首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A spontaneous rice mutant named floral organ number 3 (fon3) had major mutations in floral organ numbers. Genetic analysis indicated that fort3 acted as a single recessive gene. Microscopic observation showed that the number of floral organs infon3 increased centripetally. For example, the number of pistils was the more frequently increased than organs in the outer whorls. Homeotic conversion of lodicules and glumes into palea/lemma-like organs was observed in some flowers. Scanning electron microscopy observation showed that the size of flower meristems was maintained the same or similar until the lemma primordium started to differentiate, at which time the floral meristem became enlarged, suggesting abnormal development of the inner whorls of rice florets. The relationship of fort3 with other similar rice mutants is discussed.  相似文献   

2.
3.
4.
Recent studies have shown that molecular control of inner floral organ identity appears to be largely conserved between monocots and dicots, but little is known regarding the molecular mechanism underlying development of the monocot outer floral organ, a unique floral structure in grasses. In this study, we report the cloning of the rice EXTRA GLUME1 ( EG1 ) gene, a putative lipase gene that specifies empty-glume fate and floral meristem determinacy. In addition to affecting the identity and number of empty glumes, mutations in EG1 caused ectopic floral organs to be formed at each organ whorl or in extra ectopic whorls. Iterative glume-like structures or new floral organ primordia were formed in the presumptive region of the carpel, resulting in an indeterminate floral meristem. EG1 is expressed strongly in inflorescence primordia and weakly in developing floral primordia. We also found that the floral meristem and organ identity gene OsLHS1 showed altered expression with respect to both pattern and levels in the eg1 mutant, and is probably responsible for the pleiotropic floral defects in eg1 . As a putative class III lipase that functionally differs from any known plant lipase, EG1 reveals a novel pathway that regulates rice empty-glume fate and spikelet development.  相似文献   

5.
细胞分裂素对拟南芥(Arab idopsis thal iana)花分生组织细胞的分裂和分化具有重要作用。本研究利用APETALA1(AP1)特异启动子在花分生组织和第1、2轮花器官中表达细胞分裂素合成酶(isopentyl trans ferase, IPT)基因IPT4, 研究细胞分裂素对花和花器官发育的影响。在pAP1::IPT4转基因植株中出现了花密集和花器官数目增多等现象。原位杂交和GUS组织染色结果发现, 在pAP1::IPT4转基因植株中, 花分生组织特征决定基因LEAFY (LFY)与花器官特征决定基因AP1、PISTILLATA (PI )和AGAMOUS (AG)的表达量均有不同程度的提高。研究结果表明在拟南芥中表达pAP1::IPT4影响其花和花器官的正常发育。  相似文献   

6.
The functions of two rice MADS-box genes were studied by the loss-of-function approach. The first gene, OsMADS4, shows a significant homology to members in the PISTILLATA (PI) family, which is required to specify petal and stamen identity. The second gene, OsMADS3, is highly homologous to the members in the AGAMOUS (AG) family that is essential for the normal development of the internal two whorls, the stamen and carpel, of the flower. These two rice MADS box cDNA clones were connected to the maize ubiquitin promoter in an antisense orientation and the fusion molecules were introduced to rice plants by the Agrobacterium-mediated transformation method. Transgenic plants expressing antisense OsMADS4 displayed alterations of the second and third whorls. The second-whorl lodicules, which are equivalent to the petals of dicot plants in grasses, were altered into palea/lemma-like organs, and the third whorl stamens were changed to carpel-like organs. Loss-of-function analysis of OsMADS3 showed alterations in the third and fourth whorls. In the third whorl, the filaments of the transgenic plants were changed into thick and fleshy bodies, similar to lodicules. Rather than making a carpel, the fourth whorl produced several abnormal flowers. These phenotypes are similar to those of the agamous and plena mutants in Arabidopsis and Antirrhinum, respectively. These results suggest that OsMADS4 belongs to the class B gene family and OsMADS3 belongs to the class C gene family of floral organ identity determination.  相似文献   

7.
Flowers of an alloplasmic male-sterile tobacco line, comprised of the nuclear genome of Nicotiana tabacum and the cytoplasm of Nicotiana repanda, develop short, poorly-pigmented petals and abnormal sterile stamens that often are fused with the carpel wall. The development of flower organ primordia and establishment of boundaries between the different zones in the floral meristem were investigated by performing expression analysis of the tobacco orthologs of the organ identity genes GLO, AG and DEF. These studies support the conclusion that boundary formation was impaired between the organs produced in whorls 3 and 4 resulting in partial fusions between anthers and carpels. According to the investigations cell divisions and floral meristem size in the alloplasmic line were drastically reduced in comparison with the male-fertile tobacco line. The reduction in cell divisions leads to a discrepancy between cell number and cell determination at the stage when petal and stamen primordia should be initiated. At the same stage expression of the homeotic genes was delayed in comparison with the male-fertile line. However, the abnormal organ development was not due to a failure in the spatial expression of the organ identity genes. Instead the aberrant development in the floral organs of whorls 2, 3 and 4 appears to be caused by deficient floral meristem development at an earlier stage. Furthermore, defects in cell proliferation in the floral meristem of the alloplasmic male-sterile line correlates with presence of morphologically modified mitochondria. The putative causes of reduced cell number in the floral meristem and the consequences for floral development are discussed.  相似文献   

8.
Organ number per whorl was analysed in aberrant flowers of the long-day (LD) plant , Silene coeli-rosa , to test a hypothesis that organ number in a whorl takes its cue from an adjacent outer whorl and that perturbed organ number per whorl is not random but defaults to that of closely related taxa or genera of the Caryophyllaceae. When plants were grown under short-days (SD), transferred to LD and the shoot meristem excised and cultured in vitro under SD, the normal pattern of flower development was often disrupted. For example, we observed flowers which comprised floral whorls with an aberrant number of floral organs. In part, this was an effect of tissue culture; however, the over-and-above effect was the establishment of an alternative pattern of development. Our data indicate that two distinct and recurrent patterns occurred in the aberrant flowers we observed in five separate experiments. First, pairs of floral whorls were linked so that aberration in one whorl resulted in the next whorl being more aberrant than normal. Second, the number of organs in aberrant whorls was not random, but defaulted to an organ number which mimicked the flowers of closely related species of Silene or related genera in the Caryophyllaceae.  © 2002 The Linnean Society of London , Botanical Journal of the Linnean Society , 2002, 140 , 229−235.  相似文献   

9.
细胞分裂素对拟南芥(Arabidopsis thaliana)花分生组织细胞的分裂和分化具有重要作用。本研究利用APETALA1(AP1)特异启动子在花分生组织和第1、2轮花器官中表达细胞分裂素合成酶(isopentyl transferase,IPT)基因IPT4,研究细胞分裂素对花和花器官发育的影响。在pAP1∷IPT4转基因植株中出现了花密集和花器官数目增多等现象。原位杂交和GUS组织染色结果发现,在pAP1∷IPT4转基因植株中,花分生组织特征决定基因LEAFY(LFY)与花器官特征决定基因AP1、PISTILLATA(PI)和AGAMOUS(AG)的表达量均有不同程度的提高。研究结果表明在拟南芥中表达pAP1∷IPT4影响其花和花器官的正常发育。  相似文献   

10.
报道了新发现的一种矮牵牛(Petunia hybrida L.)花发育突变体,命名为efficient(eff),并对这一突变体进行了形态学和遗传学分析。eff突变体主要表现为雌蕊心皮数目的增加和雄蕊上长出花瓣状结构,同时,雄蕊、花瓣和萼片数亦有增多,但营养器官无变化。心皮数目的增加导致雌蕊柱头和子房体积的显著增大,并形成较大的果实。雄蕊上花瓣的形成对花粉的产生无明显影响。扫描电镜观察发现,eff突变体在花器官原基形成时发生了相应数目的增加及特征的变化。遗传学分析表明,突变的表现型符合孟德尔单基因遗传规律。  相似文献   

11.
12.
13.
We have characterized the tomato (Lycopersicon esculentum Mill.) MADS box gene TM29 that shared a high amino acid sequence homology to the Arabidopsis SEP1, 2, and 3 (SEPALLATA1, 2, and 3) genes. TM29 showed similar expression profiles to SEP1, with accumulation of mRNA in the primordia of all four whorls of floral organs. In addition, TM29 mRNA was detected in inflorescence and vegetative meristems. To understand TM29 function, we produced transgenic tomato plants in which TM29 expression was down-regulated by either cosuppression or antisense techniques. These transgenic plants produced aberrant flowers with morphogenetic alterations in the organs of the inner three whorls. Petals and stamens were green rather than yellow, suggesting a partial conversion to a sepalloid identity. Stamens and ovaries were infertile, with the later developing into parthenocarpic fruit. Ectopic shoots with partially developed leaves and secondary flowers emerged from the fruit. These shoots resembled the primary transgenic flowers and continued to produce parthenocarpic fruit and additional ectopic shoots. Based on the temporal and spatial expression pattern and transgenic phenotypes, we propose that TM29 functions in floral organ development, fruit development, and maintenance of floral meristem identity in tomato.  相似文献   

14.
15.
The tomato MADS box gene no. 5 (TM5) is shown here to be expressed in meristematic domains fated to form the three inner whorls-petals, stamens, and gynoecia-of the tomato flower. TM5 is also expressed during organogenesis and in the respective mature organs of these three whorls. This is unlike the major organ identity genes of the MADS box family from Antirrhinum and Arabidopsis, which function in overlapping primordial territories consisting of only two floral whorls each. The developmental relevance of the unique expression pattern of this putative homeotic gene was examined in transgenic plants. In agreement with the expression patterns, antisense RNA of the TM5 gene conferred both early and late alterations of morphogenetic markers. Early defects consist of additional whorls or of a wrong number of organs per whorl. Late, organ-specific changes include evergreen, cauline, and unabscised petals; green, dialytic, and sterile anthers; and sterile carpels and defective styles on which glandular trichomes characteristic of sepals and petals are ectopically formed. However, a complete homeotic transformation of either organ was not observed. The early and late floral phenotypes of TM5 antisense plants suggest that TM5 mediates two unrelated secondary regulatory systems. One system is the early function of the floral meristem identity genes, and the other system is the function of the major floral organ identity genes.  相似文献   

16.
17.
Studies In model plants showed that SEPALLATA (SEP) genes are required for the Identification of floral organs and the determination of floral meristems In Arabidopsis. In this paper a SEP homolog, TrSEP3, was Isolated from a China-specific species, Taihangla rupestrisi Yü et LI. Phylogenetlc analysis showed that the gene belongs to the SEP3-clade of SEP (previous AGL2) subfamily. In situ hybridization was used to reveal the potential functional specification, and the results showed that TrSEP3 expression was first observed in floral meristems and then confined to the floral primordla of the three inner whorls. In the matured flower, TrSEP3 was strongly expressed In the tips of pistils and weak In stamens and petals. The evolution force analysis shows that TrSEP3 might undergo a relaxed negative selection. These results suggested that TrSEP3 may not only function In determining the identity of floral merlstems and the primordia of three inner whorls, but also function In matured reproductive organs.  相似文献   

18.
Mutations associated with floral organ number in rice   总被引:14,自引:0,他引:14  
How floral organ number is specified is an interesting subject and has been intensively studied in Arabidopsis thaliana. In rice (Oryza sativa L.), mutations associated with floral organ number have been identified. In three mutants of rice, floral organ number 1 (fon1) and the two alleles, floral organ number 2-1 (fon2-1) and floral organ number 2-2 (fon2-2), the floral organs were increased in number centripetally. Lodicules, homologous to petals, were rarely affected, and stamens were frequently increased from six to seven or eight. Of all the floral organs the number of pistils was the most frequently increased. Among the mutants, fon1 showed a different spectrum of organ number from fon2 -1 and fon2 -2. Lodicules were the most frequently affected in fon1, but pistils of more than half of fon1 flowers were unaffected; in contrast, the pistils of most flowers were increased in fon2 -1 and fon2-2. Homeotic conversion of organ identity was also detected at a low frequency in ectopically formed lodicules and stamens. Lodicules and stamens were partially converted into anthers and stigmas, respectively. Concomitant with the increased number of floral organs, each mutant had an enlarged apical meristem. Although meristem size was comparable among the three mutants and wild type in the early phase of flower development, a significant difference became apparent after the lemma primordium had differentiated. In these mutants, the size of the shoot apical meristem in the embryo and in the vegetative phase was not affected, and no phenotypic abnormalities were detected. These results do not coincide with those for Arabidopsis in which clavatal affects the sizes of both shoot and floral meristems, leading to abnormal phyllotaxis, inflorescence fasciation and increased floral organs. Accordingly, it is considered that FON1 and FON2 function exclusively in the regulation of the floral meristem, not of the vegetative meristem.Abbreviation DIC differential interference contrast This work was supported in part by Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Science and Culture of Japan.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号