as HMGB1, can cooperate to decrease ER binding specificity, while increasing its binding affinity.  相似文献   

3.
4.
5.
We have developed a transient transfection system using the Cytomegalovirus (CMV) promoter to express the human estrogen receptor (ER) at very high levels in COS-1 cells and have used it to study the interaction of agonist and antagonist receptor complexes with estrogen response element (ERE) DNA. ER can be expressed to levels of 20-40 pmol/mg or 0.2-0.3% of total soluble protein and all of the soluble receptor is capable of binding hormone. The ER binds estradiol with high affinity (Kd 0.2 nM), and is indistinguishable from native ER in that the receptor is capable of recognizing its cognate DNA response element with high affinity, and of transactivating a transgene in an estradiol-dependent manner. Gel mobility shift assays reveal interesting ligand-dependent differences in the binding of receptor complexes to ERE DNA. Receptors occupied by estradiol or the type I antiestrogen transhydroxytamoxifen bind to DNA response elements when exposed to the ligand in vitro or in vivo. Likewise, receptors exposed to the type II antiestrogen ICI 164,384 in vitro bind to ERE DNA. However, when receptor exposure to ICI 164,384 is carried out in vivo, the ER-ICI 164,384 complexes do not bind to ERE DNA, or do so only weakly. This effect is not reversed by subsequent incubation with estradiol in vitro, but is rapidly reversible by in vivo estradiol exposure of intact COS-1 cells. This suggests there may be some cellular process involved in the mechanism of antagonism by the pure antiestrogen ICI 164,384, which is not observed in cell-free extracts.  相似文献   

6.
7.
8.
9.
In the present report, a method based on chip-based nanoelectrospray mass spectrometry (nanoESI-MS) is described to detect noncovalent ligand binding to the human estrogen receptor alpha ligand-binding domain (hERalpha LBD). This system represents an important environmental interest, because a wide variety of molecules, known as endocrine disruptors, can bind to the estrogen receptor (ER) and induce adverse health effects in wildlife and humans. Using proper experimental conditions, the nanoESI-MS approach allowed for the detection of specific ligand interactions with hERalpha LBD. The relative gas-phase stability of selected hERalpha LBD-ligand complexes did not mirror the binding affinity in solution, a result that demonstrates the prominent role of hydrophobic contacts for stabilizing ER-ligand complexes in solution. The best approach to evaluate relative solution-binding affinity by nanoESI-MS was to perform competitive binding experiments with 17beta-estradiol (E2) used as a reference ligand. Among the ligands tested, the relative binding affinity for hERalpha LBD measured by nanoESI-MS was 4-hydroxtamoxifen approximately diethylstilbestrol > E2 > genistein > bisphenol A, consistent with the order of the binding affinities in solution. The limited reproducibility of the bound to free protein ratio measured by nanoESI-MS for this system only allowed the binding constants (K(d)) to be estimated (low nanomolar range for E2). The specificity of nanoESI-MS combined with its speed (1 min/ligand), low sample consumption (90 pmol protein/ligand), and its sensitivity for ligand (30 ng/mL) demonstrates that this technique is a promising method for screening suspected endocrine disrupting compounds and to qualitatively evaluate their binding affinity.  相似文献   

10.
Previous studies used the gel retardation assay to examine the binding of the mouse estrogen receptor (ER) to the estrogen-responsive element (ERE) from the vitellogenin A2 gene (VitA2ERE). Multiple specific complexes were formed when the ER was bound to various estrogen agonists or antagonists, or in the absence of bound hormone. The ERE from the human PS2 gene, which varies from the consensus ERE by one base change in the right arm, was used in this study to determine the effect of DNA sequence on ER-ERE interaction with various ligand-receptor complexes. Partially purified ligand-free soluble ER showed a 3-fold lower affinity for the PS2ERE than for the VitA2ERE, suggesting a possible influence of the imperfect DNA sequence on certain binding interactions. However, multiple complexes of similar affinity were formed with the PS2 sequence by nuclear ER regardless of the agonist or antagonist bound. In gel retardation experiments, antagonist (LY117018) nuclear ER complexes bound to either PS2 or VitA2ERE migrated more slowly than agonist complexes, indicating that the slower migrating form of the complex was not due to the DNA sequence. Interestingly, soluble ER bound by LY 117018 did not produce this decreased mobility complex, suggesting that it was specific to the nuclear form of the ER antagonist complex. Receptor activation has been linked with exposure to increased temperature, resulting in an ER form that has an increased affinity for DNA. The binding of molybdate-stabilized nonactivated 8S ER to VitA2ERE was studied to determine the effect of temperature on ER binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
13.
14.
15.
Bovine estrogen receptor (ER) was purified to near homogeneity by estrogen response element (ERE) affinity chromatography, and its ERE binding ability was measured in vitro. Highly purified ER bound EREs with reduced affinity compared to partially purified ER. Partially purified ER contained hsp70, but highly purified ER did not. We examined whether addition of purified recombinant human hsp70 or purified bovine hsp70 would restore the higher ERE binding affinity, stoichiometry, and ligand retention detected with partially purified receptor and how hsp70 affected the rate of ER-ERE association and dissociation. ER-ERE binding was not affected by antibodies to either constitutive or induced forms of hsp70, regardless of ER purity. Addition of purified hsp70, with or without ATP and Mg2+, did not affect the association or dissociation rates of highly purified liganded ER binding to ERE. hsp70 Did not alter the total amount of ER-ERE complex formed. Similarly, hsp70 did not affect the rate of [3H]estradiol (E2) or [3H]4-hydroxytamoxifen (4-OHT) ligand dissociation from ER in the presence or absence of EREs. These data contrast with a report showing that maximal ERE binding by highly purified recombinant human ER required hsp70. We conclude that ER, purified from a physiological source, i.e., calf uterus, does not require hsp70 for maximal ER-ERE binding in vitro. Additionally, once ER is activated and bound by ligand, the receptor assumes its proper tertiary structure, and hsp70 does not impact ER ligand binding domain conformation.  相似文献   

16.
In order to better understand the structural requirements for effective high affinity binding of estrogens and antiestrogens by the human estrogen receptor (ER), a comparative study was undertaken in which we examined: 1) native ER from the MCF-7 ER-positive human breast cancer cell line; 2) full length ER expressed in yeast; 3) the ER hormone binding domain (amino acid residues 302-595) expressed in yeast; 4) a bacterially expressed protein A fusion product encoding a truncated ER (amino acid residues 240-595); and 5) a synthetic peptide encompassing amino acids 510-551 of the ER. The binding parameters studied included affinity, kinetics, structural specificity for ligands, and stability. Full length ER expressed in yeast was very similar to the MCF-7 ER in its affinity [dissociation constant (Kd), 0.35 +/- 0.05 nM], dissociation rate (t1/2, 3-4 h at 25 C), and structural specificity for both reversible and covalently attaching affinity ligands. While the truncated ER expressed in yeast was similar to MCF-7 ER in its specificity of ligand binding, it showed a slightly reduced affinity for estradiol (Kd, 1.00 +/- 0.17 nM). The bacterially expressed ER also had a lower affinity for estradiol (Kd, 1.49 +/- 0.16 nM), which may be due in part to an increase in the dissociation rate (t1/2, 0.5 h at 25 C). The attachment of covalent affinity ligands and structural specificity for a variety of reversible ligands was comparable in the bacterially expressed ER to that observed for the receptors expressed in MCF-7 cells and yeast.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号