首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some acute epidermal effects of monochromatic ultraviolet B (UVB) irradiation on hairless mouse skin were measured by the tetrazolium test (TZT), and by determining the DT-diaphorase activity in epidermal cells. Dose response and time course studies were carried out after UVB irradiation at 280, 290, 297 and 302 nm. Appropriate UV doses at all the wavelengths increased the cellular deposition of formazan (TZT). At higher doses the epidermal cells became too injured to react. Wavelengths at 280 and 290 nm seemed more injurious than those at 297 and 302 nm. There was, however, no increase in DT-diaphorase activity after UVB irradiation. This indicates that the increased formazan deposition (TZT) after UVB is more likely to be caused mainly by membrane effects. Detoxification mechanisms which activate DT-diaphorase, as often seen after cellular contact with chemical carcinogens, are not involved.  相似文献   

2.
3.
UVB irradiation can cause considerable changes in the composition of cells in the skin and in cutaneous cytokine levels. We found that a single exposure of normal human skin to UVB induced an infiltration of numerous IL-4(+) cells. This recruitment was detectable in the papillary dermis already 5 h after irradiation, reaching a peak at 24 h and declining gradually thereafter. The IL-4(+) cells appeared in the epidermis at 24 h postradiation and reached a plateau at days 2 and 3. The number of IL-4(+) cells was markedly decreased in both dermis and epidermis at day 4, and at later time points, the IL-4 expression was absent. The IL-4(+) cells did not coexpress CD3 (T cells), tryptase (mast cells), CD56 (NK cells), and CD36 (macrophages). They did coexpress CD15 and CD11b, showed a clear association with elastase, and had a multilobed nucleus, indicating that UVB-induced infiltrating IL-4(+) cells are neutrophils. Blister fluid from irradiated skin, but not from control skin, contained IL-4 protein as well as increased levels of IL-6, IL-8, and TNF-alpha. In contrast to control cultures derived from nonirradiated skin, a predominant type 2 T cell response was detected in T cells present in primary dermal cell cultures derived from UVB-exposed skin. This type 2 shift was abolished when CD15(+) cells (i.e., neutrophils) were depleted from the dermal cell suspension before culturing, suggesting that neutrophils favor type 2 T cell responses in UVB-exposed skin.  相似文献   

4.
Interleukin-8 (IL-8) belongs to the CXC chemokine family. IL-8 exerts its biological activities by binding to specific cell surface receptors, CXCR-1 and CXCR-2. Both receptors bind IL-8 with high affinity but they have different affinities for MGSA/Groalpha and NAP-2. It has been shown that the expression of epidermal CXCR-2 is increased in psoriasis, suggesting that activation of KC mediated by CXCR-2 contributes to the characteristic epidermal changes observed in psoriasis. In order to examine the mechanism(s) by which UVB therapy is effective for several dermatoses including psoriasis, we sought to examine if UVB would modulate the expression of CXCR-1 and CXCR-2 in human keratinocytes (KC). Constitutive expression of CXCR-1 and CXCR-2 mRNA was detected by RT-PCR in normal cultured human KC. After 100 or 300 J/m(2) irradiation, a decrease in CXCR-2 mRNA was detectable from 12 h after irradiation; this downregulation was observed until 48 h after irradiation. In contrast, the CXCR-1 mRNA level was unchanged. Immunohistochemical studies and flow cytometry analysis confirmed the suppressive effect of UVB on the expression of CXCR-2 protein in cultured human keratinocytes. Immunohistochemical studies on two minimal erythema doses (2MED)-exposed and 2MED-unexposed skin from healthy volunteers revealed that CXCR-2 staining occurred over the whole layer of the epidermis but at 24 h after 2MED irradiation, the positive staining of CXCR-2 was decreased. A faint CXCR-1 staining was observed in the lower part of the epidermis both in unexposed and exposed skins. Our results indicate that UVB-induced growth inhibition of KC in hyperproliferative skin disorders may, in part, be related to downregulation of CXCR-2.  相似文献   

5.
Ultraviolet radiation commonly causes serious skin diseases, and skin cell death. The UVB-blocking effect of hemp fabric which known to be a powerful agent against UVB was evaluated using mouse auricle skin. Based on UVB irradiation and the use of different fabrics, four mouse groups were evaluated in this study: two experimental groups, Group 1 (UVB exposed hemp fabric-shield site, EHFS), Group 2 (UVB exposed polyester fabric-shield site, EPFS), and two control groups, Group 3 (UVB exposed non-fabric-shield site, ENFS), and Group 4 (UVB unexposed non-fabric-shield site, UNFS). Except for UNFS all samples were exposed to UVB for 28 h and showed clear histologic changes in epidermis and dermis. After 45 h chronic irradiation, epidermal thickness was doubled in EHFS, roughly tripled in EPFS, and more than quadrupled in ENFS over that of UNFS. Based on the thickness of the altered epidermis, the blocking effect of hemp fabric was 50% higher than that of polyester fabric. Additionally, immunohistochemical analysis revealed expression of proliferating cell nuclear antigen (PCNA) in ENFS and EPFS throughout the hyperplasia of keratinocytes and sebocytes. After 45 h irradiation, the sebocytes of sebaceous glands, observed in sectioned images, increased on average to 14 cells in ENFS, 9 cells in EPFS, and 7 cells in EHFS, as compared to 8 cells in UNFS. In contrast, the cell area of adipose tissue was decreased by half in EHFS, one-fourth in EPFS, and one-tenth in ENFS, and mostly replaced with fibroblasts and other supporting cells. These results suggest that UVB irradiation directly affects epidermal and dermal tissues, and induces abnormal proliferation of keratinocytes and hyperplasia of sebocytes consuming fats in adipose tissue. For skin health, hemp fabric is a better material for protecting the skin against UVB than polyester fabric.  相似文献   

6.
为了提高体温,荒漠沙蜥喜好晒太阳的同时增加了紫外线对其皮肤的损伤。本实验研究了不同的紫外线强度(110、300、500、800mJ/cm2)对荒漠沙蜥皮肤形态、蜕皮、脂质过氧化和抗氧化酶的影响。结果显示:皮肤损伤和丙二醛含量的最高峰发生在暴露紫外线300、500、800mJ/cm2后的96、48、24h;SOD活性的最低峰发生在暴露紫外线110、300、500、800mJ/cm2后的24、48、12h;CAT活性在暴露紫外线后立即抑制,然后恢复提高。CAT活性的高低往往伴随皮肤的损伤程度和蜕皮的发生,这表明紫外线对皮肤的损伤与皮肤的脂质过氧化密切相关,CAT是一种主要的抗氧化酶。皮肤的角质层对保护皮肤免受紫外线的损伤也有重要作用。  相似文献   

7.
Previous studies with agar diffusion technique demonstrated that antibodies produced in rabbits by injection of urea extractable proteins of rat cornfied cells cross react with proteins extracted from normal epidermis of hairless mice using the same technique. In the present study we investigated by indirect immunofluorescence microscopy the immunoreactivity of epidermal proteins in normal and ultraviolet light (UVB) induced hyperplasia and malignant transformation. Reactivity to the antibody was seen over the entire epidermis of nontreated skin and hypertrophied epidermis which occurred at 6-8 weeks after initiation of UVB irradiation. However, the reactivity diminished when malignant changes took place in the epidermal cells. Almost complete disappearance of the immunoresponse was observed in squamous cell carcinoma produced by further UVB radiation. These results suggest that the reactivity of this urea extractable protein serves as an additional immunologic marker for normal epidermal cells. Alterations in the immunoreactivity parallels UVB induced carcinogenesis.  相似文献   

8.
FAS/CD95/Apo-1 is a ubiquitously expressed cell-surface receptor involved in the initiation of programmed cell death. Its function in epidermal keratinocytes has been incompletely defined. Available evidence from in vitro studies points to important roles of Fas in the pathogenesis of contact dermatitis and in keratinocyte apoptosis induced by ultraviolet light. To define functions of Fas in the epidermis in vivo, we have generated mice with epidermis-specific deletion of the fas gene and tested its requirement for 2,4-dinitrofluorobenzene-induced contact dermatitis and for ultraviolet light B (UVB)-induced keratinocyte apoptosis. We report here our unexpected finding that keratinocyte apoptosis induced by both a contact allergen and UVB irradiation was significantly enhanced in Fas-negative epidermis. Expression of Fas by epidermal keratinocytes was neither necessary for the normal development of contact hypersensitivity of the skin, nor required for keratinocyte apoptosis following UVB irradiation. Our study results thus show that in the epidermis in vivo Fas exerts antiapoptotic effects that outweigh its proapoptotic role in contact hypersensitivity responses of the skin and in the tissue response of the epidermis to UVB irradiation.  相似文献   

9.
Mammalian skin incorporates a local equivalent of the hypothalamic–pituitary–adrenal (HPA) axis that is critical in coordinating homeostatic responses against external noxious stimuli. Ultraviolet radiation B (UVB) is a skin-specific stressor that can activate this cutaneous HPA axis. Since C57BL/6 (B6) and DBA/2J (D2) strains of mice have different predispositions to sensorineural pathway activation, we quantified expression of HPA axis components at the gene and protein levels in skin incubated ex vivo after UVB or sham irradiation. Urocortin mRNA was up-regulated after all doses of UVB with a maximum level at 50 mJ/cm2 after 12 h for D2 and at 200 mJ/cm2 after 24 h for B6. Proopiomelanocortin mRNA was enhanced after 6 h with the peak after 12 h and at 200 mJ/cm2 for both genotypes of mice. ACTH levels in tissue and media increased after 24 h in B6 but not in D2. UVB stimulated β-endorphin expression was higher in D2 than in B6. Melanocortin receptor 2 mRNA was stimulated by UVB in a dose-dependent manner, with a peak at 200 mJ/cm2 after 12 h for both strains. The expression of Cyp11a1 mRNA — a key mitochondrial P450 enzyme in steroidogenesis, was stimulated at all doses of UVB irradiation, with the most pronounced effect after 12–24 h. UVB radiation caused, independently of genotype, a dose-dependent increase in corticosterone production in the skin, mainly after 24 h of histoculture. Thus, basal and UVB stimulated expression of the cutaneous HPA axis differs as a function of genotype: D2 responds to UVB earlier and with higher amplitude than B6, while B6 shows prolonged (up to 48 h) stress response to a noxious stimulus such as UVB.  相似文献   

10.
The left flank of hairless mouse skin was irradiated with a minimal erythema dose of ultraviolet B (UVB) light at 297 nm (25 mJcm-2), while the right flank served as untreated control. The alterations in epidermal growth kinetics induced by this UVB dose were studied with the percentage of labelled mitoses (PLM) technique during the period of increased proliferation. Thirty hours after irradiation, when a large cohort of cells appears in S phase, each animal was injected intra-peritoneally with 50 microCi tritiated thymidine [( 3H]-TdR). The number of labelled basal and suprabasal cells, as well as their localization in epidermis were registered in histological sections at short intervals up to 48 h after the [3H]-TdR pulse. Labelled mitoses were also counted in the same specimens. The results showed a four-fold increase of the high initial number of labelled cells in UVB-exposed epidermis within 18 h of the pulse injection, and a six-fold increase after 36 h. In control epidermis, where the starting value of the labelling index was much lower, there was only a three to four-fold increase in the number of labelled cells during the period studied. The PLM and the labelling index data were consistent with an average cell cycle time of approximately 10-12 h for UVB-exposed cells, in contrast to about 30 h for the fastest cycling population in control epidermis. The PLM curve also indicated a prolonged S phase duration in UVB-exposed epidermis compared with controls. In addition, labelled cells were seen in the suprabasal layer as early as 6 h after the [3H]-TdR injection and within 36 h labelled cells had reached the outermost layer of nucleated cells, indicating a reduced transit time through epidermis. The present study shows that a minimal erythema dose of UVB light at 297 nm induced a period of increased transit time through the S phase, combined with rapid cell proliferation, leading to an overall shortening of the epidermal cell cycle time. The cohort of cells labelled with [3H]-TdR 30 h after irradiation seemed to proceed as a wave of partially synchronized cells through the cell cycle for more than two rounds, which is comparable with the cell kinetic perturbations observed in regenerating mouse epidermis.  相似文献   

11.

Background

Neuropilin 1 (NRP1) is expressed on several cell types including neurons and endothelial cells, where it functions as an important regulator in development and during angiogenesis. As a cell surface receptor, NRP1 is able to bind to members of the VEGF family of growth factors and to secreted class 3 semaphorins. Neuropilin 1 is also highly expressed in keratinocytes, but the function of NRP1 in epidermal physiology and pathology is still unclear.

Methods and Results

To elucidate the role of NRP1 in skin in vivo we generated an epidermis-specific neuropilin 1 knock out mouse model by using the Cre-LoxP-System. Mice were viable and fertile and did not display any obvious skin or hair defects. After challenge with UVB irradiation, we found that deletion of epidermal NRP1 leads to increased rates of apoptosis both in vitro and in vivo. NRP1-deficient primary keratinocytes cultured in vitro showed significantly higher rates of apoptosis 24 hours after UVB. Likewise, there is a significant increase of active caspase 3 positive cells in the epidermis of Keratin 14-Cre-NRP1 (−/−) mice 24 hours after UVB irradiation. By Western Blot analysis we could show that NRP1 influences the cytosolic levels of Bcl-2, a pro-survival member of the Bcl-2 family. After UVB irradiation the amounts of Bcl-2 decrease in both protein extracts from murine epidermis and in NRP1-deficient keratinocytes in vitro, whereas wild type cells retain their Bcl-2 levels. Likewise, levels of phospho-Erk and Rac1 were lower in NRP1-knock out keratinocytes, whereas levels of pro-apoptotic p53 were higher.

Conclusion

NRP1 expression in keratinocytes is dispensable for normal skin development. Upon UVB challenge, NRP1 contributes to the prevention of keratinocyte apoptosis. This pro-survival function of NRP1 is accompanied by the maintenance of high levels of the antiapoptotic regulator Bcl-2 and by lower levels of pro-apoptotic p53.  相似文献   

12.
Abstract. The left flank of hairless mouse skin was irradiated with a minimal erythema dose of ultraviolet B (UVB) light at 297 nm (25 mJcm-2), while the right flank served as untreated control. The alterations in epidermal growth kinetics induced by this UVB dose were studied with the percentage of labelled mitoses (PLM) technique during the period of increased proliferation. Thirty hours after irradiation, when a large cohort of cells appears in S phase, each animal was injected intra-peritoneally with 50 /iCi tritiated thymidine ([3H]-TdR). The number of labelled basal and suprabasal cells, as well as their localization in epidermis were registered in histological sections at short intervals up to 48 h after the [3H]-TdR pulse. Labelled mitoses were also counted in the same specimens. The results showed a four-fold increase of the high initial number of labelled cells in UVB-exposed epidermis within 18 h of the pulse injection, and a sixfold increase after 36 h. In control epidermis, where the starting value of the labelling index was much lower, there was only a three to four-fold increase in the number of labelled cells during the period studied. The PLM and the labelling index data were consistent with an average cell cycle time of approximately 10–12 h for UVB-exposed cells, in contrast to about 30 h for the fastest cycling population in control epidermis. The PLM curve also indicated a prolonged S phase duration in UVB-exposed epidermis compared with controls. In addition, labelled cells were seen in the suprabasal layer as early as 6 h after the [3H]-TdR injection and within 36 h labelled cells had reached the outermost layer of nucleated cells, indicating a reduced transit time through epidermis. The present study shows that a minimal erythema dose of UVB light at 297 nm induced a period of increased transit time through the S phase, combined with rapid cell proliferation, leading to an overall shortening of the epidermal cell cycle time. The cohort of cells labelled with [3H]-TdR 30 h after irradiation seemed to proceed as a wave of partially synchronized cells through the cell cycle for more than two rounds, which is comparable with the cell kinetic perturbations observed in regenerating mouse epidermis.  相似文献   

13.
Chronic exposure to sunlight may induce skin damage such as photoaging and photocarcinogenesis. These harmful effects are mostly caused by ultraviolet-B (UVB) rays. Yet, less is known about the contribution of low UVB doses to skin damage. The aim of this study was to determine the tissue changes induced by repeated exposure to a suberythemal dose of UVB radiation. Human keratinocytes in monolayer cultures and in skin equivalent were irradiated daily with 8 mJ/cm2 of UVB. Then structural, ultrastructural, and biochemical alterations were evaluated. The results show that exposure to UVB led to a generalized destabilization of the epidermis structure. In irradiated skin equivalents, keratinocytes displayed differentiated morphology and a reduced capacity to proliferate. Ultrastructural analysis revealed, not only unusual aggregation of intermediate filaments, but also disorganized desmosomes and larger mitochondria in basal cells. UVB irradiation also induced the secretion of metalloproteinase-9, which may be responsible for degradation of type IV collagen at the basement membrane. DNA damage analysis showed that both single and repeated exposure to UVB led to formation of (6-4) photoproducts and cyclobutane pyrimidine dimers. Although the (6-4) photoproducts were repaired within 24 h after irradiation, cyclobutane pyrimidine dimers accumulated over the course of the experiment. These studies demonstrate that, even at a suberythemal dose, repeated exposure to UVB causes significant functional and molecular damage to keratinocytes, which might eventually predispose to skin cancer.  相似文献   

14.
Ultraviolet (UV) B irradiation decreases blood adiponectin levels, but the mechanism is not well understood. This study investigated how UVB irradiation reduces adiponectin expression in ovarial adipose tissues. Female Hos:HR-1 hairless mice were exposed to UVB (1.6 J/cm2) irradiation and were killed 24 h later. UVB irradiation decreased the adiponectin protein level in the serum and the adiponectin mRNA level in ovarial adipose tissues. UVB irradiation also decreased the mRNA levels of peroxisome proliferator-activated receptor (PPAR) γ, CCAAT/enhancer binding protein (C/EBP) α, C/EBPβ, and fatty acid binding protein 4 (aP2) in ovarial adipose tissues. In contrast, UVB irradiation increased the mRNA levels of interleukin (IL)-6 and monocyte chemoattractant protein (MCP)-1 in ovarial adipose tissues. In the serum and liver, the levels of serum amyloid A (SAA), involved in PPARγ, C/EBPα, C/EBPβ, aP2, IL-6, and MCP-1 regulation, increased after UVB irradiation. The SAA gene is regulated by IL-1β, IL-6, and tumor necrosis factor-α, but only IL-6 expression increased in the liver after UVB irradiation. Additionally, in the liver, hypothalamus, and epidermis, UVB irradiation increased the expression of calcitonin gene-related peptide (CGRP), which upregulates SAA in the liver. Collectively, our results suggest that the CGRP signal induced by skin exposure to UVB transfers to the liver, possibly through the brain, and increases SAA production via IL-6 in the liver. In turn, serum SAA acts in an endocrine manner to decreases the serum adiponectin level by downregulating factors that regulate adiponectin expression in adipose tissues.  相似文献   

15.
Mutations of the Xpc gene cause a deficiency in global genome repair, a subpathway of nucleotide excision repair (NER), in mammalian cells. We used transgenic mice harboring the lambda-phage-based lacZ mutational reporter gene to study the effect of an Xpc null mutation (Xpc-/-) on damage induction, repair and mutagenesis in mouse skin epidermis after UVB irradiation. UVB induced equal amounts of cyclobutane pyrimidine dimers (CPDs) and pyrimidine(6-4)pyrimidone photoproducts (64PPs) in mouse skin epidermis of Xpc-/- and wild-type mice. CPDs were not significantly removed in either of the mouse genotypes by 12h after irradiation, whereas removal of 64PPs was observed in the wild-type. Irradiation with 300 and 400J/m2 UVB increased the lacZ mutant frequency in the Xpc-/- epidermis to at least twice as high as in the wild-type. Ninety-nine lacZ mutants isolated from the UVB-exposed epidermis of Xpc(-/-)mice were analyzed and compared with mutant sequences from irradiated wild-type mice. The spectra of the mutations in the two genotypes were both highly UV-specific and similar in the dominance of C-->T transitions at dipyrimidine sites; however, Xpc-/- mice had a higher frequency of two-base tandem substitutions, including CC-->TT mutations, three-base tandem substitutions and double base substitutions that were separated by one unchanged base in a three-base sequence (alternating mutations). These tandem/alternating mutations included a remarkably large number of triplet mutations, a recently reported, novel type of UV-specific mutation, characterized by multiple base substitutions or frameshifts within a three-nucleotide sequence containing a dipyrimidine. We concluded that the triplet mutation is a UV-specific mutation that preferably occurs in NER deficient genetic backgrounds.  相似文献   

16.
Inappropriate apoptosis results in the epidermal hyperplasia as in psoriasis and UVB irradiation has been successfully used to treat this kind of skin disorders. Previously, we reported that the novel phytosphingosine derivative, tetraacetyl phytosphingosine (TAPS) induced apoptosis in HaCaT cells. This study examined the effect of UVB irradiation and/or TAPS on the induction of apoptosis in HaCaT. 10 mJ/cm2 of UVB irradiation or 10 microM of TAPS alone exhibited weak cytotoxicity but co-treatment of UVB and TAPS synergistically enhanced the cytotoxicity and apoptosis in HaCaT. The cells treated with UVB and TAPS showed much higher levels of cleaved caspase-3, -8, -9 and Bax than with UVB or TAPS alone, whereas Bcl-2 level was decreased by co-administration of UVB and TAPS. In hairless mice, co-treatment of UVB and TAPS synergistically increased apoptosis, as shown in the HaCaT co-treated with UVB and TAPS. Furthermore, UVB irradiation caused an increase of apoptotic cells in the epidermis and the TAPS-treated mice showed an increase of apoptotic cells in the dermis as well as in the epidermis. These results suggest that the TAPS co-treatment synergistically increases the level of UVB-induced apoptosis via caspase activation by regulating the level of pro-apoptotic Bax and anti-apoptotic Bcl-2.  相似文献   

17.
In this study, we demonstrate that catalase is differently regulated either by acute, or chronic UV radiation during the photoaging process. 2MED of UV radiation decreased the activity and expression of catalase gradually in the epidermis and dermis at between 24 and 48 h after the UV exposure. These levels then returned to near normal by 72 h after exposure. The catalase mRNA was also decreased in the skin 24 h after UV irradiation to 50% of the control level, and then started to recover. In contrast, chronic UV irradiation over a lifetime (approximately 50 years) increased the catalase activity in the epidermis and dermis of the human skin in vivo. Our results suggest that catalase might be one of the important enzymes in the skin aging process, and that it plays an important role in the photoprotection of the skin from UV light.  相似文献   

18.
In our previous report, we observed different cytokine modulation in mouse epidermis by the UVA and UVB wavebands. In the present investigations, the effects of irradiation with UVA and UVB on the Fas(CD95)/FasL system have been studied because apoptosis mediated by the interaction between Fas and FasL has been suggested recently to be associated with UVB-induced immunosuppression in mouse skin. Our results show that UVA irradiation following UVB irradiation has the ability to reduce the up-regulation of FasL expression in mouse skin resulting from the UVB irradiation.  相似文献   

19.
Caspase-14 belongs to a conserved family of aspartate-specific proteinases. Its expression is restricted almost exclusively to the suprabasal layers of the epidermis and the hair follicles. Moreover, the proteolytic activation of caspase-14 is associated with stratum corneum formation, implicating caspase-14 in terminal keratinocyte differentiation and cornification. Here, we show that the skin of caspase-14-deficient mice was shiny and lichenified, indicating an altered stratum-corneum composition. Caspase-14-deficient epidermis contained significantly more alveolar keratohyalin F-granules, the profilaggrin stores. Accordingly, caspase-14-deficient epidermis is characterized by an altered profilaggrin processing pattern and we show that recombinant caspase-14 can directly cleave profilaggrin in vitro. Caspase-14-deficient epidermis is characterized by reduced skin-hydration levels and increased water loss. In view of the important role of filaggrin in the structure and moisturization of the skin, the knockout phenotype could be explained by an aberrant processing of filaggrin. Importantly, the skin of caspase-14-deficient mice was highly sensitive to the formation of cyclobutane pyrimidine dimers after UVB irradiation, leading to increased levels of UVB-induced apoptosis. Removal of the stratum corneum indicate that caspase-14 controls the UVB scavenging capacity of the stratum corneum.  相似文献   

20.
Abstract

In our previous report, we observed different cytokine modulation in mouse epidermis by the UVA and UVB wavebands. In the present investigations, the effects of irradiation with UVA and UVB on the Fas(CD95)/FasL system have been studied because apoptosis mediated by the interaction between Fas and FasL has been suggested recently to be associated with UVB-induced immunosuppression in mouse skin. Our results show that UVA irradiation following UVB irradiation has the ability to reduce the up-regulation of FasL expression in mouse skin resulting from the UVB irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号