首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 963 毫秒
1.
A new species of protein kinase has been identified in cytosol preparations from bovine corpora lutea. Enzyme activity required the simultaneous presence of Ca2+ and phospholipid, and was also enhanced by glyceryl dioleate. Phosphatidylserine was the most effective phospholipid for stimulating histone phosphorylation. Other phospholipids capable of supporting enzymic activity were, in order of decreasing activity, phosphatidylinositol, phosphatidic acid, cardiolipin and phosphatidylglycerol. Several other phospholipids tested were ineffective. A cyclic AMP-dependent protein kinase was also present in the luteal cytosol. This enzyme activity was eliminated by protein kinase inhibitor without affecting the Ca2+- and phospholipid-stimulated activity. Lysine-rich histone (IIIS) was a much better substrate than type-IIA histone for Ca2+- and phospholipid-dependent phosphorylation. Ca2+ and phospholipid also enhanced phosphorylation of endogenous luteal cytosol protein. Calmodulin, alone or in the presence of Ca2+, was unable to increase phosphorylation. Trifluoperazine inhibited protein kinase activity stimulated by Ca2+ and phospholipid. These data suggest that a phospholipid-sensitive, Ca2+-dependent protein kinase may provide an important link between hormonally-induced changes in phospholipid metabolism and corpus-luteum function.  相似文献   

2.
Adriamycin, a lipid-interacting anti-cancer agent, was found to inhibit phospholipid-sensitive Ca2+-dependent phosphorylation of endogenous proteins from the cytosol of the guinea-pig heart. The drug, unexpectedly, also inhibited phosphorylation of separate endogenous proteins in the cardiac cytosol and membranes catalysed by the calmodulin-sensitive species of Ca2+-dependent protein kinase. In both phosphorylation systems, the inhibition by adriamycin was reversed by either phospholipid (phosphatidylserine or cardiolipin) or calmodulin respectively. Adriamycin also inhibited phosphorylation of histone (exogenous protein) catalysed by purified cardiac phospholipid-sensitive Ca2+-dependent protein kinase, but not that by cyclic AMP-dependent and cyclic GMP-dependent protein kinases. It appears that Ca2+-dependent protein phosphorylation systems, regulated either by phospholipid or calmodulin, may represent hitherto unrecognized sites of action of adriamycin. It remains to be seen whether inhibition by adriamycin of these systems is related to the severe cardiotoxicity, the major adverse effect of the drug that limits its clinical usefulness.  相似文献   

3.
CP-46,665-1, an antineoplastic lipoidal amine, was found to inhibit phospholipid/Ca2+-dependent protein kinase (PL/Ca-PK, or protein kinase C), with an IC50 (concentration causing a 50% inhibition) of 10 microM. Its inhibition of the enzyme was reversed by phosphatidylserine, but not by Ca2+. The agent also inhibited the enzyme activity which was further augmented by 12-0-tetradecanoylphorbol-13-acetate (TPA), mezerein or diolein. Phosphorylation of endogenous proteins from HL-60 cells by the enzyme, with or without being further augmented by TPA, was inhibited by CP-46,665-1 as well as by alkyllysophospholipid (an antineoplastic agent). CP-46,665-1, while without effect on cyclic AMP-dependent protein kinase, also inhibited myosin light chain kinase (a calmodulin/Ca2+-dependent protein kinase). The present findings suggest that inhibition of the Ca2+-effector enzymes may be related in part to the antimetastatic activity of the lipoidal amine.  相似文献   

4.
Synthetic peptide analogs of the bovine myelin basic protein (MBP) corresponding to residues 104-118 were found to specifically inhibit phospholipid/ Ca2+-dependent protein kinase (protein kinase C). The peptides [Ala107]MBP (104-118) and [Ala113]MBP (104-118) inhibited protein phosphorylation of intact MBP, histone H1 and peptide phosphorylation with MBP(104-123), MBP(104-118) or [Ala105]MBP (104-118) as substrates. The inhibitor peptides [Ala107]MBP(104-118) and [Ala113]MBP (104-118), containing alanine in place of the arginine recognition sites, apparently inhibited the enzyme noncompetitively with respect to substrates, with IC50 values ranging from 46-145 and 28-62 microM, respectively. These peptide analogs did not inhibit cyclic AMP-dependent protein kinase or myosin light chain kinase but inhibited phospholipid/Ca2+-dependent phosphorylation of endogenous proteins in the total, solubilized fraction of rat brain.  相似文献   

5.
Three types of agonists; receptor-mediated concanavalin A), direct (phorbol ester), and membrane-perturbing (compound 48/80), elicit histamine secretion from rat peritoneal mast cells. We tested whether activation of the mast cells by these agents is accompanied by subcellular redistribution of protein kinase C. Phorbol ester treatment predictably caused a profound decrease of phospholipid/Ca2+-dependent histone kinase activity in the cytosol and a concomitant increase of [3H]PMA-binding capacity in the membrane fraction, in a time- and concentration-dependent manner. Similar, but less marked effects were observed with stimulations by concanavalin A and compound 48/80. When mast cells labeled with [32P] and then stimulated with the agents, phosphorylation of a 50,000-Dalton protein was enhanced in the membrane fraction. These results suggest that protein kinase C may play a role in mast cell activation through phosphorylation of the membrane protein.  相似文献   

6.
After human platelets were lysed by freezing and thawing in the presence of EDTA, about 35% of the total cyclic AMP-dependent protein kinase activity was specifically associated with the particulate fraction. In contrast, Ca2+-activated phospholipid-dependent protein kinase was found exclusively in the soluble fraction. Photoaffinity labelling of the regulatory subunits of cyclic AMP-dependent protein kinase with 8-azido-cyclic [32P]AMP indicated that platelet lysate contained a 4-fold excess of 49 000-Da RI subunits over 55 000-Da RII subunits. The RI and RII subunits were found almost entirely in the particulate and soluble fractions respectively. Chromatography of the soluble fraction on DEAE-cellulose demonstrated a single peak of cyclic AMP-dependent activity with the elution characteristics and regulatory subunits characteristic of the type-II enzyme. A major enzyme peak containing Ca2+-activated phospholipid-dependent protein kinase was eluted before the type-II enzyme, but no type-I cyclic AMP-dependent activity was normally observed in the soluble fraction. The particulate cyclic AMP-dependent protein kinase and associated RI subunits were solubilized by buffers containing 0.1 or 0.5% (w/v) Triton X-100, but not by extraction with 0.5 M-NaCl, indicating that this enzyme is firmly membrane-bound, either as an integral membrane protein or via an anchor protein. DEAE-cellulose chromatography of the Triton X-100 extracts demonstrated the presence of both type-I cyclic AMP-dependent holoenzyme and free RI subunits. These results show that platelets contain three main protein kinase activities detectable with histone substrates, namely a membrane-bound type-I cyclic AMP-dependent enzyme, a soluble type-II cyclic AMP-dependent enzyme and Ca2+-activated phospholipid-dependent protein kinase, which was soluble in lysates containing EDTA.  相似文献   

7.
The cyclic AMP- and Ca2(+)-dependent protein kinase activities of Plasmodium falciparum were partially characterized after purification of parasites from host erythrocytes by N2 cavitation and Percoll gradient centrifugation. Proteins of molecular weights 80, 54, 51, and 31.5 kDa were phosphorylated in a cAMP-dependent manner in cytosolic extracts of isolated P. falciparum. Cytosolic extracts also contained cAMP-dependent histone II-A kinase activity with an average Vmax of 131.1 pmol/32P/min/mg protein and a Km for cAMP of 85nM. Upon photoaffinity labeling with [32P]-8-N3-cAMP, a 53-kDa protein was specifically labeled in parasite cytosol. A metabolically labeled protein of the same molecular weight was identified by cAMP-agarose affinity chromatography. The 53-kDa protein cochromatographed with cAMP-dependent histone II-A kinase activity on DEAE-cellulose, suggesting that it is the regulatory subunit of the kinase. Ca2(+)-dependent phosphorylation of proteins of molecular weights 195, 158, 51, 47.5, and 15 kDa was demonstrated in a membrane fraction from parasites free of the erythrocyte membrane. This activity was not stimulated by either calmodulin or phospholipid plus diacylglycerol and was absent from the membranes of uninfected erythrocytes. Of several exogenous substrates tested, none were found to be a substrate for this Ca2(+)-dependent kinase. Both cAMP- and Ca2(+)-dependent kinases phosphorylated serine and threonine residues.  相似文献   

8.
The effects of calmodulin (CaM) on inositol 1,4,5-trisphosphate (InsP3) 3-kinase activity in pig aortic smooth muscle were examined. The cytosol fraction of muscle cells, containing 1.2-2.0 micrograms of CaM/mg of cytosol protein (thus 0.12-0.2%, w/w), showed a Ca2+-dependent InsP3 3-kinase activity, and there was no further activation by exogenous addition of CaM purified from dog brain. (NH4)2SO4 fractionation of the cytosol fraction revealed that a 20-60%-satd.-(NH4)2SO4 fraction was rich in the enzyme activity, and the activity without exogenous CaM was still dependent on Ca2+, although the CaM content in this fraction was minute (0.013-0.016%, w/w). The kinase activity observed in the absence of exogenous CaM became insensitive to Ca2+ when a 20-60%-satd.-(NH4)2SO4 fraction was applied to a DEAE-cellulose column, but exogenous addition of CaM increased the enzyme activity from 80-120 to 450 pmol/min per mg of protein, with addition of 10 microM free Ca2+. A fraction separated by DEAE-cellulose chromatography was applied to a CaM affinity column. The kinase activity was retained on the column in the presence of Ca2+, and was eluted by lowering the free Ca2+ concentration by adding EGTA. These results directly show that CaM activates InsP3 3-kinase activity and the enzyme becomes sensitive to Ca2+.  相似文献   

9.
Calmodulin and Ca2+- and calmodulin-dependent protein kinase were identified in the rat anterior pituitary gland. The concentration of calmodulin was 1.18 +/- 0.11 microgram/mg protein (n = 7) in the cytosol fraction. The calmodulin of the anterior pituitary gland co-migrated with brain calmodulin on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The Ka value of the partially purified enzyme for Ca2+ was 3.3 microM in the presence of 0.30 microM calmodulin. Trifluoperazine and chlorpromazine, calmodulin-interacting agents, inhibited enzyme activity, with Ki values of 1.3 and 2.6 X 10(-5) M, respectively. The enzyme was resolved into two peaks of activity, with sedimentation coefficients of 5.5 S and 16.5 S, by sucrose density gradient centrifugation. At least nine proteins were phosphorylated by the enzyme in a Ca2+- and calmodulin-dependent manner. In light of these results, the possibility that calmodulin and the calmodulin-activatable protein kinase system are involved in the mediation of the Ca2+ effect on hormone release from the anterior pituitary gland must be given consideration.  相似文献   

10.
Stimulation of hepatocytes by the tumor promoter phorbol 12-myristate 13-acetate (PMA) caused translocation of cytosolic Ca2+/phospholipid-dependent protein kinase C (PK-C). The major part of PK-C activity (greater than 80%) was associated with the membrane fraction after 30 min. During the following 6 h protein kinase C activity decreased to less than 10%. Minor amounts of Ca2+/phospholipid-independent PK-C activity were found in the cytosol fraction at all times; they temporarily increased 2.5-fold with PMA and decreased after 1 h. Cyclosporin A did not affect the translocation of PK-C from the cytoplasm to the membrane fraction, but the decrease of PK-C activity following translocation was blocked. No marked increase of Ca2+/phospholipid-independent PK-C activity was observed in the cytosol in the presence of cyclosporin A. Leupeptin, which is known to inhibit Ca2+-requiring non-lysosomal proteinases (e.g. calpain), showed an effect similar to cyclosporin A. Both agents reduced proteolytic degradation of cellular proteins observed in isolated hepatocytes after PMA treatment. Ca2+-ionophore A23187 in high doses (greater than 10(5) M) partly reversed cyclosporin A and leupeptin action.  相似文献   

11.
A Ca2+-dependent protease I), which hydrolyzes casein at Ca2+ concentrations lower than the 10(-5) M range, is purified roughly 4000-fold from the soluble fraction of rat brain. This protease is able to activate Ca2+-activated, phospholipid-dependent protein kinase (protein kinase C) by limited proteolysis analogously to the previously known Ca2+-dependent analogously to the previously known Ca2+-dependent protease (Ca2+ protease II) which is active at the millimolar range of Ca2+ (Inoue, M., Kishimoto, A., Takai, Y., and Nishizuka, Y. (1977) J. Biol. Chem. 252, 7610-7616). The protein kinase fragment thus produced shows a molecular weight of about 5.1 X 10(4), and is significantly smaller than native protein kinase C (Mr = 7.7 X 10(4). Although protein kinase C may be normally activated in a reversible manner by the simultaneous presence of phospholipid and diacylglycerol at Ca2+ concentrations less than 10(-6) M, this enzyme fragment is fully active without any lipid fractions and independent of Ca2+. The limited proteolysis of protein kinase C is markedly enhanced in the velocity by the addition of phospholipid and diacylglycerol, which are both required for the reversible activation of the enzyme. However, casein hydrolysis by this protease is not affected by phospholipid and diacylglycerol. Available evidence suggests that, at lower concentrations of this divalent cation, Ca2+ protease I reacts preferentially with the active form of protein kinase C which is associated with membrane, and converts it to the permanently active form. In contrast, the inactive form of protein kinase C, which is free of membrane phospholipid, does not appear to be very susceptible to the proteolytic attack. It remains unknown, however, whether this mechanism of irreversible activation of protein kinase C does operate in physiological processes. It is noted that Ca2+ protease II, which is active at higher concentrations of Ca2+, proteolytically activates protein kinase C irrespective of the presence and absence of phospholipid and diacylglycerol.  相似文献   

12.
A phospholipid-sensitive Ca2+-dependent protein kinase was purified to homogeneity, for the first time, from extracts of pig spleen, employing the steps of DEAE-cellulose, octyl-agarose, Sephacryl S-200 and phosphatidylserine-Affigel 10 affinity chromatographies. The purified enzyme appeared as a single protein band on both analytical (non-denaturing) and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, having a minimum mol.wt. of 68 000 +/- 200. The molecular weight of the enzyme was also determined to be 74 500 +/- 4600 by gel filtration and 80 000 based on its sedimentation coefficient (5.52 S) and Stokes radius (3.52 +/- 0.09 nm), indicating that the enzyme was a monomeric protein. The frictional ratio (f/f0) of the enzyme was 1.24, indicating it was non-globular in shape. The enzyme had a pI of 5.3, and a pH optimum of 6.5 for its reaction. Amino acid analysis indicated that the enzyme apparently was not similar to myosin light-chain kinase (a calmodulin-sensitive species of Ca2+-dependent protein kinase) or cyclic AMP-dependent and cyclic GMP-dependent protein kinases. The enzyme had an apparent Km for ATP of 7.5 microns. Histone H1 and myelin basic protein were effective substrates for the enzyme, with apparent Km values of 0.3 and 0.2 microns, and Vmax, values of 0.06 and 0.09 mumol/min per mg of enzyme respectively. The enzyme activity was dependent on both phosphatidylserine (apparent Ka = 6.25 micrograms/ml) and Ca2+ (apparent Ka = 160 microns). Calmodulin was unable to substitute for the phospholipid as a cofactor, nor was it a subunit of the enzyme. Sr2+ and Ba2+ could partially mimic Ca2+ to activate the enzyme in the presence of phosphatidylserine. An endogenous substrate protein (mol.wt. 41 000) for the enzyme was found in the total, solubilized fraction of pig spleen. Monoclonal antibodies against the enzyme interacted similarly with the homogeneous and impure enzyme; the antibodies, however, did not bind to cyclic nucleotide-dependent protein kinases.  相似文献   

13.
Sarcomplasmic reticulum from rabbit fast skeletal muscle contains intrinsic protein kinase activity (ATP:protein phosphotransferase, EC 2.7.1.37) and a substrate. The protein kinase activity was Mg2+ dependent and could also phosphorylate exogenous protein substrates. Autophosphorylation of sarcoplasmic reticulum vesicles was not stimulated by cyclic AMP, neither was it inhibited by the heat-stable protein kinase inhibitor protein. The phosphorylated membranes had the characteristics of a protein with a phosphoester bond. An average of 73 pmol Pi/mg protein were incorporated in 10 min at 30 degrees C. Addition of exogenous cyclic AMP-dependent protein kinase increased the endogenous level of phosphorylation by 25-100%. Sarcoplasmic reticulum membrane phosphorylation, mediated by either endogenous cyclic AMP-independent or exogenous cyclic AMP-dependent protein kinase, occurred on a 100 000 dalton protein and both enzyme activities resulted in enhanced calcium uptake and Ca2+-dependent ATPase (ATP phosphohydrolase, EC 3.6.1.3), in a manner similar to cardiac microsomal preparations. Regulation of Ca2+ transport in skeletal sarcoplasmic reticulum may be mediated by phosphorylation of a 100 000 dalton component of these membranes.  相似文献   

14.
Intrinsic protein phosphorylation was studied in synaptosomal membrane fragments made from cerebral cortex tissue taken from the following species: human (biopsy specimens), ox, rat, rabbit, guinea pig and mouse. Membrane fragments from all species exhibited a qualitatively similar range of protein acceptors phosphorylated by cyclic AMP-dependent protein kinase activity; contrary to a previous report, no evidence for cyclic GMP-dependent protein kinase activity was found in the human material. With the exception of membrane fragments prepared from ox brain, all the preparations exhibited the same range of Ca2+-dependent protein kinase activity. Ox brain obtained from a slaughterhouse yielded membranes containing no Ca2+-dependent protein kinase activity, but this may have been due to unavoidable postmortem losses.  相似文献   

15.
Secretory granules isolated from anterior pituitary glands were examined for Ca2+/phospholipid-dependent protein kinase (protein kinase C) activity as well as the occurrence of granule-associated substrate proteins. Sheep adenohypophyses were fractionated by differential and sucrose-density-gradient centrifugation to yield a granule fraction enriched for luteinizing-hormone (lutropin)-containing secretory granules. Marker-enzyme analysis showed no detectable cytosolic contamination, although there were small amounts of plasma membranes (2-4%) and lysosomes (4-6%) associated with the preparation. As determined by histone-H1 phosphorylation after DEAE-cellulose DE-52 chromatography, protein kinase C activity with a marked dependence on Ca2+ and lipid (4-fold increase in their presence) was evident in the secretory-granule fraction. Phosphorylation in vitro of the secretory-granule fraction by endogenous and exogenous protein kinase C revealed a protein of Mr 36,000, which by two-dimensional SDS/polyacrylamide-gel electrophoresis showed multiple sites of phosphorylation. The Mr-36,000 protein was not found in cytosolic or plasma-membrane fractions and was not phosphorylated by the catalytic subunit of cyclic AMP-dependent protein kinase. Several secretory-granule proteins served as substrates for the catalytic subunit, the most prominent of which were of Mr 63,000, 23,000 and 21,000. From these data, we suggest that phosphorylation of secretory-granule-associated proteins by protein kinase C and by cyclic AMP-dependent protein kinase may be important in secretion regulation in the anterior pituitary gland.  相似文献   

16.
Calcium-accumulating vesicles were isolated by differential centrifugation of sonicated platelets. Such vesicles exhibit a (Ca2+ + Mg2+)-ATPase activity of about 10 nmol (min . mg)-1 and an ATP-dependent Ca2+ uptake of about 10 nmol (min . mg)-1. When incubated in the presence of Mg[gamma-32P]ATP, the pump is phosphorylated and the acyl phosphate bond is sensitive to hydroxylamine. The [32P]phosphate-labeled Ca2+ pump exhibits a subunit molecular weight of 120 000 when analyzed by lithium dodecyl sulfate-polyacrylamide gel electrophoresis. Platelet calcium-accumulating vesicles contain a 23 kDa membrane protein that is phosphorylatable by the catalytic subunit of cAMP-dependent protein kinase but not by protein kinase C. This phosphate acceptor is not phosphorylated when the vesicles are incubated in the presence of either Ca2+ or Ca2+ plus calmodulin. The latter protein is bound to the vesicles and represents 0.5% of the proteins present in the membrane fraction. Binding of 125I-labeled calmodulin to this membrane fraction was of high affinity (16 nM), and the use of an overlay technique revealed four major calmodulin-binding proteins in the platelet cytosol (Mr = 94 000, 87 000, 60 000 and 43 000). Some minor calmodulin-binding proteins were enriched in the membrane fractions (Mr = 69 000, 57 000, 39 000 and 37 000). When the vesicles are phosphorylated in the presence of MgATP and of the catalytic subunit of cAMP-dependent protein kinase, the rate of Ca2+ uptake is essentially unaltered, while the Ca2+ capacity is diminished as a consequence of a doubling in the rate of Ca2+ efflux. Therefore, the inhibitory effect of cAMP on platelet function cannot be explained in such simple terms as an increased rate of Ca2+ removal from the cytosol. Calmodulin, on the other hand, was observed to have no effect on the initial rate of calcium efflux when added either in the absence or in the presence of the catalytic subunit of the cyclic AMP-dependent protein kinase, nor did the addition of 0.5 microM calmodulin result in increased levels of vesicle phosphorylation.  相似文献   

17.
A Morgan  M Wilkinson    R D Burgoyne 《The EMBO journal》1993,12(10):3747-3752
Digitonin-permeabilized chromaffin cells secrete catecholamines by exocytosis in response to micromolar Ca2+ concentrations, but lose the ability to secrete in response to Ca2+ as the cells lose soluble proteins through the plasma membrane pores. We have previously shown [Morgan and Burgoyne (1992) Nature, 355, 833-836] that cytosol can retard this loss of secretory competence and that two distinct stimulatory activities (Exo1 and Exo2) are present in cytosol. Here we report that Exo2 behaved as a single peak of activity through purification on hydroxyapatite, ammonium sulfate precipitation and gel filtration and the activity correlated with a single polypeptide of approximately 44 kDa on SDS gels. Protein sequencing of this band revealed it to be the catalytic subunit of cyclic AMP-dependent protein kinase (PKA). Both cyclic AMP and the commercially available catalytic subunit of PKA stimulated exocytosis in a dose-dependent manner which was absolutely dependent on the presence of micromolar Ca2+. These data show that PKA (Exo2) regulates Ca(2+)-dependent exocytosis in bovine adrenal chromaffin cells.  相似文献   

18.
In mammalian systems, Ca2+/diacylglycerol-activated phospholipid-dependent protein kinase (C-kinase) appears to play an important role in regulating physiological responses that outlast the transient rise in cytosolic Ca2+. Electrophysiological experiments in neurons of the nudibranch mollusc, Hermissenda crassicornis, have suggested a role for C-kinase in the long-lasting reductions in early and late K+ currents that have been observed following associative learning. Accordingly, we have investigated the catalytic properties of C-kinase in Hermissenda CNS. Following homogenization in Ca2+-free buffer, C-kinase can be separated from Ca2+/calmodulin-dependent protein kinase by centrifugation; C-kinase activity is found in the supernatant whereas essentially all of the Ca2+/calmodulin-dependent protein kinase is found in the membrane fraction. Addition of Ca2+, phosphatidylserine, and diacylglycerol to the cytosol results in phosphorylation of at least eight endogenous proteins. The Hermissenda CNS C-kinase can also phosphorylate lysine-rich histone, a substrate for mammalian C-kinase. The molluscan enzyme exhibits phospholipid specificity in that phosphatidylserine is much more effective than phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol, and phosphatidic acid. Addition of diacylglycerol, in the presence of Ca2+ and phosphatidylserine, increases the activity of the C-kinase. The percentage of activation by diacylglycerol is larger at lower Ca2+ concentrations. Enzyme activity is inhibited by trifluoperazine and polymixin B sulfate. These studies indicate that the Hermissenda C-kinase is catalytically similar to mammalian C-kinase.  相似文献   

19.
We previously reported that the activity of the (Ca2+ + Mg2+)-dependent adenosine triphosphatase (ATPase) of the human erythrocyte membrane is inhibited by micromolar or nanomolar concentrations of cyclic AMP. Our further studies have now indicated that the inhibition of (Ca2+ + Mg2+)-dependent phosphohydrolase activity requires the participation of a membrane-associated cyclic AMP-dependent protein kinase and a membrane-associated protein substrate that is distinct from the ATPase itself. We have furthermore, identified a 20 kDa membrane protein which undergoes phosphorylation that is promoted by micromolar, but not millimolar, concentrations of cyclic AMP and which, when phosphorylated, undergoes dephosphorylation that is promoted by Ca2+. We suggest that this membrane component can participate in the modulation of the activity of the (Ca2+ + Mg2+)-dependent ATPase of the human erythrocyte.  相似文献   

20.
Many cytoplasmic proteins, including Ca2+- and phospholipid-dependent protein kinase (protein kinase C) of polymorphonuclear leukocytes (PMNs) associate in Ca2+-dependent manner with phospholipid liposomes containing cardiolipin (CL), as in the case of phosphatidylserine (PS)-containing liposomes. A crude protein kinase C fraction was purified by association of the enzyme with CL-containing liposomes (flotation method). The partially purified protein kinase C from rat brain or guinea pig PMN was activated by the CL-containing liposomes in the presence of dioleoylglycerol (DG) and Ca2+. This activation was analogous to that of PS. The half maximum activity was obtained with 20 microM CL in the presence of 1 microM Ca2+ and 5 microM DG. Many of the cytoplasmic proteins which associate with CL-containing liposomes were preferentially phosphorylated by membrane-associated protein kinase C in the presence of DG and Ca2+. These results suggest that the association of cytoplasmic protein kinase C with the membrane has an important role in regulation of protein kinase C activity in relation to the association of other cytoplasmic proteins to the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号