首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Relationships between the fish community and selected habitat features were examined in a set of short temperate streams located at the northern end of the Iberian Peninsula. The fish fauna in these streams consists mostly of diadromous or estuarine species. Species richness and diversity increased with stream order, depth and width and decreased with elevation and distance from the sea. Stream order (positively) and elevation (negatively) were the two variables most highly correlated with species richness and diversity; higher order streams (order 3–4) showed greater values of species diversity than lower order ones (order 1) even when the elevation effect was removed. Addition of species in the downstream direction, but no replacement or loss was evidenced. We also compared the observed values of species diversity with those predicted from habitat features for a set of locations above unpassable dams. A great majority of the sites showed lower than predicted diversity values, which is an expected outcome for this mainly migratory fish fauna.  相似文献   

2.
Hatchery‐reared fish are commonly stocked into freshwaters to enhance recreational angling. As these fishes are often of high trophic position and attain relatively large sizes, they potentially interact with functionally similar resident fishes and modify food‐web structure. Hatchery‐reared barbel Barbus barbus are frequently stocked to enhance riverine cyprinid fish communities in Europe; these fish can survive for over 20 years and exceed 8 kg. Here, their trophic consequences for resident fish communities were tested using cohabitation studies, mainly involving chub Squalius cephalus, a similarly large‐bodied, omnivorous and long‐lived species. These studies were completed over three spatial scales: pond mesocosms, two streams and three lowland rivers, and used stable isotope analysis. Experiments in mesocosms over 100 days revealed rapid formation of dietary specializations and discrete trophic niches in juvenile B. barbus and S. cephalus. This niche partitioning between the species was also apparent in the streams over 2 years. In the lowland rivers, where fish were mature individuals within established populations, this pattern was also generally apparent in fishes of much larger body sizes. Thus, the stocking of these hatchery‐reared fish only incurred minor consequences for the trophic ecology of resident fish, with strong patterns of trophic niche partitioning and diet specialization. Application of these results to decision‐making frameworks should enable managers to make objective decisions on whether cyprinid fish should be stocked into lowland rivers according to ecological risk.  相似文献   

3.
Habitat homogenization is one of the most important drivers of change in riverine fauna. Therefore, the aim of this study was to determine whether habitat homogenization influences the trophic structure of fish assemblages in tropical streams. We sampled 78 streams located in pasture and crop lands to examine habitat variables and fish. Principal coordinates analysis, canonical analysis of principal coordinates, and a distance-based test for homogeneity of multivariate dispersions revealed two groups of streams, designated homogeneous and heterogeneous, based on the habitat variables. We determined trophic guilds according to the frequency and biovolume of food items. Seven guilds were identified: aquatic insectivores, terrestrial insectivores, detritivores, herbivores, omnivores, algivores, and detritivores–algivores. Homogeneous streams showed higher abundance and biomass of aquatic insectivores, detritivores, and algivores. Heterogeneous streams showed greater diversity of trophic guilds and higher abundance and biomass of terrestrial insectivores and herbivores than homogeneous streams. Our results demonstrate that trophic structure is influenced by habitat condition. Additionally, the riparian canopy and nearshore vegetation have a modulating role in the trophic structure of stream fishes due to their influence on resource supply and promotion of the physical heterogeneity of the channel.  相似文献   

4.
We examined colonization by fishes and macro-invertebrates from permanent streams into an artificial freshwater stream simulating lotic temporary bodies of water that exist for only a limited period each year. After introducing water, invertebrates such as chironomid larvae in mud increased in numbers rapidly in the experimental stream, although they were rare in mud in the permanent streams. Eleven of 12 fish species present in the permanent streams colonized the experimental stream and preyed upon invertebrates, although fish composition differed significantly between the two streams. About 100 days after the initiation of the experiment, both species richness and diversity in the experimental stream reached almost the same level as that in the permanent streams. More diverse fishes colonized the complex section where habitat diversity was high compared to the simple section in the experimental stream. Our study strongly suggests that lotic temporary waters such as temporary streams around main rivers have unique ecological characteristics and serve as valuable foraging sites for fish.  相似文献   

5.
1. Barriers to immigration, all else being equal, should in principle depress local abundance and reduce local species richness. These issues are particularly relevant to stream‐dwelling species when improperly designed road crossings act as barriers to migration with potential impacts on the viability of upstream populations. However, because abundance and richness are highly spatially and temporally heterogeneous and the relative importance of immigration on demography is uncertain, population‐ and community‐level effects can be difficult to detect. 2. In this study, we tested the effects of potential barriers to upstream movements on the local abundance and species richness of a diverse assemblage of resident stream fishes in the Monongahela National Forest, West Virginia, U.S.A. Fishes were sampled using simple standard techniques above‐ and below road crossings that were either likely or unlikely to be barriers to upstream fish movements (based on physical dimensions of the crossing). We predicted that abundance of resident fishes would be lower in the upstream sections of streams with predicted impassable barriers, that the strength of the effect would vary among species and that variable effects on abundance would translate into lower species richness. 3. Supporting these predictions, the statistical model that best accounted for variation in abundance and species richness included a significant interaction between location (upstream or downstream of crossing) and type (passable or impassable crossing). Stream sections located above predicated impassable culverts had fewer than half the number of species and less than half the total fish abundance, while stream sections above and below passable culverts had essentially equivalent richness and abundance. 4. Our results are consistent with the importance of immigration and population connectivity to local abundance and species richness of stream fishes. In turn, these results suggest that when measured at appropriate scales (multiple streams within catchments), with simple protocols amenable to use by management agencies, differences in local abundance and species richness may serve as indicators of the extent to which road crossings are barriers to fish movement and help determine whether road‐crossing improvements have restored connectivity to stream fish populations and communities.  相似文献   

6.
1. Understanding factors that regulate the assembly of communities is a main focus of ecology. Human‐engineered habitats, such as reservoirs, may provide insight into these assembly processes because they represent novel habitats that are subjected to colonization by fishes from the surrounding river basin or transported by humans. By contrasting community similarity within and among reservoirs from different drainage basins to nearby stream communities, we can test the relative constraints of reservoir habitats and regional species pools in determining species composition of reservoirs. 2. We used a large spatial database that included intensive collections from 143 stream and 28 reservoir sites within three major river basins in the Great Plains, U.S.A., to compare patterns of species diversity and community structure between streams and reservoirs and to characterize variation in fish community structure within and among major drainage basins. We expected reservoir fish faunas to reflect the regional species pool, but would be more homogeneous that stream communities because similar species are stocked and thrive in reservoirs (e.g. planktivores and piscivores), and they lack obligate stream organisms that are not shared among regional species pools. 3. We found that fish communities from reservoirs were a subset of fishes collected from streams and dominant taxa had ecological traits that would be favoured in lentic environments. Although there were regional differences in reservoir fish communities, species richness, patterns of rank abundance and community structure in reservoir communities were more homogonous across three major drainage basins than for stream communities. 4. The general pattern of convergence of reservoir fish community structure suggests their assembly is constrained by local factors such as habitat and biotic interactions, and facilitated by the introduction of species among basins. Because there is a reciprocal transfer of biota between reservoirs and streams, understanding factors structuring both habitats is necessary to evaluate the long‐term dynamics of impounded river networks.  相似文献   

7.
We examined changes in the distribution of 9 native and 18 introduced freshwater fishes in the south-eastern Pyrenees watershed, Iberian Peninsula, using data from 1996, 1984–1988 and historical information. This region suffers many modifications to its freshwater ecosystems that are linked to human activity in the Mediterranean regions. Fish communities, stream physical habitat and environmental degradation were assessed at 168 sites from 11 basins in 1996. Seven native species (78%) showed decline from previous data, one of which became extirpated in the first half of the 20th century. On the other hand, introduced species are expanding. As a consequence, intact native communities are increasingly rare, declining from presence in 22% of river courses in 1984–1988 to 15% in 1996. The most typical community type is a mixture of native and introduced species occupying 30% of river courses. Stream degradation seems to be the main cause of this process because fish communities differed between degraded streams and streams suffering less impact. A principal component analysis showed that water pollution and modifications to the habitat were the two anthropogenic factors that accounted for most changes in the fish community integrity. Habitat alteration, primarily through construction of dams and water diversions, has fragmented habitats and isolated native fish communities in headwater streams. Current protection measures do not offer effective conservation of threatened species and communities. A global conservation and restoration programme from an ecosystem-based approach is essential to reverse the trend affecting native freshwater fishes in this Mediterranean region.  相似文献   

8.
1. Overlapping river and road networks provide a framework for studying the complex interactions between natural and human systems, with river‐road intersections as focal areas of study. Roads can alter the morphology of stream channels, pose barriers to freshwater fauna, provide easy access to streams for humans and non‐native species and accelerate the expansion of urban development. 2. We determined what variables control the structure of diadromous fish and shrimp communities and assessed whether particular road crossings altered community structure in north‐eastern Puerto Rico. We identified 24 sites that represented a range of river and road sizes across two catchments that drain El Yunque National Forest in Puerto Rico. 3. The location of natural barriers and the size of stream pools were the most important variables for predicting six of fifteen fish and shrimp distributions. Predatory fishes were predicted to be limited to areas in the river network below large, steep waterfalls, whereas adult shrimp Atya lanipes (Atyidae) were predicted to be present above these waterfalls. The fish Awaous banana was predicted to be present in pools >11.6 m wide, whereas the shrimp Xiphocaris elongata was predicted to be present in pools <10.4 m wide. The distributions of nine species were predicted poorly, but three of these species were common and three were rare. 4. Although urban and agricultural land covers were among the top three predictors of five species distributions, they were probably good predictors because they were correlated with the natural gradient. Further study is necessary to disentangle natural and anthropogenic gradients. 5. Road crossings, 10 of which were culverts, were not dispersal barriers for fishes or shrimps. On average, species were present both upstream and downstream from road crossings at 68% of sites where they occurred. Absences upstream or downstream from road crossings occurred at 16% of sites each and likely resulted from a failure to detect species. 6. Several existing features of these catchments and taxa may aid in fish and shrimp conservation. The headwaters are protected by management practices of El Yunque National Forest, connectivity within the river network has been maintained, and the diadromous life history of these organisms makes them resilient to pulsed disturbances.  相似文献   

9.
Little is known about the ecology of stream fishes in Zimbabwe and this study investigated fish communities in the Nyagui River basin and is one of the first to examine the relationship between fish assemblages and habitat diversity in Zimbabwe. Fourteen sampling stations were, for convenience, divided into three groups; upper (>1400 m above sea level), middle (1000–14000 m) and lower stations (<1000 m). A total of 24 species were collected, four of which were introduced, and the species composition differed according to the location of the stations. Species that favoured running water and/or rocks were generally absent from the upper stations, reflecting the fact that they were mostly sandy‐bottomed and still. Diversity and relative abundance increased in the mid‐ and low‐altitude stations, which were rockier and faster flowing. Both species diversity and relative abundance increased with the catchment area above each station, which was attributed to increased habitat diversity in larger streams. This view was supported by a strong correlation between habitat diversity and catchment area, and between habitat diversity and species richness and relative abundance. At present, the Nyagui system is relatively unregulated but the Kunzvi Dam, presently under construction, will change this situation and species diversity is likely to decrease owing to the loss of rheophilic species while other groups, notably cichlids and introduced species will increase.  相似文献   

10.
Snags are important to fish communities in small rivers and streams, but their importance to fishes in large rivers has not been investigated. This study examined snag use by fishes during autumn in backwater and channel border habitats in the upper Mississippi River, and compared these to fish communities in reference sites without snags. Species assemblages differed significantly between backwater and channel border habitats, and between snag and reference sites within the channel border, likely responding to differences in substrate, depth, and current velocity. In both habitats, average fish biomass and abundance were higher (2 to 50 ×) at snag sites than at reference sites, but these differences were significant only for channel border biomass. Fish taxa richness differed between backwater and channel border habitats, but not between snag and reference sites. Most large piscivorous fishes (e.g., Micropterus spp., Stizostedion spp.), several insectivorous fishes (Lepomis macrochirus, Ambloplites rupestris, Minytrema melanops), and a few prey fishes (L. macrochirus, Notropis atherinoides) were significantly more abundant at snag sites than at reference sites, suggesting active selection of snags for foraging or protection. Snag quality, as assessed by a snag rating index, had a direct effect on attracting fish communities with greater biomass, especially within the channel border habitat. These results indicate that snags are important habitat for fish communities in both backwaters and channel border habitats of the upper Mississippi River.  相似文献   

11.
1. Analysis of drainage networks provides a framework to evaluate the densities and distributions of prey species relative to locations of their predators. Upstream migration by diadromous shrimp (Atya lanipes and Xiphocaris elongata) during their life cycle provides access to headwater refugia from fish predation, which is intense in estuaries and coastal rivers. 2. We postulate that geomorphic barriers (such as large, steep waterfalls >3.5 m in height), can directly limit the distribution of predatory fishes and, indirectly, affect the densities of their prey (freshwater shrimps) in headwater streams. 3. We compared densities of shrimp in pools above and below waterfalls, in four headwater tributaries in two river basins of the Luquillo Mountains of northeastern Puerto Rico. We measured shrimp densities twice a year over 8 years (1998–2005) in Prieta, Toronja, Bisley 3 and Bisley 5 streams, which differ in drainage network positions relative to steep waterfalls in Río Espíritu Santo and Río Mameyes. 4. Predatory fishes are absent in the Prieta and Toronja pools and present in Bisely 3 and in lower Bisley 5 pools. Atya lanipes and X. elongata rarely occur in the Bisley streams where predatory fishes are present but these shrimps are abundant in Prieta and Toronja, streams lacking predatory fishes. 5. The mean carapace length of X. elongata is longer in pools where fish are present (Bisley 3 and lower Bisley 5) than in pools lacking fish (Prieta, Toronja, Upper Bisley 5). The increased body size is primarily due to significantly longer rostrums of individuals in stream reaches with fish (below waterfall barriers) than in those reaches lacking fish (above waterfall barriers). Rostrum length may be an adaptation to avoid predation by visually feeding fishes. 6. Atya lanipes and X. elongata distributions and densities were predicted primarily by drainage network position relative to the presence or absence of predatory fishes. High, steep waterfalls effectively impeded fish from moving upstream and created a spatial refuge. Xiphocaris elongata may rely on size refugia (longer rostrum) to minimize predation where spatial refugia are lacking.  相似文献   

12.
The introduction of four fish species into a depauperate stream system in central Sri Lanka provided a 'natural experiment' that enabled us to determine the ecological structure of wet-zone stream fish assemblages. All the species indigenous to this 'introduction' stream system also co-occur naturally with the introduced species in nearby streams. Analyses of habitat use and dietary requirements revealed that most species in the assemblages were segregated on the basis of macrohabitat, microhabitat and food, regardless of origin of the fishes. Macrohabitat and microhabitat utilizations by species were similar in each stream of the 'introduction' system despite differences in stream conditions. Thus species distributions, relative to each other in ecological space, were consistent among streams, and with the combined data. High overlaps along the resource axes of velocity, depth, substratum and food were few. A major proportion of the high overlaps was due to associations with introduced species; especially Barbus nigrofasciatus and Barbus cumingii. The other two introduced species, Barbus titteya and Rasbora vaterifloris , were more specialized, and interacted relatively less with indigenous species. The indigenous species, however, exhibited pronounced complementarity along three resource axes representing depth, velocity and food. Rasbora vaterifloris and B. nigrofasciatus grew to larger sizes in one stream which had fewer indigenous species, suggesting competitive release. In this stream, the most common indigenous species was a dietary specialist that fed on diatoms, and B. nigrofasciatus , which fed heavily on diatoms in other streams, switched to feeding more on macrophytes. Overall, the data suggest that these assemblages are predictable, co-evolved systems with competition serving as an important structuring force that reinforces species segregation.  相似文献   

13.
Synopsis We used multivariate ordination techniques to examine patterns of trophic group abundance among fish assemblages in nine West Virginia streams. These patterns were examined in relation to habitat and water chemistry gradients. The first two components from a principal components analysis (PCA) explained 71% of the variation in trophic group abundance. The first two axes from a PCA of habitat data accounted for 75% of the total variation. Generalized insectivores and insectivore-piscivores were the predominant trophic groups in stable, pool environments. Benthic insectivores and herbivores-detritivores were most abundant in shallow, temporally variable environments. We attributed the presence of generalized insectivores in deep, pool environments to the effects of a severe drought. The predominance of benthic insectivores in shallow environments was attributed to an abundance of benthic stream fishes and a depauperate catostomid assemblage. The Unit is jointly sponsored by the Wildlife Service, the West Virginia Division of Natural Resources, West Virginia University, and the Wildlife Management Institute.  相似文献   

14.
Landscape-scale patterns of freshwater fish diversity and assemblage structure remain poorly documented in many areas of Central America, while aquatic ecosystems throughout the region have been impacted by habitat degradation and hydrologic alterations. Diadromous fishes may be especially vulnerable to these changes, but there is currently very little information available regarding their distribution and abundance in Central American river systems. We sampled small streams at 20 sites in the Sixaola River basin in southeastern Costa Rica to examine altitudinal variation in the diversity and species composition of stream fish assemblages, with a particular focus on diadromous species. A set of environmental variables was also measured in the study sites to evaluate how changes in fish assemblage structure were related to gradients in stream habitat. Overall, fish diversity and abundance declined steeply with increasing elevation, with very limited species turnover. The contribution of diadromous fishes to local species richness and abundance increased significantly with elevation, and diadromous species dominated assemblages at the highest elevation sites. Ordination of the sampling sites based on fish species composition generally arranged sites by elevation, but also showed some clustering based on geographic proximity. The dominant gradient in fish community structure was strongly correlated with an altitudinal habitat gradient identified through ordination of the environmental variables. The variation we observed in stream fish assemblages over relatively small spatial scales has significant conservation implications and highlights the ecological importance of longitudinal connectivity in Central American river systems.  相似文献   

15.
Aim We examined comparative data for cryptobenthic reef fishes to determine how variation in regional species richness relates to local species richness, abundance, and taxonomic and trophic composition, and to test whether systems with higher species richness exhibit finer habitat partitioning. Locations Lizard Island, Great Barrier Reef (GBR), Australia; Bahía de Loreto, Gulf of California (GoC), Mexico. Methods Cryptobenthic reef fish assemblages from four habitats (coral heads, rubble, and horizontal and vertical surfaces of boulders) were collected using clove oil. Differences in density, species richness and biomass were examined between regions and among habitats. Habitat associations were identified for each habitat/location based on multivariate ordination, and the statistical significance of patterns was tested using analysis of similarity (ANOSIM). In addition, the trophic group composition of the assemblages for both regions was examined. Results A total of 91 species in 20 families were recorded (GBR, 66 species; GoC, 25 species). Total and habitat species richness were higher on the GBR, whereas biomass was higher in the GoC. No difference in fish density between regions was found. Habitat division among assemblages was greater in the depauperate GoC. Only coral head associations proved to be distinctive on the GBR, whereas three sample groups were found in the GoC (coral heads, horizontal boulders and vertical boulders/rubble). Trophic composition in the two regions was markedly different, with omnivores dominating the GBR fauna and planktivores the GoC. Main conclusions A positive regional–local relationship in fish diversity was found between regions, but fish abundance in both regions remained similar. Contrary to expectations, habitat partitioning, at a community level, was greater in the depauperate GoC. Differences in trophic composition and patterns of habitat use appear to reflect the disparate history of the regions, whereas patterns of abundance may reflect the influence of fundamental relationships between size and abundance in communities. This study highlights the potential of reef faunas to conform to universal numerical trends while maintaining an ability to respond ecologically to local/evolutionary influences. The GoC fauna appears to be exceptionally vulnerable to natural and anthropogenic disturbance owing to the high numerical dominance of habitat‐specific species and to the limited potential for functional redundancy within the system.  相似文献   

16.
17.
Resource partitioning among the fishes of rainforest streams in Sri Lanka   总被引:1,自引:0,他引:1  
The fish assemblage typical of small rainforest streams of Sri Lanka was investigated to see if the fishes were characterized by a high degree of specialization, expected of equilibrium communities, or if they were relatively unspecialized, expected of more stochastic (non-equilibrium) communities. Morphological features, habitats, microhabitats and diets of the 20 most abundant fish species were measured. The fishes included 11 Cyprinidae (including seven Barbus spp. and two Rasbara spp.), two Gobiidae, two Channidae, and one species each in the Cobitidae, Cyprinodontidae, Belontidae, Belonidae, and Mastacembelidae. Microhabitats were determined by measuring (for 6760 fish) water column depth, distance of fish from bottom, mean water column velocity, water velocity at fish, and substrate. Morphologically, the species showed a high degree of specialization, especially in structures related to feeding. Although several species were habitat generalists, most species occurred in distinct habitats. Within habitats, microhabitat overlap among co-occuring species was low, particularly in relation to position in the water column. Principal component analysis of the microhabitat measurements produced three new variables. Most species not clearly segregated by the overlap analysis showed segregation on the new variables. Fishes not segregated by habitat or microhabitat tended to show low dietary overlaps. Specialization in feeding habits was more pronounced among the Sri Lankan fishes than noted for fishes in small rainforest streams elsewhere, in part because of the greater reliance of the Sri Lanka fishes on autochthonous foods. Overall, the fish assemblage had the characteristics expected of an equilibrium (deterministic) assemblage.  相似文献   

18.
Geomorphology and fish assemblages in a Piedmont river basin, U.S.A.   总被引:7,自引:0,他引:7  
1. We investigated linkages between fishes and fluvial geomorphology in 31 wadeable streams in the Etowah River basin in northern Georgia, U.S.A. Streams were stratified into three catchment sizes of approximately 15, 50 and 100 km2, and fishes and geomorphology were sampled at the reach scale (i.e. 20–40 times stream width). 2. Non‐metric multidimensional scaling (NMDS) identified 85% of the among‐site variation in fish assemblage structure and identified strong patterns in species composition across sites. Assemblages shifted from domination by centrarchids, and other pool species that spawn in fine sediments and have generalised food preferences, to darter‐cyprinid‐redhorse sucker complexes that inhabit riffles and runs, feed primarily on invertebrates, and spawn on coarser stream beds. 3. Richness and density were correlated with basin area, a measure of stream size, but species composition was best predicted (i.e. |r| between 0.60–0.82) by reach‐level geomorphic variables (stream slope, bed texture, bed mobility and tractive force) that were unrelated to stream size. Stream slope was the dominant factor controlling stream habitat. Low slope streams had smaller bed particles, more fines in riffles, lower tractive force and greater bed mobility compared with high slope streams. 4. Our results contrast with the ‘River Continuum Concept’ which argues that stream assemblages vary predictably along stream size gradients. Our findings support the ‘Process Domains Concept’, which argues that local‐scale geomorphic processes determine the stream habitat and disturbance regimes that influence stream communities.  相似文献   

19.
Direct underwater observation of micro‐habitat use by 1838 young Atlantic salmon Salmo salar [mean LT 7·9 ± 3.1(s.d.) cm, range 3·19] and 1227 brown trout Salmo trutta (LT 10·9 ± 5·0 cm, range 3·56) showed both species were selective in habitat use, with differences between species and fish size. Atlantic salmon and brown trout selected relatively narrow ranges for the two micro‐habitat variables snout water velocity and height above bottom, but with differences between size‐classes. The smaller fishes <7 cm held positions in slower water closer to the bottom. On a larger scale, the Atlantic salmon more often used shallower stream areas, compared with brown trout. The larger parr preferred the deeper stream areas. Atlantic salmon used higher and slightly more variable mean water velocities than brown trout. Substrata used by the two species were similar. Finer substrata, although variable, were selected at the snout position, and differences were pronounced between size‐classes. On a meso‐habitat scale, brown trout were more frequently observed in slow pool‐glide habitats, while young Atlantic salmon favoured the faster high‐gradient meso‐habitats. Small juveniles <7 cm of both species were observed most frequently in riffle‐chute habitats. Atlantic salmon and brown trout segregated with respect to use of habitat, but considerable niche overlap between species indicated competitive interactions. In particular, for small fishes <7 cm of the two species, there was almost complete niche overlap for use of water depth, while they segregated with respect to water velocity. Habitat suitability indices developed for both species for mean water velocity and water depth, tended to have their optimum at lower values compared with previous studies in larger streams, with Atlantic salmon parr in the small streams occupying the same habitat as favoured by brown trout in larger streams. The data indicate both species may be flexible in their habitat selection depending on habitat availability. Species‐specific habitat overlap between streams may be complete. However, between‐species habitat partitioning remains similar.  相似文献   

20.
Nullah Aik and Nullah Palkhu, two tributaries of river Chenab, were investigated for the assessment of fish habitat degradation as indicator of stream health. Fish abundance data were collected from 18 sites from September 2004 to April 2006 to develop multimetric indices for fish assemblage integrity and to detect the intensity of habitat degradation. A total of 12 metrics were calculated on the basis of taxonomic richness, habitat preference, trophic guild, stress tolerance and origin of species to develop stepped and continuous index of biological integrity (IBI) criteria. Cluster analysis (CA) classified sites based on species composition into three groups, viz., reference, moderately impaired and impaired groups. Non-metric multidimensional scaling (NMDS) was applied to identify underlying ecological gradient to highlight the habitat degradation. NMDS segregated two sites as less impaired, five sites as moderately impaired and eleven sites as impaired groups. Axes 1 and 2 explained a total variation of 53.3%. First axis explained the level of habitat impairment, whereas axis 2 indicated species richness along longitudinal gradient of streams. Sites located upstream of Nullah Aik showed higher IBI scores which dropped to its lowest in downstream sites near Sialkot city. Lowest values of IBI of sites in close proximity of city indicated the role of anthropogenic activities in catchment areas. The results indicated that variability in water chemistry can be related as a function of stream sites impairments (i.e., unimpaired, moderately impaired, and severely impaired). Water quality parameters showed strong correlation with IBI scores. Significantly negative correlation of IBI scores with COD, TDS, turbidity, Fe, Cr, Zn and positive correlation with DO and pH was found. The results can be used for restoration and future management of small streams passing through urban areas of Pakistan. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Handling editor: J. A. Cambray  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号