首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Artemisia annua L. (Qinghao) is a promising and potent antimalarial herbal drug. This activity has been ascribed to its component artemisinin, a sesquiterpene lactone that is very effective against drug-resistant Plasmodium species with a low toxicity. Our studies indicate that several flavonoids of A. annua can promote and enhance the reaction of artemisinin with hemin. These data are in good agreement with previous investigations on the in vitro potentiation of antimalarial activity of artemisinin by such flavonoids. As a consequence, in view of a possible use of the phytocomplex rather than pure artemisinin, an HPLC/DAD/MS method is proposed for the simultaneous detection and quantification of both flavonoids and artemisinin. Different extracts, obtained from two different herbal drugs, a commercial sample and a selected cultivar, were analyzed in order to determine which solvents provide the best yields of both artemisinin and flavonoids. Qualitative and quantitative results obtained using an HPLC method are described, which will be useful for developing highly effective herbal drug preparations.  相似文献   

2.
Artemisinin (Qinghaosu) is a natural constituent found in Artemisia annua L, which is an effective drug against chloroquine-resistant Plasmodium falciparum strains and cerebral malaria. The antimalarial activities of artemisinin and its analogues appear to be mediated by the interactions of the drugs with hemin. In order to understand the antimalarial mechanism and the relationship between the physicochemical properties and the antimalarial activities of artemisinin analogues, we performed molecular docking simulations to probe the interactions of these analogues with hemin, and then performed three-dimensional quantitative structure-activity relationship (3-D-QSAR) studies on the basis of the docking models employing comparative molecular force fields analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). Molecular docking simulations generated probable 'bioactive' conformations of artemisinin analogues and provided a new insight into the antimalarial mechanism. The subsequent partial least squares (PLS) analysis indicates that the calculate binding energies correlate well with the experimental activity values. The CoMFA and CoMSIA models based on the bioactive conformations proved to have good predictive ability and in turn match well with the docking result, which further testified the reliability of the docking model. Combining these results, that is molecular docking and 3-D-QSAR, together, the binding model and activity of new synthesized artemisinin derivatives were well explained.  相似文献   

3.
Artemisinin is a novel effective antimalarial drug extracted from the medicinal plant Artemisia annua L. Owing to the tight market and low yield of artemisinin, there is great interest in enhancing the production of artemisinin. In the present study, farnesyi diphosphate synthase (FPS) was overexpressed in high-yield A. annua to Increase the artemisinin content. The FPS activity in transgenic A. ennue was twoto threefold greater than that In non-transgenic A. annua. The highest artemisinin content in transgenic A. annua was approximately 0.9% (dry weight), which was 34.4% higher than that in non-transgenic A. annua. The results demonstrate the regulatory role of FPS in artemisinin biosynthesis.  相似文献   

4.
The fungal and bacterial transformation of terpenoids derived from plant essential oils, especially the sesquiterpenoid artemisinin from Artemisia annua, has produced several new candidate drugs for the treatment of malaria. Obtaining new derivatives of terpenoids, including artemisinin derivatives with increased antimalarial activity, is an important goal of research in microbial biotechnology and medicinal chemistry.  相似文献   

5.
青蒿倍半萜合酶(环化酶)研究进展   总被引:1,自引:0,他引:1  
青蒿素是从中药青蒿中分离得到的抗疟有效单体,是含有过氧基团的新型倍半萜内酯化合物,是目前世界上最有效的疟疾治疗药物。青蒿素的生物合成途径属于类异戊二烯代谢途径中的倍半萜类分支途径,倍半萜合酶是该途径的关键酶之一,目前已从青蒿中克隆了多个倍半萜合酶基因。综述了青蒿中已克隆的几种倍半萜合酶基因的研究进展。  相似文献   

6.
中药青蒿的生态生理及其综合利用   总被引:23,自引:0,他引:23  
中药青蒿即黄花蒿(Artemisia annua L.)是抗疟药的原料,青蒿素是其有效抗疟成分。本文对青蒿的生物学特性、资源分布、生长栽培和生理生态进行了分析,指出了提高青蒿素含量的可能途径及其综合利用的前景。  相似文献   

7.
Current status of artemisinin and its derivatives as antimalarial drugs   总被引:21,自引:0,他引:21  
Artemisinin is a promising and a potent antimalarial drug, which meets the dual challenge posed by drug-resistant parasites and rapid progression of malarial illness. This review article focuses on the progress achieved during the last years in the production of artemisinin from Artemisia annua. The structure, biosynthesis and analysis of artemisinin and its mode of action are described. The review also focuses on clinical studies, toxicity studies, pharmacokinetics and activity of artemisinin related compounds. The production strategies including organic synthesis, extraction from plants, in vitro cultures and alternative strategies for enhancing the yields are also discussed.  相似文献   

8.
Hairy root cultures of diploid Artemisia annua L. (clone YUT16) grow rapidly and produce the antimalarial sesquiterpene artemisinin. Little is known about how polyploidy affects the growth of transformed hairy roots and the production of secondary metabolites. Using colchicine, we produced four stable tetraploid clones of A. annua L. from the YUT16 hairy root clone. Analysis showed major differences in growth and artemisinin production compared to the diploid clone. Tetraploid clones produced up to six times more artemisinin than the diploid parent. This study provides an initial step in increasing our understanding of the role of polyploidy in secondary metabolite production, especially in hairy roots.  相似文献   

9.
For more than three centuries we have relied on the extracts of the bark of Cinchona species to treat malaria. Now, it seems we may be changing to the leaves of a Chinese weed, Artemisia annua, and its active compound artemisinin. Artemisinin-derived drugs have been proved particularly effective treatments for severe malaria, even for multi-drug-resistant malaria. However, this promising antimalarial compound remains expensive and is hardly available on a global scale. Therefore, many research groups have directed their investigations toward the enhancement of artemisinin production in A. annua cell cultures or whole plants in order to overproduce artemisinin or one of its precursors. This article provides a brief review of the state of art of the different aspects in A. annua research.  相似文献   

10.
疟疾是一种严重危害人类健康的流行病,主要由疟原虫经蚊虫叮咬引起。目前,在临床上疟原虫对治疗疟疾的药物(如氯奎等)有较强的耐药性,并表现出明显的交叉耐药性。来自黄花蒿的青蒿素具有极其明显的抗疟活性,成为临床首选的药物,因此青蒿素的获取成为关键。本研究采用无载体固定化法培养黄花蒿生产青蒿素,初步研究了无载体固定化细胞的生长特性。检测发现,利用该方法生产的青蒿素是常规细胞培养法的9倍,因此该方法有望成为青蒿素生产的首选方法。  相似文献   

11.
The endoperoxide sesquiterpene lactone artemisinin and its derivatives are a promising new group of drugs against malaria. Artemisinin is a constituent of the annual herb Artemisia annua L. So far only the later steps in artemisinin biosynthesis--from artemisinic acid--have been elucidated and the expected olefinic sesquiterpene intermediate has never been demonstrated. In pentane extracts of A. annua leaves we detected a sesquiterpene with the mass spectrum of amorpha-4,11-diene. Synthesis of amorpha-4,11-diene from artemisinic acid confirmed the identity. In addition we identified several sesquiterpene synthases of which one of the major activities catalysed the formation of amorpha-4,11-diene from farnesyl diphosphate. This enzyme was partially purified and shows the typical characteristics of sesquiterpene synthases, such as a broad pH optimum around 6.5-7.0, a molecular mass of 56 kDa, and a K(m) of 0.6 microM. The structure and configuration of amorpha-4,11-diene, its low content in A. annua and the high activity of amorpha-4,11-diene synthase all support that amorpha-4,11-diene is the likely olefinic sesquiterpene intermediate in the biosynthesis of artemisinin.  相似文献   

12.
青蒿素对蔬菜种子发芽和幼苗生长的化感效应   总被引:3,自引:0,他引:3  
白祯  黄玥  黄建国 《生态学报》2013,33(23):7576-7582
试验以菜豆、豇豆、大白菜和小白菜为对象,用不同浓度的青蒿素浸种,研究了黄花蒿产生的化感物质??青蒿素对蔬菜种子发芽及幼苗生长的影响。结果表明,青蒿素对蔬菜种子发芽和幼苗生长的化感作用表现出浓度效应和品种差异,即浓度越高,抑制作用愈强,尤以豇豆种子发芽率和小白菜生长的表现最为明显,前者的发芽率可降低75.00%,后者的苗高降幅高达88.37%,且胚根停止生长。青蒿素抑制同季和后季作物的种子发芽和幼苗生长,有利于扩大黄花蒿的生存空间,增强生存竞争优势。在黄花蒿?蔬菜种植体系中,选择抗化感作用较强的大白菜和菜豆可提高土地利用率和整体生产水平。用青蒿素浸种后,蔬菜幼苗的根系活力降低,菜豆和豇豆叶绿素含量提高,而大、小白菜降低,均可视为妨碍生长的生理原因。此外,青蒿素浸种还提高蔬菜种子可溶性糖和游离氨基酸含量,推测青蒿素对种子水解酶活性的影响较小,但抑制合成酶催化的生化反应,导致代谢紊乱,抑制幼苗生长。  相似文献   

13.
促进黄花蒿发根青蒿素合成的内生真菌诱导子的制备   总被引:7,自引:0,他引:7  
应用酸解法对黄花蒿(ArtemisiaannuaL.)内生胶孢炭疽菌(Colletotrichumgloeosporioides)菌丝体进行提取,在黄花蒿发根培养系统中比较了各制备提取物的青蒿素诱导活性。活性提取物经过SephadexG25层析后,部分纯化的内生菌寡糖提取物(MW<2500)可显著促进发根青蒿素的合成,培养23d的发根经诱导子(0.4mg/mL)处理4d后,青蒿素产量可达13.51mg/L,比同期对照产量提高51.63%,诱导作用与诱导子浓度、作用时间相关。内生菌寡糖诱导子的制备和使用,在青蒿素生物技术生产研究中为首次应用。  相似文献   

14.
青蒿素是从中药青蒿中分离出来的一种倍半萜内酯类化合物,也是目前最有效的抗疟疾药物,对人类健康意义重大。该文通过对青蒿素生物合成途径及其相关酶的介绍,综述了利用异源生物通过组合生物合成途径生产青蒿素及其前体的最新研究进展。  相似文献   

15.
青蒿素生物合成分子调控研究进展   总被引:9,自引:0,他引:9  
青蒿素是目前世界上最有效的疟疾治疗药物。通过对青蒿素的生物合成途径,青蒿素生物合成途径的关键酶,青蒿素生物合成的分子调控的介绍,综述了青蒿素生物合成分子调控的最新研究进展。  相似文献   

16.
At some point during biosynthesis of the antimalarial artemisinin in glandular trichomes of Artemisia annua, the Delta11(13) double bond originating in amorpha-4,11-diene is reduced. This is thought to occur in artemisinic aldehyde, but other intermediates have been suggested. In an effort to understand double bond reduction in artemisinin biosynthesis, extracts of A. annua flower buds were investigated and found to contain artemisinic aldehyde Delta11(13) double bond reductase activity. Through a combination of partial protein purification, mass spectrometry, and expressed sequence tag analysis, a cDNA clone corresponding to the enzyme was isolated. The corresponding gene Dbr2, encoding a member of the enoate reductase family with similarity to plant 12-oxophytodienoate reductases, was found to be highly expressed in glandular trichomes. Recombinant Dbr2 was subsequently characterized and shown to be relatively specific for artemisinic aldehyde and to have some activity on small alpha,beta-unsaturated carbonyl compounds. Expression in yeast of Dbr2 and genes encoding four other enzymes in the artemisinin pathway resulted in the accumulation of dihydroartemsinic acid. The relevance of Dbr2 to trichome-specific artemisinin biosynthesis is discussed.  相似文献   

17.
Despite its efficacy against malaria, the relatively low yield (0.01%-0.8%) of artemisinin in Artemisia annua is a serious limitation to the commercialization of the drug. A better understanding of the biosynthetic pathway of artemisinin and its regulation by both exogenous and endogenous factors is essential to improve artemisinin yield. Increasing evidence has shown that microRNAs (miRNAs) play multiple roles in various biological processes. In this study, we used previously known miRNAs from Arabidopsis and rice against expressed sequence tag (EST) database of A. annua to search for potential miRNAs and their targets in A. annua. A total of six potential miRNAs were predicted, which belong to the miR414 and miR1310 families. Furthermore, eight potential target genes were identified in this species. Among them, seven genes encode proteins that play important roles in ar- temisinin biosynthesis, including HMG-CoA reductase (HMGR), amorpha-4,11-diene synthase (ADS), farnesyl pyrophosphate synthase (FPS) and cytochrome P450. In addition, a gene coding for putative AINTEGUMENTA, which is involved in signal transduction and development, was also predicted as one of the targets. This is the first in silico study to indicate that miRNAs target genes encoding enzymes involved in artemisinin biosynthesis, which may help to understand the miRNA-mediated regulation of artemisinin biosynthesis in A. annua.  相似文献   

18.
Artemisia annua, well recognized for its production of antimalarial drug artemisinin, is seldom attacked by any of phytopathogenic fungi, which could be partially associated with the presence of endophytes. Present investigation is aiming at disclosing whether the endophytes inside A. annua produce antifungal substances. A total of 39 endophytes were isolated and fermented, and the ferment broth was evaluated in vitro for the antifungal activity against crop-threatening fungi Gaeumannomyces graminis var. tritici, Rhizoctonia cerealis, Helminthosporium sativum, Fusarium graminearum, Gerlachia nivalis and Phytophthora capsici. These plant pathogens are still causing wheat take-all, sharp eyespot, common rot, scab, snow mould, and pepper phytophthora blight, respectively. Out of 39 endophytes investigated, 21 can produce in vitro substances that are inhibitory to all or a few of the tested phytopathogens whereas the rest yielded nothing active. Moreover, the most active broth of endophyte IV403 was extracted with EtOAc and n-butanol, and comparisons of the antifungal activity of the extracts indicated that the major active metabolites were EtOAc-extractable.  相似文献   

19.
青蒿毛状根生长、青蒿素合成以及 营养物消耗的动力学   总被引:2,自引:0,他引:2  
诱导产生的青蒿毛状根培养物置于MS培养基(含30 g/L蔗糖)进行悬浮培养,并对悬浮培养过程中毛状根生长、青蒿素合成、蔗糖、磷酸盐和不同氮源的消耗、pH和电导率的动力学过程进行分析。经30 d培养,生物量干重和青蒿素产量分别达到13.7 g/L和0.23 g/L,碳源和氮源在培养过程中被逐渐利用,而磷酸盐的利用速率最快,培养至15 d所有的磷酸盐均被吸收,pH在培养初期降低,后又逐渐上升,电导率由于毛状根生长对无机离子的吸收而逐渐减低。  相似文献   

20.
用RACE方法从青蒿(Artemisia annua L.)高产株系001中克隆了一个过氧化物酶.将此基因在大肠杆菌BL21(DE3)pLysS细胞中进行原核表达得到重组蛋白(APOD1),表达的蛋白分别以抗坏血酸、愈创木酚为底物进行过氧化反应,结果显示,APOD1催化愈创木酚的活力是抗坏血酸的1.8倍左右,由此表明,克隆的APOD1类属于植物经典过氧化物酶(第三大类过氧化物酶).经与其他植物过氧化物酶同源性比较分析,推测APOD1的氨基酸序列与白羽扇豆(Lupinus albus)、辣根菜(Armoracia rusticana)、小麦(Triticum aestivum)、烟草(Nicotiana tabacum)和蕃茄(Lycopersicon esculentum)的一致性分别为42.0%、36.2%、38.9%、33.6%和32.8%.Northern杂交分析表明,此基因在青蒿的根、茎和叶中均有表达.加入APOD1至青蒿细胞提取液有利于青蒿酸向青蒿素的生物转化,但APOD1并不能直接以青蒿酸作为氧化底物.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号