首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Schwannomas are tumors arising mainly at cranial and spinal nerves. Bilateral vestibular schwannoma is the hallmark of neurofibromatosis type 2 (NF2). The NF2 gene has been cloned and comprehensive analysis of its mutations in schwannomas shows that up to 60% of tumors carry inactivating mutations. Thus, the genetic mechanism behind the development of more than 40% of schwannomas without NF2 mutations is unknown. We have therefore studied tumor tissue from 50 human schwannomas by allelotyping and have found chromosome 22 deletions in over 80% of the cases. We detected 14 cases (27%) that revealed partial deletions of one copy of chromosome 22, i.e., terminal and/or interstitial deletions. We sequenced the NF2 gene in seven of these tumors and detected only one case with mutations. The deletion mapping of chromosome 22 in tumors with partial deletions indicates that several regions, in addition to the NF2 locus, harbor genes involved in schwannoma tumorigenesis. Our findings suggest that heterogeneity in the mechanisms leading to the development of schwannomas probably exists. These findings are in agreement with the recent analysis of schwannomas from familial and sporadic cases of schwannomatosis and point to a possible role of an additional gene, which, in cooperation with the NF2 tumor suppressor, causes schwannomas. Received: 12 November 1998 / Accepted: 1 March 1999  相似文献   

2.

Background  

Schwannomatosis is a disease characterized by multiple non-vestibular schwannomas. Although biallelic NF2 mutations are found in schwannomas, no germ line event is detected in schwannomatosis patients. In contrast, germline mutations of the SMARCB1 (INI1) tumor suppressor gene were described in familial and sporadic schwannomatosis patients.  相似文献   

3.
Patients with multiple schwannomas without vestibular schwannomas have been postulated to compose a distinct subclass of neurofibromatosis (NF), termed "schwannomatosis." To compare the molecular-genetic basis of schwannomatosis with NF2, we examined the NF2 locus in 20 unrelated schwannomatosis patients and their affected relatives. Tumors from these patients frequently harbored typical truncating mutations of the NF2 gene and loss of heterozygosity of the surrounding region of chromosome 22. Surprisingly, unlike patients with NF2, no heterozygous NF2-gene changes were seen in normal tissues. Examination of multiple tumors from the same patient revealed that some schwannomatosis patients are somatic mosaics for NF2-gene changes. By contrast, other individuals, particularly those with a positive family history, appear to have an inherited predisposition to formation of tumors that carry somatic alterations of the NF2 gene. Further work is needed to define the pathogenetics of this unusual disease mechanism.  相似文献   

4.
Neurofibromatosis type 2 (NF2) is a tumour-prone disorder characterised by the development of multiple schwannomas and meningiomas. Prevalence (initially estimated at 1: 200,000) is around 1 in 60,000. Affected individuals inevitably develop schwannomas, typically affecting both vestibular nerves and leading to hearing loss and deafness. The majority of patients present with hearing loss, which is usually unilateral at onset and may be accompanied or preceded by tinnitus. Vestibular schwannomas may also cause dizziness or imbalance as a first symptom. Nausea, vomiting or true vertigo are rare symptoms, except in late-stage disease. The other main tumours are schwannomas of the other cranial, spinal and peripheral nerves; meningiomas both intracranial (including optic nerve meningiomas) and intraspinal, and some low-grade central nervous system malignancies (ependymomas). Ophthalmic features are also prominent and include reduced visual acuity and cataract. About 70% of NF2 patients have skin tumours (intracutaneous plaque-like lesions or more deep-seated subcutaneous nodular tumours). Neurofibromatosis type 2 is a dominantly inherited tumour predisposition syndrome caused by mutations in the NF2 gene on chromosome 22. More than 50% of patients represent new mutations and as many as one-third are mosaic for the underlying disease-causing mutation. Although truncating mutations (nonsense and frameshifts) are the most frequent germline event and cause the most severe disease, single and multiple exon deletions are common. A strategy for detection of the latter is vital for a sensitive analysis. Diagnosis is based on clinical and neuroimaging studies. Presymptomatic genetic testing is an integral part of the management of NF2 families. Prenatal diagnosis and pre-implantation genetic diagnosis is possible. The main differential diagnosis of NF2 is schwannomatosis. NF2 represents a difficult management problem with most patients facing substantial morbidity and reduced life expectancy. Surgery remains the focus of current management although watchful waiting with careful surveillance and occasionally radiation treatment have a role. Prognosis is adversely affected by early age at onset, a higher number of meningiomas and having a truncating mutation. In the future, the development of tailored drug therapies aimed at the genetic level are likely to provide huge improvements for this devastating condition.  相似文献   

5.
The neurofibromatosis type 2 (NF2) gene has been hypothesized to be a recessive tumor suppressor, with mutations at the same locus on chromosome 22 that lead to NF2 also leading to sporadic tumors of the types seen in NF2. Flanking markers for this gene have previously been defined as D22S1 centromeric and D22S28 telomeric. Identification of subregions of this interval that are consistently rearranged in the NF2-related tumors would aid in better defining the disease locus. To this end, we have compared tumor and constitutional DNAs, isolated from 39 unrelated patients with sporadic and NF2-associated acoustic neuromas, meningiomas, schwannomas, and ependymomas, at eight polymorphic loci on chromosome 22. Two of the tumors studied revealed loss-of-heterozygosity patterns, which is consistent with the presence of chromosome 22 terminal deletions. By using additional polymorphic markers, the terminal deletion breakpoint found in one of the tumors, an acoustic neuroma from an NF2 patient, was mapped within the previously defined NF2 region. The breakpoint occurred between the haplotyped markers D22S41/D22S46 and D22S56. This finding redefines the proximal flanking marker and localizes the NF2 gene between markers D22S41/D22S46 and D22S28. In addition, we identified a sporadic acoustic neuroma that reveals a loss-of-heterozygosity pattern consistent with mitotic recombination or deletion and reduplication, which are mechanisms not previously seen in studies of these tumors. This finding, while inconsistent with models of tumorigenesis that invoke single deletions and their gene-dosage effects, lends further support to the recessive tumor-suppressor model.  相似文献   

6.
7.
Patients with schwannomatosis develop multiple schwannomas but no vestibular schwannomas diagnostic of neurofibromatosis type 2. We report an inactivating germline mutation in exon 1 of the tumor-suppressor gene INI1 in a father and daughter who both had schwannomatosis. Inactivation of the wild-type INI1 allele, by a second mutation in exon 5 or by clear loss, was found in two of four investigated schwannomas from these patients. All four schwannomas displayed complete loss of nuclear INI1 protein expression in part of the cells. Although the exact oncogenetic mechanism in these schwannomas remains to be elucidated, our findings suggest that INI1 is the predisposing gene in familial schwannomatosis.  相似文献   

8.
9.
Malignant rhabdoid tumors are highly aggressive neoplasms found primarily in infants and young children. The majority of rhabdoid tumors arise as a result of homozygous inactivating deletions or mutations of the INI1 gene located in chromosome band 22q11.2. Germline mutations of INI1 predispose to the development of rhabdoid tumors of the brain, kidney and extra-renal tissues, consistent with its function as a tumor suppressor gene. We now describe five patients with germline deletions in chromosome band 22q11.2 that included the INI1 gene locus, leading to the development of rhabdoid tumors. Two patients had phenotypic findings that were suggestive but not diagnostic for DiGeorge/Velocardiofacial syndrome (DGS/VCFS). The other three infants had highly aggressive disease with multiple tumors at the time of presentation. The extent of the deletions was determined by fluorescence in situ hybridization and high-density oligonucleotide based single nucleotide polymorphism arrays. The deletions in the two patients with features of DGS/VCFS were distal to the region typically deleted in patients with this genetic disorder. The three infants with multiple primary tumors had smaller but overlapping deletions, primarily involving INI1. The data suggest that the mechanisms underlying the deletions in these patients may be similar to those that lead to DGS/VCFS, as they also appear to be mediated by related, low copy repeats (LCRs) in 22q11.2. These are the first reported cases in which an association has been established between recurrent, interstitial deletions mediated by LCRs in 22q11.2 and a predisposition to cancer. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Neurofibromatosis type 2 (NF2) is an autosomal dominant disorder that predisposes to the development of bilateral vestibular schwannomas (sometimes associated with schwannomas at other locations), meningiomas, and ependymomas. Point mutations that inactivate the NF2 tumor suppressor gene, located in 22q12, have been found in 45-85% of NF2 patients; in addition, large genomic deletions can be found. To evaluate the presence of genomic NF2 rearrangements, we have developed a fluorescent semiquantitative multiplex PCR method. Briefly, short fragments corresponding to the 17 exons, the promoter region, and the 3' end of the NF2 gene were co-amplified by PCR using dye primers. An additional fragment, corresponding to another gene used as an internal control, was systematically amplified in each multiplex PCR. Initially, we validated the method by using monosomic 22q and trisomic 22 samples. The fluorescent multiplex PCR method was then used to analyze 21 NF2 individuals in which single-strand conformational polymorphism (SSCP) analysis and/or direct sequencing had revealed no NF2 point mutations; we were able to detect two deletions and one duplication in NF2 in 3 patients. In conclusion, the method we developed could easily be applied in detecting NF2 deletions and duplications. Discovering genomic duplications is invaluable because they are probably the most difficult molecular alterations to detect with conventional methods and, as a consequence, might be an underestimated cause of NF2.  相似文献   

11.
The case of a seriously disabled and retarded female patient with neurofibromatosis type 2 (NF2) is reported. She suffered from bilateral vestibular schwannomas, multiple intracranial meningiomas and neurinomas. The constitutional karyotype of the patient was 46,XX, r(22)/45,XX,–22. A constitutional G to A transition in the proximal 3′ untranslated region of isoforms 1 and 2 was identified in the patient’s NF2 gene and shown not to affect differential splicing or mRNA stability. The instability of the ring chromosome 22 with the associated loss of tumor suppressor genes on chromosome 22, in particular the loss of the NF2 gene, are assumed to have caused multiple tumorigenesis in this patient Received: 7 February 1997 / Accepted: 26 February 1997  相似文献   

12.

Background

Different DNA aberrations processes can cause colorectal cancer (CRC). Herein, we conducted a comprehensive molecular characterization of 27 CRCs from Iranian patients.

Materials and Methods

Array CGH was performed. The MSI phenotype and the methylation status of 15 genes was established using MSP. The CGH data was compared to two established lists of 41 and 68 cancer genes, respectively, and to CGH data from African Americans. A maximum parsimony cladogram based on global aberrations was established.

Results

The number of aberrations seem to depend on the MSI status. MSI-H tumors displayed the lowest number of aberrations. MSP revealed that most markers were methylated, except RNF182 gene. P16 and MLH1 genes were primarily methylated in MSI-H tumors. Seven markers with moderate to high frequency of methylation (SYNE1, MMP2, CD109, EVL, RET, LGR and PTPRD) had very low levels of chromosomal aberrations. All chromosomes were targeted by aberrations with deletions more frequent than amplifications. The most amplified markers were CD248, ERCC6, ERGIC3, GNAS, MMP2, NF1, P2RX7, SFRS6, SLC29A1 and TBX22. Most deletions were noted for ADAM29, CHL1, CSMD3, FBXW7, GALNS, MMP2, NF1, PRKD1, SMAD4 and TP53. Aberrations targeting chromosome X were primarily amplifications in male patients and deletions in female patients. A finding similar to what we reported for African American CRC patients.

Conclusion

This first comprehensive analysis of CRC Iranian tumors reveals a high MSI rate. The MSI tumors displayed the lowest level of chromosomal aberrations but high frequency of methylation. The MSI-L were predominantly targeted with chromosomal instability in a way similar to the MSS tumors. The global chromosomal aberration profiles showed many similarities with other populations but also differences that might allow a better understanding of CRC''s clinico-pathological specifics in this population.  相似文献   

13.
The autosomal dominant syndrome neurofibromatosis type 2 (NF2) is characterized by the development of bilateral vestibular schwannomas, meningiomas, ependymomas and gliomas. The NF2 gene, recently isolated from chromosome 22, is mutated in both sporadic and NF2 tumors such as schwannomas, meningiomas and ependymomas. Mutations of the gene have been described not only in the neoplasms usually associated with NF2, but also in 30% of the melanomas and 41% of the mesotheliomas analyzed. In particular, the finding of mutations in melanomas supports the hypothesis that the NF2 gene is involved in the genesis of several tumor types that arise from the embryonic neural crest. In this study we examined, by single-strand conformation polymorphism (SSCP) analysis, 41 tumors of the central nervous system (11 schwannomas and 30 gliomas), 19 melanomas and 15 Merkel cell carcinoma specimens for mutations in the coding sequence of the NF2 gene. We found three inactivating mutations of the NF2 gene in schwannomas. No alterations of the gene were detected by SSCP analysis of the other tumors. These results confirm the role of NF2 in pathogenesis of schwannomas, but do not define its significance in the genesis of the other neuroectodermal tumors studied. Received: 27 July 1995 / Revised: 11 September 1995  相似文献   

14.
Deletions in 17q11.2 affecting the NF1 gene and surrounding regions occur in 5% of patients with NF1. The two major types of NF1 deletions encompass 1.4-Mb and 1.2-Mb, respectively, and have breakpoints in the NF1 low-copy repeats or in the JJAZ gene and its pseudogene. Deletions larger than 1.4-Mb are rare, and only seven cases have been reported so far. Here, we describe a 26-year-old NF1 patient with an atypical NF1 deletion of 2-Mb. In contrast to the 1.4-Mb deletions, which preferentially occur by interchromosomal recombination during maternal meiosis, the deletion described here occurred intrachromosomally on the paternal chromosome. The centromeric deletion breakpoint lies in an L1-element located 1.3-Mb proximal to the NF1 gene. The telomeric deletion boundary is located in a single copy segment between an AT-rich segment and an AluSx-element in intron 15 of the JJAZ1 gene. Structural analysis implies that non-B DNA conformations at the breakpoints destabilized the duplex DNA and caused double-strand breaks. Although the breakpoints of this 2-Mb deletion are not recurrent, it is conspicuous that one breakpoint is located in the JJAZ1 gene. Paralogous recombination between the JJAZ1 gene and its pseudogene causes the recurrent 1.2 Mb deletions. The genomic architecture of the NF1 gene region, influenced by paralogous sequences such as the JJAZ1 gene and its pseudogene, seems also to stimulate the occurrence of non-recurrent deletions mediated by non-homologous end joining. Patient 442 described here suffers from a very high burden of subdermal neurofibromas. Magnetic resonance imaging of the whole body revealed numerous internal tumors, mainly plexiform neurofibromas and spinal tumors. This demonstrates the value of whole-body MRI scanning in determining the total tumor load, which is an important aspect in genotype/phenotype correlations with regard to large NF1 deletions.  相似文献   

15.
Lee JD  Kwon TJ  Kim UK  Lee WS 《PloS one》2012,7(1):e30418

Background

Mutations in the neurofibromatosis type 2 (NF2) tumor-suppressor gene have been identified in not only NF2-related tumors but also sporadic vestibular schwannomas (VS). This study investigated the genetic and epigenetic alterations in tumors and blood from 30 Korean patients with sporadic VS and correlated these alterations with tumor behavior.

Methodology/Principal Findings

NF2 gene mutations were detected using PCR and direct DNA sequencing and three highly polymorphic microsatellite DNA markers were used to assess the loss of heterozygosity (LOH) from chromosome 22. Aberrant hypermethylation of the CpG island of the NF2 gene was also analyzed. The tumor size, the clinical growth index, and the proliferative activity assessed using the Ki-67 labeling index were evaluated. We found 18 mutations in 16 cases of 30 schwannomas (53%). The mutations included eight frameshift mutations, seven nonsense mutations, one in-frame deletion, one splicing donor site, and one missense mutation. Nine patients (30%) showed allelic loss. No patient had aberrant hypermethylation of the NF2 gene and correlation between NF2 genetic alterations and tumor behavior was not observed in this study.

Conclusions/Significance

The molecular genetic changes in sporadic VS identified here included mutations and allelic loss, but no aberrant hypermethylation of the NF2 gene was detected. In addition, no clear genotype/phenotype correlation was identified. Therefore, it is likely that other factors contribute to tumor formation and growth.  相似文献   

16.
Neurofibromatosis type 2 (NF2) is an autosomal dominant syndrome characterized by the development of vestibular schwannomas and other tumors of the nervous system, including cranial and spinal meningiomas, schwannomas, and ependymomas. The presence of bilateral vestibular schwannomas is sufficient for the diagnosis. Skin manifestations are less common than in neurofibromatosis type 1 (NF1; von Recklinghausen disease). The apparent clinical distinction between NF1 and NF2 has been confirmed at the level of the gene locus by linkage studies; the gene for NF1 maps to chromosome 17, whereas the gene for NF2 has been assigned (in a single family) to chromosome 22. To increase the precision of the genetic mapping of NF2 and to determine whether additional susceptibility loci exist, we have performed linkage analysis on 12 families with NF2 by using four polymorphic markers from chromosome 22 and a marker at the NF1 locus on chromosome 17. Our results confirm the assignment of the gene for NF2 to chromosome 22 and do not support the hypothesis of genetic heterogeneity. We believe that chromosome 22 markers can now be used for presymptomatic diagnosis in selected families. The NF2 gene is tightly linked to the D22S32 locus (maximum lod score 4.12; recombination fraction 0). A CA-repeat polymorphism at the CRYB2 locus was the most informative marker in our families (lod score 5.99), but because the observed recombination fraction between NF2 and CRYB2 was 10 cM, predictions using this marker will need to be interpreted with caution.  相似文献   

17.
Neurofibromatosis 2 (NF2) is an autosomal inherited disorder that predisposes carriers to nervous system tumors. To examine genotype-phenotype correlations in NF2, we performed mutation analyses and gadolinium-enhanced magnetic resonance imaging of the head and full spine in 59 unrelated NF2 patients. In patients with vestibular schwannomas (VSs) or identified NF2 mutations, the mild phenotype was defined as <2 other intracranial tumors and ≤ 4 spinal tumors, and the severe phenotype as either ≥ 2 other intracranial tumors or > 4 spinal tumors. Nineteen mutations were found in 20 (34%) of the patients and were distributed in 12 of the 17 exons of the NF2 gene, including intron-exon boundaries. Seven mutations were frameshift, six were nonsense, four were splice site, two were missense, and one was a 3-bp in frame deletion. The nonsense mutations included one codon 57 and two codon 262 C→T transitions in CpG dinucleotides. The frameshift and nonsense NF2 mutations occurred primarily in patients with severe phenotypes. The two missense mutations occurred in patients with mild phenotypes, and three of the four splice site mutations occurred in families with both mild and severe phenotypes. Truncating NF2 mutations are usually associated with severe phenotypes, but the association of some mutations with mild and severe phenotypes indicates that NF2 expression is influenced by stochastic, epigenetic, or environmental factors. Received: 4 July 1996  相似文献   

18.
Neurofibromatosis type 2 (NF2) is a genetic autosomal-dominant disorder characterized by multiple benign tumors of the nervous system. Bilateral vestibular schwannomas, known as acoustic neuromas, are the hallmark of NF2 and can be found in more than 90% of patients, causing progressive hearing loss and not infrequently leading to deafness. Spinal tumors (schwannoma, meningioma and ependymoma) develop with similarly high frequency among NF2 patients, while approximately only 1/3 of these lead to neurological symptoms. Cranial non-vestibular schwannomas and meningiomas are also frequent in NF2 patients. The clinical spectrum of NF2 further includes ophthalmological lesions and polyneuropathy. With a birth incidence of around 1 in 25,000, the genetic cause for NF2 is the heterozygous inactivation of the NF2 tumor suppressor gene on 22q. More than half (50%–80%) of NF2 patients are found to bear de novo mutations which are frequently present in a mosaic fashion (25%–30%). This review presents clinical and genetic aspects of NF2, as well as recent developments in its pharmacological treatment.  相似文献   

19.
Genomic rearrangements involving the peripheral myelin protein gene (PMP22) in human chromosome 17p12 are associated with neuropathy: duplications cause Charcot-Marie-Tooth disease type 1A (CMT1A), whereas deletions lead to hereditary neuropathy with liability to pressure palsies (HNPP). Our previous studies showed that >99% of these rearrangements are recurrent and mediated by nonallelic homologous recombination (NAHR). Rare copy number variations (CNVs) generated by nonrecurrent rearrangements also exist in 17p12, but their underlying mechanisms are not well understood. We investigated 21 subjects with rare CNVs associated with CMT1A or HNPP by oligonucleotide-based comparative genomic hybridization microarrays and breakpoint sequence analyses, and we identified 17 unique CNVs, including two genomic deletions, ten genomic duplications, two complex rearrangements, and three small exonic deletions. Each of these CNVs includes either the entire PMP22 gene, or exon(s) only, or ultraconserved potential regulatory sequences upstream of PMP22, further supporting the contention that PMP22 is the critical gene mediating the neuropathy phenotypes associated with 17p12 rearrangements. Breakpoint sequence analysis reveals that, different from the predominant NAHR mechanism in recurrent rearrangement, various molecular mechanisms, including nonhomologous end joining, Alu-Alu-mediated recombination, and replication-based mechanisms (e.g., FoSTeS and/or MMBIR), can generate nonrecurrent 17p12 rearrangements associated with neuropathy. We document a multitude of ways in which gene function can be altered by CNVs. Given the characteristics, including small size, structural complexity, and location outside of coding regions, of selected rare CNVs, their identification remains a challenge for genome analysis. Rare CNVs may potentially represent an important portion of “missing heritability” for human diseases.  相似文献   

20.

Purpose

Patients with neurofibromatosis 1 (NF1), NF2, and schwannomatosis are at risk for multiple nerve sheath tumors and premature mortality. Traditional magnetic resonance imaging (MRI) has limited ability to assess disease burden accurately. The aim of this study was to establish an international cohort of patients with quantified whole-body internal tumor burden and to correlate tumor burden with clinical features of disease.

Methods

We determined the number, volume, and distribution of internal nerve sheath tumors in patients using whole-body MRI (WBMRI) and three-dimensional computerized volumetry. We quantified the distribution of tumor volume across body regions and used unsupervised cluster analysis to group patients based on tumor distribution. We correlated the presence and volume of internal tumors with disease-related and demographic factors.

Results

WBMRI identified 1286 tumors in 145/247 patients (59%). Schwannomatosis patients had the highest prevalence of tumors (P = 0.03), but NF1 patients had the highest median tumor volume (P = 0.02). Tumor volume was unevenly distributed across body regions with overrepresentation of the head/neck and pelvis. Risk factors for internal nerve sheath tumors included decreasing numbers of café-au-lait macules in NF1 patients (P = 0.003) and history of skeletal abnormalities in NF2 patients (P = 0.09). Risk factors for higher tumor volume included female gender (P = 0.05) and increasing subcutaneous neurofibromas (P = 0.03) in NF1 patients, absence of cutaneous schwannomas in NF2 patients (P = 0.06), and increasing age in schwannomatosis patients (p = 0.10).

Conclusion

WBMRI provides a comprehensive phenotype of neurofibromatosis patients, identifies distinct anatomic subgroups, and provides the basis for investigating molecular biomarkers that correlate with unique disease manifestations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号