首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
We examined the effects of ATP on intrinsic pump activity in lymph vessels isolated from the rat. ATP caused significant dilation with a cessation of lymphatic pump activity. Removal of the endothelium or pretreatment with Nomega-nitro-L-arginine methyl ester (L-NAME) significantly reduced ATP-induced inhibitory responses of lymphatic pump activity, whereas reduction was not suppressed completely by 10(-6) M ATP. L-arginine significantly restored ATP-induced inhibitory responses in the presence of L-NAME. ATP-induced inhibitory responses in lymph vessels with endothelium were also significantly, but not completely, suppressed by pretreatment with glibenclamide. 8-Cyclopentyl-1,3-dipropylxanthine (a selective adenosine A1 receptor antagonist), but not suramine (a P2X and P2Y receptor antagonist) or 3,7-dimethyl-1-proparglyxanthine (a selective adenosine A2 receptor antagonist), significantly decreased ATP-induced inhibitory responses. alpha,beta-methylene ATP (a selective P2X and P2Y receptor agonist) had no significant effect on lymphatic pump activity. In some lymph vessels with endothelium (24 of 30 preparations), adenosine also caused dose-dependent dilation with a cessation of lymphatic pump activity. L-NAME significantly reduced the inhibitory responses induced by the lower (3 x 10(-8)-3 x 10(-7) M) concentrations of adenosine. Glibenclamide or 8-cyclopentyl-1,3-dipropylxanthine also significantly suppressed adenosine-induced inhibitory responses. These findings suggest that ATP-induced dilation and inhibition of pump activity of isolated rat lymph vessels are endothelium-dependent and -independent responses. ATP-mediated inhibitory responses may be, in part, related to production of endogenous nitric oxide, involvement of ATP-sensitive K+ channels, or activation of adenosine A1 receptors in lymphatic smooth muscle and endothelium.  相似文献   

2.
肾动脉内注射腺苷兴奋肾神经传入纤维的自发活动   总被引:1,自引:0,他引:1  
Ma HJ  Ma HJ  Liu YX  Wang QS 《生理学报》2004,56(2):192-197
应用记录肾神经传入纤维多单位和单位放电的方法,观察肾动脉内注射腺苷对麻醉家兔肾神经传入纤维自发放电活动的影响。结果表明:(1)肾动脉内注射50,100和200nmol/kg腺苷可呈剂量依赖性地兴奋肾神经传入纤维的活动,而动脉血压不变。(2)肾动脉内预先应用选择性腺苷A1受体阻断剂DPCPX(160nmol/kg),可部分阻断腺苷对肾神经传入纤维的兴奋作用。(3)静脉应用一氧化氮合酶抑制剂L-NAME(0.1mmol/kg)预处理,延长并增强了肾神经传入纤维对腺苷的反应。以上结果提示,肾动脉内应用腺苷可兴奋肾传入纤维的自发放电活动,一氧化氮作为抑制性因素参与腺苷诱导的肾神经传入纤维兴奋。  相似文献   

3.
Membrane transport pathways for transcellular secretion of urate across the proximal tubule were investigated in avian kidney. The presence of coupled urate/alpha-ketoglutarate exchange was investigated in basolateral membrane vesicles (BLMV) by [(14)C]urate and [alpha-(3)H]ketoglutarate flux measurements. An inward Na gradient induced accumulation of alpha-ketoglutarate of sufficient magnitude to suggest a Na-dicarboxylate cotransporter. An inward Na gradient also induced concentrative accumulation of urate in the presence of alpha-ketoglutarate but not in its absence, suggesting urate/alpha-ketoglutarate exchange. alpha-Ketoglutarate-dependent stimulation of urate uptake was not observed in brush-border membrane vesicles. An outward urate gradient induced concentrative accumulation of alpha-ketoglutarate. alpha-Ketoglutarate-coupled urate uptake was specific for alpha-ketoglutarate, Cl dependent, and insensitive to membrane potential. alpha-Ketoglutarate-coupled urate uptake was inhibited by increasing p-aminohippurate (PAH) concentrations, and alpha-ketoglutarate-coupled PAH uptake was observed. alpha-Ketoglutarate-coupled PAH uptake was inhibited by increasing urate concentrations, and an outward urate gradient induced concentrative accumulation of PAH. These results suggest a Cl-dependent, alpha-ketoglutarate-coupled anion exchange mechanism as a pathway for active urate uptake across the basolateral membrane of urate-secreting proximal tubule cells.  相似文献   

4.
The effects of phorbol esters and diacylglycerol on phosphate uptake in opossum kidney (OK) cells were investigated to assess the possible role of Ca2+-activated, phospholipid dependent protein kinase (protein kinase C) on renal phosphate handling. OK cells are widely used as a model of proximal renal tubular cells and are reported to possess a Na+-dependent phosphate transport system. Phorbol-12,13-dibutyrate (PDBu) inhibited phosphate uptake. This inhibitory effect was synergistically enhanced with A23187. 4 beta-phorbol 12,13-didecanoate inhibited phosphate uptake, while 4 alpha-phorbol 12,13-didecanoate did not. 1-oleoyl-2-acetyl-glycerol (OAG), a synthetic diacylglycerol, also exhibited an inhibitory effect on phosphate uptake. These data suggest the possible involvement of protein kinase C in proximal renal tubular phosphate transport.  相似文献   

5.
Wu SK  Mathias NR  Kim KJ  Lee VH 《Life sciences》2005,78(3):310-320
The role of basolateral membrane nucleoside transport in primary cultured rabbit tracheal epithelial cells (RTEC) was studied. Primary cultured RTEC were grown on permeable support at an air-interface. Transport studies were conducted in the uptake, efflux, and transepithelial transport configurations using (3)H-uridine as a model substrate. Time, temperature and concentration dependency of (3)H-uridine transport were evaluated in parallel to the metabolism of this substrate using scintillation counting and thin layer chromatography. Inhibition of (3)H-uridine uptake from basolateral fluid was estimated in presence of all unlabeled natural nucleosides as well as analogs and nucleobases. Functional modulation pathways of (3)H-uridine uptake were studied after treatment of RTEC with pharmacological levels of A23187, forskolin, tamoxifen, H89 and colchicine. The basolateral aspect has a low-affinity and high-capacity transport system that exhibits characteristics of bi-directionality, temperature/concentration dependency, and broad specificity towards purines and pyrimidines without requiring Na(+). Basolateral equilibrative-sensitive/insensitive (es/ei) type transport machinery manifested as a biphasic dose response to nitro-benzyl-mercapto-purine-ribose (NBMPR) inhibition. In addition, a number of therapeutically relevant nucleoside analogs appeared to compete with the uptake of uridine from basolateral fluid. Short-term pre-incubation of primary cultured RTEC with the calcium ionophore A23187 inhibited basolateral uridine uptake without affecting the J(max) and K(m). The inhibitory effect was not reversible with a protein kinase C (PKC) antagonist, tamoxifen. In contrast, basolateral uridine uptake was increased by adenylyl cyclase activator forskolin (reversible with protein kinase A (PKA) inhibitor H89), resulting in a decreased K(m), but a lower J(max). Uridine exit across the basolateral membrane of primary cultured RTEC occurs via a facilitative diffusion carrier, which can be modulated by intracellular Ca(2+) levels and PKA. Information about these carriers will help improve the transportability of antitumor and antiviral nucleoside analogs in the pulmonary setting.  相似文献   

6.
The effects of selective adenosine receptor agonists [N6-cyclopentyladenosine (CPA) and N-ethylcarboxamidoadenosine (NECA)] and antagonists [8-cyclopentyl-1,3-dipropylxanthine (DPCPX) and 9-chloro-2-(2-furanyl)-5,6-dihydro-1,2,4-triazolo[1,5-c]quinazoline-5-im ine (CGS-15943A)] on aspartate and glutamate release from the ischemic rat cerebral cortex were studied with the cortical cup technique. Cerebral ischemia (for 20 min) was elicited by four-vessel occlusion. Excitatory amino acid releases were compared from control ischemic rats and drug-treated rats. Basal levels of aspartate and glutamate release were not greatly affected by pretreatment with the adenosine receptor agonists or antagonists. However, CPA (10(-10) M) and NECA (10(-9) M) significantly inhibited the ischemia-evoked release of aspartate and glutamate into cortical superfusates. The ability to block ischemia-evoked release of excitatory amino acids was not evident at higher concentrations of CPA (10(-6) M) or NECA (10(-5) M). The selective A1 receptor antagonist DPCPX also had no effect on release when administered at a low dosage (0.01 mg/kg, i.p.) but blocked the ischemia-evoked release of aspartate and glutamate at a higher dosage (0.1 mg/kg). Evoked release was inhibited by the selective A2 receptor antagonist CGS-15943A (0.1 mg/kg, i.p.). Thus, adenosine and its analogs may suppress ischemia-evoked release of excitatory neurotransmitter amino acids via high-affinity A1 receptors, whereas coactivation of lower-affinity A2 receptors may block (or reverse) the A1-mediated response.  相似文献   

7.
Piperonyl butoxide has been shown to reduce accumulation of cephaloridine in rabbit renal cortex; however, the mechanism responsible for this effect remains unclear. Cephaloridine is a zwitterion and its accumulation in renal cortex has been suggested to be regulated by both organic anion and cation transport systems. Thus, it was of interest to determine the effect of piperonyl butoxide on renal transport of p-aminohippurate (PAH, an organic anion) and tetraethylammonium (TEA, an organic cation). Although pretreatment with piperonyl butoxide markedly inhibited renal cortical uptake of cephaloridine, the same treatment had less inhibitory effect on either PAH or TEA uptake. Efflux of PAH from preloaded renal cortical slices was enhanced by pretreatment with piperonyl butoxide; however, TEA efflux was unaffected. Thus, piperonyl butoxide appears to have effects on renal membrane functions which result in differential effects on PAH, TEA, and cephaloridine transport.  相似文献   

8.
Organic anions are secreted into urine via organic anion transporters across the renal basolateral and apical membranes. However, no apical membrane transporter for organic anions such as p-aminohippuric acid (PAH) has yet been identified. In the present study, we showed that human NPT1, which is present in renal apical membrane, mediates the transport of PAH. The K(m) value for PAH uptake was 2.66 mM and the uptake was chloride ion sensitive. These results are compatible with those reported for the classical organic anion transport system at the renal apical membrane. PAH transport was inhibited by various anionic compounds. Human NPT1 also accepted uric acid, benzylpenicillin, faropenem, and estradiol-17beta-glucuronide as substrates. Considering its chloride ion sensitivity, Npt1 is expected to function for secretion of PAH from renal proximal tubular cells. This is the first molecular demonstration of an organic anion transport function for PAH at the renal apical membrane.  相似文献   

9.
在 5 3只麻醉Sprague Dawley大鼠观察了最后区内微量注射腺苷 (1ng/ 6 0nl)对平均动脉压 (MAP)、心率(HR)和肾交感神经放电 (RSNA)的影响。实验结果如下 :(1)最后区内微量注射Ado后 ,MAP、HR和RSNA分别由13 76± 0 46kPa、35 6 2 8± 4 2 5bpm和 10 0± 0 %下降至 11 2 3± 0 49kPa (P <0 0 0 1)、336 91± 5 2 3bpm (P <0 0 1)和70 95± 5 19% (P <0 0 0 1) ;(2 )静脉注射非选择性腺苷受体拮抗剂 8 苯茶碱 (8 phenyltheophylline,15 0 μg/kg ,0 2ml)和选择性腺苷A1受体拮抗剂 (8 cyclopentyl 1,3 dipropylxanthine,5 0 0 μg /kg ,0 2ml)后 ,腺苷的上述抑制效应可被完全阻断 ;(3)静脉注射ATP敏感性钾通道阻断剂格列苯脲 (5mg/kg ,0 2ml)后 ,腺苷的上述效应也被消除。以上结果提示 ,最后区微量注射腺苷对血压、心率和肾交感神经放电有抑制作用 ,此作用与A1受体介导的ATP敏感性钾通道开放有关。  相似文献   

10.
最后区注射腺苷对大鼠血压,心率和肾交感神经放电影响   总被引:1,自引:0,他引:1  
Chen S  Li DP  He RR 《生理学报》2000,52(4):313-317
The effects of microinjection of adenosine (Ado) into area postrema (AP) on mean arterial pressure (MAP), heart rate (HR) and renal sympathetic nerve activity (RSNA) were examined in 53 anesthetized Sprague Dawley rats. The results obtained are as follows. (1) Following microinjection of Ado (1 ng/60 nl) into AP, MAP, HR and RSNA were decreased from 13.76+/-0.46 kPa, 356.28+/-4.25 bpm and 100+/-0% to 11.23+/-0.49 kPa (P<0.001), 336.91+/-5.23 bpm (P<0.01) and 70.95+/-5.19% (P<0.001), respectively; (2) 8-phenyltheophylline (150 microgram/kg, 0.2 ml,iv), a nonselective adenosine receptor antagonist, and 8-cyclopentyl-1,3-dipropylxanthine (500 microgram/kg, 0.2 ml, iv), a selective A(1) adenosine receptor antagonist, blocked the inhibitory effect of Ado completely; and (3) glibenclamide (5 mg/kg, 0.2 ml, iv), a blocker of ATP-sensitive potassium channel, also abolished the effect of Ado. The above results indicate that microinjection of Ado into AP induces inhibitory effects on MAP, HR and RSNA, which may be related to activation of ATP-sensitive potassium channels mediated by A(1) receptors.  相似文献   

11.
Abstract: In rat cerebral cortical slices, the 1-aminocyclopentyl-1 S ,3 R -dicarboxylate (1 S ,3 R -ACPD) isomer of the selective metabotropic excitatory amino acid agonist ACPD inhibited forskolin-stimulated cyclic AMP (cAMP) accumulation in a concentration-dependent manner with a maximal inhibition of 51 ± 3% and a half-maximally effective concentration of 8.8 ± 3.4 μ M . Similarly, 1 R ,3 S -ACPD inhibited the forskolin response in a concentration-dependent manner, but with an inhibition of 80 ± 5% at 3 μ M . In addition to inhibiting forskolin-stimulated cAMP levels, 1 S ,3 R -ACPD, but not 1 R ,3 S -ACPD, enhanced the cAMP response to A2b adenosine receptor activation. In the presence of 1.2 U/ml of adenosine deaminase (included to reduce the contribution of endogenous adenosine), the efficacy of 1 S ,3 R -ACPD was increased (88 ± 3% inhibition), but the potency was unchanged. The adenosine receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine also increased the inhibitory effect of 100 μ M 1 S ,3 R -ACPD, from 57 ± 1 to 78 ± 5%. These results indicate that endogenous adenosine plays an important role in regulating the apparent efficacy of 1 S ,3 R -ACPD inhibition of forskolin-stimulated cAMP accumulation in rat cerebral cortical slices and that previous studies in rat hippocampus and hypothalamus in the absence of added adenosine deaminase may have underestimated the efficacy of this compound.  相似文献   

12.
Chen S  He RR 《生理学报》1998,50(6):629-635
在28只切断双侧缓冲神经的Sprague-Dawley大鼠,应用细胞外记录方法,观察了72个自发放电单位中颈动脉注射腺苷对延髓腹外侧头端(RVLM)区神经元自发放电活动的影响。所得结果如下:(1)颈动脉注射腺苷(25μg/kg),31个单位的放电频率由23.5±3.0下降至(16.5±2.6)spikes/s(P<0.001),血压和心率无明显变化(P>0.05);(2)在24个单位中,应用非选择性腺苷受体拮抗剂8-苯茶碱(8-phenyltheophylline,15μg/kg)和选择性腺苷A1受体持抗剂8-环戊-1,3-二丙基黄嘌呤(8-cyclopentyl-1,3-dipropylxanthine,50μg/kg)均可完全阻断腺苷的抑制效应;(3)在应用ATP敏感性钾通道阻断剂格列苯脲(500μg/kg)的12个单位中,腺苷的上述效应亦被消除。以上结果提示,腺苷对RVLM区神经元自发放电有抑制作用,而此作用与A1受体介导的ATP敏感性钾通道开放有关。  相似文献   

13.
Compelling clinical evidence implicates the potential role of adenosine in development of airway hyperresponsiveness and suggests involvement of pulmonary sensory receptors. This study was carried out to determine the effect of a low dose of adenosine infusion on sensitivity of pulmonary C-fiber afferents in anesthetized open-chest rats. Infusion of adenosine (40 microg x kg-1x min-1 i.v. for 90 s) mildly elevated baseline activity of pulmonary C fibers. However, during adenosine infusion, pulmonary C-fiber responses to chemical stimulants and lung inflation (30 cmH2O tracheal pressure) were markedly potentiated; e.g., the response to right atrial injection of capsaicin (0.25 or 0.5 microg/kg) was increased by more than fivefold (change in fiber activity = 2.64 +/- 0.67 and 16.27 +/- 3.11 impulses/s at control and during adenosine infusion, n = 13, P < 0.05), and this enhanced response returned to control in approximately 10 min. The potentiating effect of adenosine infusion was completely blocked by pretreatment with 8-cyclopentyl-1,3-dipropylxanthine (100 microg/kg), a selective antagonist of the adenosine A1 receptor, but was not affected by 3,7-dimethyl-1-propargylxanthine (1 mg/kg), an A2-receptor antagonist, or 3-ethyl-5-benzyl-2-methyl-4-phenylethynyl-6-phenyl-1,4-(+/-)-dihydropyridine-3,5-dicarboxylate (2 mg/kg), an A3-receptor antagonist. This potentiating effect was also mimicked by N6-cyclopentyladenosine (0.25 microg x kg-1 x min-1 for 90 s), a selective agonist of the adenosine A1 receptor. In conclusion, our results showed that infusion of adenosine significantly elevated the sensitivity of pulmonary C-fiber afferents in rat lungs and that this potentiating effect is likely mediated through activation of the adenosine A1 receptor.  相似文献   

14.
Liver X receptors (LXRs) play an important role in the regulation of cholesterol by regulating several transporters. In this study, we investigated the role of LXRs in the regulation of human organic anion transporter 1 (hOAT1), a major transporter localized in the basolateral membrane of the renal proximal tubule. Exposure of renal S2 cells expressing hOAT1 to LXR agonists (TO901317 and GW3965) and their endogenous ligand [22(R)-hydroxycholesterol] led to the inhibition of hOAT1-mediated [(14)C]PAH uptake. This inhibition was abolished by coincubation of the above agonists with 22(S)-hydroxycholesterol, an LXR antagonist. Moreover, it was found that the effect of LXR agonists was not mediated by changes in intracellular cholesterol levels. Interestingly, the inhibitory effect of LXRs was enhanced in the presence of 9-cis retinoic acid, a retinoic X receptor agonist. Kinetic analysis revealed that LXR activation decreased the maximum rate of PAH transport (J(max)) but had no effect on the affinity of the transporter (K(t)). This result correlated well with data from Western blot analysis, which showed the decrease in hOAT1 expression following LXR activation. Similarly, TO901317 inhibited [(14)C]PAH uptake by the renal cortical slices as well as decreasing mOAT1 protein expression in mouse kidney. Our findings indicated for the first time that hOAT1 was downregulated by LXR activation in the renal proximal tubule.  相似文献   

15.
Adult amphibian skin actively transports Na+ from its apical to basolateral side while in turn, K+ is recycled through Na+, K+-ATPase and K+ channels located in the basolateral membrane. We previously found that PRL stimulates Na+ transport in the skin of the adult tree frog (Hyla arborea japonica) via an increase in the open-channel density of the epithelial Na+ channel (ENaC). If PRL also activates basolateral K+ channels, this activation would help to stimulate Na+ transport, too. Whether PRL does indeed stimulate basolateral K+ channels in the adult tree frog was examined by measuring the short-circuit current across nystatin-treated skin. Both tolbutamide, a K(ATP) channel blocker, and tetrapentylammonium (TPA), a KCa channel blocker, blocked the current, the effect of TPA being more powerful than that of tolbutamide. Contrary to expectation, PRL inhibited the basolateral K+ channels in this skin. In the presence of basolateral amiloride, PRL still inhibited the basolateral K+ current, suggesting that the (Na+)-H+ exchanger located in the basolateral membrane does not mediate the inhibitory effect of PRL on the basolateral K+ channels in Hyla.  相似文献   

16.
Sun L  Li DL  Zhao M  He X  Yu XJ  Miao Y  Wang H  Ren J  Zang WJ 《PloS one》2011,6(11):e25618
Adenosine, a catabolite of ATP, displays a wide variety of effects in the heart including regulation of cardiac response to myocardial ischemia and reperfusion injury. Nonetheless, the precise mechanism of adenosine-induced cardioprotection is still elusive. Isolated Sprague-Dawley rat hearts underwent 30 min global ischemia and 120 min reperfusion using a Langendorff apparatus. Both adenosine and acetylcholine treatment recovered the post-reperfusion cardiac function associated with adenosine and muscarinic receptors activation. Simultaneous administration of adenosine and acetylcholine failed to exert any additive protective effect, suggesting a shared mechanism between the two. Our data further revealed a cross-talk between the adenosine and acetylcholine receptor signaling in reperfused rat hearts. Interestingly, the selective M(2) muscarinic acetylcholine receptor antagonist methoctramine significantly attenuated the cardioprotective effect of adenosine. In addition, treatment with adenosine upregulated the expression and the maximal binding capacity of muscarinic acetylcholine receptor, which were inhibited by the selective A(1) adenosine receptor antagonist 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX) and the nitric oxide synthase inhibitor N(ω)-nitro-L-arginine methyl ester (L-NAME). These data suggested a possible functional coupling between the adenosine and muscarinic receptors behind the observed cardioprotection. Furthermore, nitric oxide was found involved in triggering the response to each of the two receptor agonist. In summary, there may be a cross-talk between the adenosine and muscarinic receptors in ischemic/reperfused myocardium with nitric oxide synthase might serve as the distal converging point. In addition, adenosine contributes to the invigorating effect of adenosine on muscarinic receptor thereby prompting to regulation of cardiac function. These findings argue for a potentially novel mechanism behind the adenosine-mediated cardioprotection.  相似文献   

17.
Stevioside, a non-caloric sweetening agent, is used as a sugar substitute. An influence of stevioside on renal function has been suggested, but little is known about its effect on tubular function. Therefore, the present study was designed to explore the direct effect of stevioside on transepithelial transport of p-aminohippurate (PAH) in isolated S2 segments of rabbit proximal renal tubules using in vitro microperfusion. Addition of stevioside at a concentration of 0.45 mM to either the tubular lumen, bathing medium, or both at the same time had no effect on transepithelial transport of PAH. Similarly, a concentration of 0.70 mM (maximum solubility in the buffer) when present in the lumen, had no effect on PAH transport. However, this concentration in the bathing medium inhibited PAH transport significantly by about 25-35%. The inhibitory effect of stevioside was gradually abolished after it was removed from the bath. Addition of 0.70 mM stevioside to both lumen and bathing medium at the same time produced no added inhibitory effect. Stevioside at this concentration has no effect on Na+/K+-ATPase activity as well as cell ATP content. These findings suggest that stevioside, at a pharmacological concentration of 0.70 mM, inhibits transepithelial transport of PAH by interfering with the basolateral entry step, the rate-limiting step for transepithelial transport. The lack of effect of stevioside on transepithelial transport of PAH on the luminal side and its reversible inhibitory effect on the basolateral side indicate that stevioside does not permanently change PAH transport and should not harm renal tubular function at normal human intake levels.  相似文献   

18.
To examine the effect of adenosine A(3) receptor stimulation on airway mucociliary clearance, we measured transport of Evans blue dye in rabbit trachea in vivo and ciliary motility of epithelium by the photoelectric method in vitro. Mucociliary transport was enhanced dose dependently by the selective A(3) agonist N(6)-(3-iodobenzyl)-5'-N-methylcarbamoyladenosine (IB-MECA) and to a lesser extent by the less-selective N(6)-2-(4-amino-3-iodophenyl)ethyladenosine, whereas the A(1) agonist N-cyclopentyladenosine (CPA) and the A(2) agonist CGS-21680 had no effect. The effect of IB-MECA was abolished by pretreatment with the selective A(3) antagonist MRS-1220 but not by the A(1) antagonist 1,3-dipropyly-8-cyclopentylxanthine or the A(2) antagonist 3,7-dimethyl-L-propargylxanthine. Epithelial ciliary beat frequency was increased by IB-MECA in a concentration-dependent manner, the maximal increase being 33%, and this effect was inhibited by MRS-1220. The IB-MECA-induced ciliary stimulation was not altered by the Rp diastereomer of cAMP but was greatly inhibited by Ca(2+)-free medium containing BAPTA-AM. Incubation with IB-MECA increased intracellular Ca(2+) contents. Therefore, A(3) agonist enhances airway mucociliary clearance probably through Ca(2+)-mediated stimulation of ciliary motility of airway epithelium.  相似文献   

19.
Summary Taurine transport was measured in cultured epithelial cells-LLC-PK1 and MDCK-grown on permeable membrane supports. Taurine transport by LLC-PK1 cells was greater on the apical surface compared to the basolateral surface. MDCK cells exhibited greater taurine uptake from the basolateral side. Transepithelial taurine flux was in the direction of apical to basolateral in the LLC-PK1 monolayers. There was no net transepithelial movement of taurine in the MDCK monolayers. Efflux of taurine from the apical and the basolateral membrane surfaces of LLC-PK1 cell monolayers was stimulated by external-alanine but not L-alanine. Efflux of taurine from MDCK cell monolayers was stimulated by-alanine on the basolateral surface. While the competitive inhibitor guainidinoeithane sulfonate (GES) competitively inhibited taurine uptake to a similar degree on the apical and basolateral surface of LLC-PK1 cell monolayers, GES had a more potent inhibitory effect on the basolateral taurine uptake in MDCK cells when compared to its inhibition of apical taurine transport. We conclude that there are characteristic differences in transport of taurine by apical and basolateral surfaces of LLC-PK1 and MDCK cells which may be the consequence of asymmetric distribution or unique structural properties of the taurine transporter.Supported by a grant from the National Institutes of Health (DK 37223), the American Heart Association (92-004470).  相似文献   

20.
Konno T  Uchibori T  Nagai A  Kogi K  Nakahata N 《Life sciences》2007,80(12):1115-1122
Previously, we reported that a relatively selective adenosine A(2A) receptor agonist 2-(6-cyano-1-hexyn-1-yl)adenosine (2-CN-Ado) elicited ocular hypotension in rabbits (Journal of Pharmacological Sciences 2005;97:501-509). In the present study, we investigated the effect of 2-CN-Ado on ocular blood flow in rabbit eyes. An intravitreal injection of 2-CN-Ado increased ocular blood flow, measured by a non-contact laser flowmeter. 2-CN-Ado-induced increase in ocular blood flow was accompanied with the retinal vasodilation. The increase in ocular blood flow was inhibited by an adenosine A(2A) receptor antagonist 1,3,7-trimethyl-8-(3-chlorostyryl)xanthine, but not by an adenosine A(2B) receptor antagonist alloxazine or an adenosine A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine. The repetitive applications of topical 2-CN-Ado twice a day for 7 days produced a persistent increase in ocular blood flow with ocular hypotension. These results suggest that 2-CN-Ado increases the ocular blood flow mainly via adenosine A(2A) receptor, and that the topical application of 2-CN-Ado for several days not only increases the ocular blood flow but also prolong ocular hypotension, indicating that 2-CN-Ado may be a useful lead compound for the treatment of ischemic retinal diseases such as glaucoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号