首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
There are many controversies concerning whether ionic interactions in alpha-helices and coiled coils actually contribute to the stabilisation and formation of these structures. Here we used a statistical approach to probe this question. We extracted unique alpha-helical and coiled coil structures from the protein database and analysed the ionic interactions between positively and negatively charged residues. The ionic interactions were categorized according to the type, spacing and order of the residues involved. Separate datasets were produced depending on the number of alpha-helices in the coiled coils and the mutual orientation of the helices. We compared the frequency of residue configurations able to form ionic interactions with their probability to form the interaction. We found a correlation between the two variables in alpha-helices, antiparallel two-stranded coiled coils and parallel two-stranded coiled coils. This indicates that some ionic interactions are indeed important for the formation and stabilisation of alpha-helices and coiled coils. We concluded that the configurations, which have simultaneously a large probability to form the ionic interaction and a frequent occurrence, are those, which have the most stabilising effect. These are the 4RE, 3ER and 4ER interactions.  相似文献   

4.
BACKGROUND: The parallel two-stranded alpha-helical coiled coil is the most frequently encountered subunit-oligomerization motif in proteins. The simplicity and regularity of this motif have made it an attractive system to explore some of the fundamental principles of protein folding and stability and to test the principles of de novo design. RESULTS: The X-ray crystal structure of the 18-heptad-repeat alpha-helical coiled-coil domain of the actin-bundling protein cortexillin I from Dictyostelium discoideum is a tightly packed parallel two-stranded alpha-helical coiled coil. It harbors a distinct 14-residue sequence motif that is essential for coiled-coil formation, and is a prerequisite for the assembly of cortexillin I. The atomic structure reveals novel types of ionic coiled-coil interactions. In particular, the structure shows that a characteristic interhelical and intrahelical salt-bridge pattern, in combination with the hydrophobic interactions occurring at the dimer interface, is the key structural feature of its coiled-coil trigger site. CONCLUSIONS: The knowledge gained from the structure could be used in the de novo design of alpha-helical coiled coils for applications such as two-stage drug targeting and delivery systems, and in the design of coiled coils as templates for combinatorial helical libraries in drug discovery and as synthetic carrier molecules.  相似文献   

5.
Circular dichroism was used to study the folding of alpha alpha-tropomyosin and AcTM43, a 43-residue peptide designed to serve as a model for the N-terminal domain of tropomyosin. The sequence of the peptide is AcMDAIKKKMQMLKLDVENLLDRLEQLEADLKALEDRYKQLEGGC. The peptide appeared to form a coiled coil at low temperatures (< 25 degrees C) in buffers with physiological ionic strength and pH. The folding and unfolding of the peptide, however, were noncooperative. When CD spectra were examined as a function of temperature, the apparent degree of folding differed when the ellipticity was followed at 222, 208, and 280 nm. Deconvolution of the spectra suggested that at least three component curves contributed to the CD in the far UV. One component curve was similar to the CD spectrum of the coiled-coil alpha-helix of native alpha alpha-tropomyosin. The second curve resembled the spectrum of single-stranded short alpha-helical segments found in globular proteins. The third was similar to that of polypeptides in the random coil conformation. These results suggested that as the peptide folded, the alpha-helical content increased before most of the coiled coil was formed. When the CD spectrum of striated muscle alpha alpha-tropomyosin was examined as a function of temperature, the unfolding was also not totally cooperative. As the temperature was raised from 0 to 25 degrees C, there was a decrease in the coiled coil and an increase in the conventional alpha-helix type spectrum without formation of random coil. The major transition, occurring at 40 degrees C, was a cooperative transition characterized by the loss of all of the remaining coiled coil and a concomitant increase in random coil.  相似文献   

6.
7.
Strong conformational propensities enhance T cell antigenicity   总被引:9,自引:0,他引:9  
The ability to predict T cell antigenic peptides would have important implications for the development of artificial vaccines. As a first step towards prediction, this report uses a new statistical technique to discover and evaluate peptide properties correlating with T cell antigenicity. This technique employs Monte Carlo computer experiments and is applicable to many problems involving protein or DNA. The technique is used to evaluate the contribution of various peptide properties to helper T cell antigenicity. The properties investigated include amphipathicities (alpha and beta), conformational propensities (alpha, beta, turn and coil), and the correlates of alpha-helices, such as the absence of helix-breakers and the positioning of the residues which stabilize alpha-helical dipoles. We also investigate segmental amphipathicity. (A peptide has this property when it contains at least two disjoint subpeptides, one hydrophobic, one hydrophilic.) Statistical correlations and stratifications assessed independent contributions to T cell antigenicity. The findings presented here have important implications for the manufacture of peptide vaccines. These implications are as follows: if possible, peptide vaccines should probably be those protein segments which have a propensity to form amphipathic alpha-helices, which do not have regions with a propensity to coil conformations, and which have a lysine at their COOH-terminus. The last two observations are of particular use in manufacturing peptides vaccines: they indicate where the synthetic peptides should be terminated. These implications are supported by the findings given below. The significances (p values) support the following statistical generalites about antigenic conformations: most helper T cell antigenic sites are amphipathic alpha-helices; alpha-helical amphipathicity and propensity to an alpha-helical conformation contribute independently to T cell antigenicity; there is evidence that some T cell antigenic sites are beta conformations instead of alpha-helices; T cell antigenic sites avoid random coiled conformations; and T cell antigenic sites are usually not segmentally amphipathic. alpha-Helical amphipathicity was significant, but segmental amphipathicity was not. This has implications for the dimensions of the structure interacting with the hydrophobic portion of an amphipathic T cell antigenic site. Lysines are unusually frequent at the COOH-terminal of T cell antigenic sites, even after accounting for tryptic digests. These lysines can stabilize alpha-helical peptides by a favorable interaction with alpha-helical dipoles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Kinesin is a mechanochemical enzyme composed of three distinct domains: a globular head domain, a rodlike stalk domain, and a small globular tail domain. The stalk domain has sequence features characteristic of alpha-helical coiled coils. To gain insight into the structure of the kinesin stalk, we expressed it from a segment of the Drosophila melanogaster kinesin heavy chain gene and purified it from Escherichia coli. When observed by EM, this protein formed a rodlike structure 40-55 nm long that was occasionally bent at a hingelike region near the middle of the molecule. An additional EM study and a chemical cross-linking study showed that this protein forms a parallel dimer and that the two chains are in register. Finally, using circular dichroism spectroscopy, we showed that this protein is approximately 55-60% alpha-helical in physiological aqueous solution at 25 degrees C, and approximately 85-90% alpha-helical at 4 degrees C. From these results, we conclude that the stalk of kinesin heavy chain forms an alpha-helical coiled coil structure. The temperature dependence of the circular dichroism signal has two major transitions, at 25-30 degrees C and at 45-50 degrees C, which suggests that a portion of the alpha-helical structure in the stalk is less stable than the rest. By producing the amino-terminal (coil 1) and carboxy-terminal (coil 2) halves of the stalk separately in E. coli, we showed that the region that melts below 30 degrees C lies within coil 1, while the majority of coil 2 melts above 45 degrees C. We suggest that this difference in stability may play a role in the force-generating mechanism or regulation of kinesin.  相似文献   

9.
The tetrameric Mnt repressor is involved in the genetic switch between the lysogenic and lytic growth of Salmonella bacteriophage P22. The solution structure of its C-terminal tetramerization domain, which holds together the two dimeric DNA-binding domains, has been determined by NMR spectroscopy. This structure reveals an assembly of four alpha-helical subunits, consisting of a dimer of two antiparallel coiled coils with a unique right-handed twist. The superhelical winding is considerably stronger and the interhelical separation closer than those found in the well-known left-handed coiled coils in fibrous proteins and leucine zippers. An unusual asymmetry arises between the two monomers that comprise one right-handed coiled coil. A difference in the packing to the adjacent monomer of the other coiled coil occurs with an offset of two helical turns. The two asymmetric monomers within each coiled coil interconvert on a time scale of seconds. Both with respect to symmetry and handedness of helical packing, the C2 symmetric four-helix bundle of Mnt differs from other oligomerization domains that assemble DNA-binding modules, such as that in the tumor suppressor p53 and the E. coli lac repressor.  相似文献   

10.
Dragan AI  Potekhin SA  Sivolob A  Lu M  Privalov PL 《Biochemistry》2004,43(47):14891-14900
Temperature-induced reversible unfolding and refolding of the three-stranded alpha-helical coiled coil, Lpp-56, were studied by kinetic and thermodynamic methods, using CD spectroscopy, dynamic light scattering, and scanning calorimetry. It was found that both unfolding and refolding reactions of this protein in neutral solution in the presence of 100 mM NaCl are characterized by unusually slow kinetics, which permits detailed investigation of the mechanism of these reactions. Kinetic analyses show that the unfolding of this coiled coil represents a single-stage first-order reaction, while the refolding represents a single-stage third-order reaction. The activation enthalpy and entropy for unfolding do not depend noticeably on temperature and are both significantly greater than those for the folding reaction, which show a significant dependence on temperature. The activation heat capacity change for the unfolding reaction is close to zero, while it is quite significant for the folding reaction. The correlation between the activation and structural parameters obtained for the Lpp-56 coiled coil suggests that interhelical van der Waals interactions are disrupted in the transition state, which is nevertheless still compact, and water has not yet penetrated into the interface; the transition from the transient state to the unfolded state results in hydration of exposed apolar groups of the interface and the disruption of helices. The low propensity for the Lpp-56 strands to fold and associate is caused by the high number of charged groups at neutral pH. On one hand, these charges give rise to considerable repulsive forces destabilizing the helical conformation of the strands. On the other hand, they align the folded helices in parallel and in register so that the apolar sides face each other, and the oppositely charged groups may form salt links, which are important for the formation of the trimeric coiled coil. A decrease in pH, which eliminates the salt links, dramatically decreases the stability of Lpp-56; its structure becomes less rigid and unfolds much faster.  相似文献   

11.
Liu J  Deng Y  Zheng Q  Cheng CS  Kallenbach NR  Lu M 《Biochemistry》2006,45(51):15224-15231
Specific helix-helix interactions are fundamental in assembling the native state of proteins and in protein-protein interfaces. Coiled coils afford a unique model system for elucidating principles of molecular recognition between alpha helices. The coiled-coil fold is specified by a characteristic seven amino acid repeat containing hydrophobic residues at the first (a) and fourth (d) positions. Nonpolar side chains spaced three and four residues apart are referred to as the 3-4 hydrophobic repeat. The presence of apolar amino acids at the e or g positions (corresponding to a 3-3-1 hydrophobic repeat) can provide new possibilities for close-packing of alpha-helices that includes examples such as the lac repressor tetramerization domain. Here we demonstrate that an unprecedented coiled-coil interface results from replacement of three charged residues at the e positions in the dimeric GCN4 leucine zipper by nonpolar valine side chains. Equilibrium circular dichroism and analytical ultracentrifugation studies indicate that the valine-containing mutant forms a discrete alpha-helical tetramer with a significantly higher stability than the parent leucine-zipper molecule. The 1.35 A resolution crystal structure of the tetramer reveals a parallel four-stranded coiled coil with a three-residue interhelical offset. The local packing geometry of the three hydrophobic positions in the tetramer conformation is completely different from that seen in classical tetrameric structures yet bears resemblance to that in three-stranded coiled coils. These studies demonstrate that distinct van der Waals interactions beyond the a and d side chains can generate a diverse set of helix-helix interfaces and three-dimensional supercoil structures.  相似文献   

12.
Receptor-adhesive modular proteins are nongenetic proteins designed to contain ligand, spacer, coil, and linker modules and to interact strongly with integrins or other types of cell-surface receptors. We have designed, chemically synthesized, and characterized a 39-residue peptide chain having a 6-residue ligand module (Gly-Arg-Gly-Asp-Ser-Pro-) for adherence to Arg-Gly-Asp-binding integrin receptors, a 3-residue spacer module (-Gly-Tyr-Gly-) for flexibility, and a 30-residue coil module [-(Arg-Ile-Glu-Ala-Ile-Glu-Ala) 4-Arg-Cys-NH2] containing four 7-residue repeats for dimerization. This chain was designed to form a 78-residue noncovalent dimer (P39) by folding the coils of two chains into an alpha-helical coiled coil through hydrophobic interaction of eight pairs of Ile residues. Air oxidation of P39 gave P78, a 78-residue covalent dimer having a disulfide bridge linking its C termini. Raman spectroscopy indicated that both synthetic proteins have high alpha-helical content. Ultraviolet circular dichroic spectroscopy indicated that both dimers contain stable alpha-helical coiled coils. Its C-terminal disulfide bridge renders P78 significantly more stable than P39 to thermal denaturation or denaturation by urea. The coiled coil of P39 was 30% unfolded near 55 degrees C and half-unfolded in 8 M urea, while that of P78 was 30% unfolded only near 85 degrees C. These studies have demonstrated the feasibility of using these ligand, spacer, and coil modules to construct the designed coiled-coil proteins P39 and P78, a stage in the nanometric engineering of receptor-adhesive modular proteins.  相似文献   

13.
The apoptosis-associated Par-4 protein has been implicated in cancers of the prostate, colon, and kidney, and in Alzheimer's and Huntington's diseases, among other neurodegenerative disorders. Previously, we have shown that a peptide from the Par-4 C-terminus, which is responsible for Par-4 self-association as well as interaction with all currently identified effector molecules, is natively unfolded at neutral pH, but forms a tightly associated coiled coil at acidic pH and low temperature. Here, we have alternately mutated the two acidic residues predicted to participate in repulsive electrostatic interactions at the coiled coil interhelical interface. Analysis of circular dichroism spectra reveals that a dramatic alteration of the folding/unfolding equilibrium of this peptide can be effected through directed-point mutagenesis, confirming that the two acidic residues are indeed key to the pH-dependent folding behavior of the Par-4 coiled coil, and further suggesting that alleviation of charge repulsion through exposure to either a low pH microenvironment or an electrostatically complementary environment may be necessary for efficient folding of the Par-4 C-terminus.  相似文献   

14.
A parallel bundle of transmembrane (TM) alpha-helices surrounding a central pore is present in several classes of ion channel, including the nicotinic acetylcholine receptor (nAChR). We have modeled bundles of hydrophobic and of amphipathic helices using simulated annealing via restrained molecular dynamics. Bundles of Ala20 helices, with N = 4, 5, or 6 helices/bundle were generated. For all three N values the helices formed left-handed coiled coils, with pitches ranging from 160 A (N = 4) to 240 A (N = 6). Pore radius profiles revealed constrictions at residues 3, 6, 10, 13, and 17. A left-handed coiled coil and a similar pattern of pore constrictions were observed for N = 5 bundles of Leu20. In contrast, N = 5 bundles of Ile20 formed right-handed coiled coils, reflecting loosened packing of helices containing beta-branched side chains. Bundles formed by each of two classes of amphipathic helices were examined: (a) M2a, M2b, and M2c derived from sequences of M2 helices of nAChR; and (b) (LSSLLSL)3, a synthetic channel-forming peptide. Both classes of amphipathic helix formed left-handed coiled coils. For (LSSLLSL)3 the pitch of the coil increased as N increased from 4 to 6. The M2c N = 5 helix bundle is discussed in the context of possible models of the pore domain of nAChR.  相似文献   

15.
Alpha-helical coiled coils represent a common protein oligomerization motif that are mainly stabilized by hydrophobic interactions occurring along their coiled-coil interface, the so-called hydrophobic seam. We have recently de novo designed and optimized a series of two-heptad repeat long coiled-coil peptides which are further stabilized by a complex network of inter- and intrahelical salt bridges. Here we have extended the de novo design of such two heptad-repeat long peptides by removing the central and most important g-e' Arg to Glu (g-e'RE) ionic interhelical interaction and replacing these residues by alanine residues. The effect of the missing interhelical ionic interaction on coiled-coil formation and stability has been analyzed by CD spectroscopy, analytical ultracentrifugation, and X-ray crystallography. We show that the peptide, while being highly alpha-helical, is no longer able to form a parallel coiled-coil structure but rather assumes an octameric globular helical assembly devoid of any coiled-coil interactions.  相似文献   

16.
Suzuki K  Yamada T  Tanaka T 《Biochemistry》1999,38(6):1751-1756
The macrophage scavenger receptor exhibits a pH-dependent conformational change around the carboxy-terminal half of the alpha-helical coiled coil domain, which has a representative amino acid sequence of a (defgabc)n heptad. We previously demonstrated that a peptide corresponding to this region formed a random coil structure at pH 7 and an alpha-helical coiled coil structure at pH 5 [Suzuki, K., Doi, T., Imanishi, T., Kodama, T., and Tanaka, T. (1997) Biochemistry 36, 15140-15146]. To determine the amino acid responsible for the conformational change, we prepared several peptides in which the acidic amino acids were replaced with neutral amino acids. Analyses of their structures by circular dichroism and sedimentation equilibrium gave the result that the presence of Glu242 at the d position was sufficient to induce the pH-dependent conformational change of the alpha-helical coiled coil domain. Furthermore, we substituted a Glu residue for the Ile residue at the d or a position of a de novo designed peptide (IEKKIEA)4, which forms a highly stable triple-stranded coiled coil. These peptides exhibited a pH-dependent conformational change similar to that of the scavenger receptor. Therefore, we conclude that a buried Glu residue in the hydrophobic core of a triple-stranded coiled coil has the potential to induce the pH-dependent conformational change. This finding makes it possible to elucidate the functions of natural proteins and to create a de novo protein designed to undergo a pH-dependent conformational change.  相似文献   

17.
Basic region-leucine zipper (B-ZIP) proteins are a class of dimeric sequence-specific DNA-binding proteins unique to eukaryotes. We have identified 67 B-ZIP proteins in the Arabidopsis thaliana genome. No A.thaliana B-ZIP domains are homologous with any Homo sapiens B-ZIP domains. Here, we predict the dimerization specificity properties of the 67 B-ZIP proteins in the A.thaliana genome based on three structural properties of the dimeric alpha-helical leucine zipper coiled coil structure: (i) length of the leucine zipper, (ii) placement of asparagine or a charged amino acid in the hydrophobic interface and (iii) presence of interhelical electrostatic interactions. Many A.thaliana B-ZIP leucine zippers are predicted to be eight or more heptads in length, in contrast to the four or five heptads typically found in H.sapiens, a prediction experimentally verified by circular dichroism analysis. Asparagine in the a position of the coiled coil is typically observed in the second heptad in H.sapiens. In A.thaliana, asparagine is abundant in the a position of both the second and fifth heptads. The particular placement of asparagine in the a position helps define 14 families of homodimerizing B-ZIP proteins in A.thaliana, in contrast to the six families found in H.sapiens. The repulsive interhelical electrostatic interactions that are used to specify heterodimerizing B-ZIP proteins in H.sapiens are not present in A.thaliana. Instead, we predict that plant leucine zippers rely on charged amino acids in the a position to drive heterodimerization. It appears that A.thaliana define many families of homodimerizing B-ZIP proteins by having long leucine zippers with asparagine judiciously placed in the a position of different heptads.  相似文献   

18.
All known naturally occurring linear cationic peptides adopt an amphipathic alpha-helical conformation upon binding to lipids as an initial step in the induction of cell leakage. We designed an 18-residue peptide, (KIGAKI)3-NH2, that has no amphipathic character as an alpha-helix but can form a highly amphipathic beta-sheet. When bound to lipids, (KIGAKI)3-NH2 did indeed form a beta-sheet structure as evidenced by Fourier transform infrared and circular dichroism spectroscopy. The antimicrobial activity of this peptide was compared with that of (KIAGKIA)3-NH2, and it was better than that of GMASKAGAIAGKIAKVALKAL-NH2 (PGLa) and (KLAGLAK)3-NH2, all of which form amphipathic alpha-helices when bound to membranes. (KIGAKI)3-NH2 was much less effective at inducing leakage in lipid vesicles composed of mixtures of the acidic lipid, phosphatidylglycerol, and the neutral lipid, phosphatidylcholine, as compared with the other peptides. However, when phosphatidylethanolamine replaced phosphatidylcholine, the lytic potency of PGLa and the alpha-helical model peptides was reduced, whereas that of (KIGAKI)3-NH2 was improved. Fluorescence experiments using analogs containing a single tryptophan residue showed significant differences between (KIGAKI)3-NH2 and the alpha-helical peptides in their interactions with lipid vesicles. Because the data suggest enhanced selectivity between bacterial and mammalian lipids, linear amphipathic beta-sheet peptides such as (KIGAKI)3-NH2 warrant further investigation as potential antimicrobial agents.  相似文献   

19.
Benjwal S  Jayaraman S  Gursky O 《Biochemistry》2007,46(13):4184-4194
Binding of protein to a phospholipid surface is commonly mediated by amphipathic alpha-helices. To understand the role of alpha-helical structure in protein-lipid interactions, we used discoidal lipoproteins reconstituted from dimyristoylphosphatidylcholine (DMPC) and human apolipoprotein C-I (apoC-I, 6 kDa) or its mutants containing single Pro substitutions along the sequence and differing in their alpha-helical content in solution (0-48%) and on DMPC (40-75%). Thermal denaturation revealed that lipoprotein stability correlates weakly with the protein helix content: proteins with higher alpha-helical content on DMPC may form more stable complexes. Lipoprotein reconstitution upon cooling from the heat-denatured state and DMPC clearance studies revealed that protein secondary structure in solution and on DMPC correlates strongly with the maximal temperature of lipoprotein reconstitution: more helical proteins can reconstitute lipoproteins at higher temperatures. Interestingly, at Tc = 24 degrees C of the DMPC gel-to-liquid crystal transition, the clearance rate is independent of the protein helical content. Consequently, if the packing defects at the phospholipid surface are readily available (e.g., at the lipid phase boundary), insertion of protein into these defects is independent of the secondary structure in solution. However, if hydrophobic defects are limited, protein binding and insertion are aided by other surface-bound proteins and depend on their helical propensity: the larger the propensity, the faster the binding and the broader its temperature range. This positive cooperativity in binding of alpha-helices to phospholipid surface, which may result from direct and/or lipid-mediated protein-protein interactions, may be important for lipoprotein metabolism and for protein-membrane binding.  相似文献   

20.
BACKGROUND: The kinesin superfamily of microtubule-associated motor proteins are important for intracellular transport and for cell division in eukaryotes. Conventional kinesins have the motor domain at the N terminus of the heavy chain and move towards the plus end of microtubules. The ncd protein is necessary for chromosome segregation in meiosis. It belongs to a subfamily of kinesins that have the motor domain at the C terminus and move towards the minus end of microtubules. RESULTS: The crystal structure of dimeric ncd has been obtained at 2.9 A resolution from crystals with the C222(1) space group, with two independent dimers per asymmetric unit. The motor domains in these dimers are not related by crystallographic symmetry and the two ncd dimers have significantly different conformations. An alpha-helical coiled coil connects, and interacts with, the motor domains. CONCLUSIONS: The ncd protein has a very compact structure, largely due to extended interactions of the coiled coil with the head domains. Despite this, we find that the overall conformation of the ncd dimer can be rotated by as much as 10 degrees away from that of the twofold-symmetric archetypal ncd. The crystal structures of conventional kinesin and of ncd suggest a structural rationale for the reversal of the direction of movement in chimeric kinesins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号